summaryrefslogtreecommitdiff
path: root/arch/x86/mm/tlb.c
blob: 1ab3821f9e2629df571544077d63be950361bc20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/cpu.h>

#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/cache.h>
#include <asm/apic.h>
#include <asm/uv/uv.h>
#include <linux/debugfs.h>

/*
 *	TLB flushing, formerly SMP-only
 *		c/o Linus Torvalds.
 *
 *	These mean you can really definitely utterly forget about
 *	writing to user space from interrupts. (Its not allowed anyway).
 *
 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 *
 *	More scalable flush, from Andi Kleen
 *
 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 */

atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);

static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
			    u16 *new_asid, bool *need_flush)
{
	u16 asid;

	if (!static_cpu_has(X86_FEATURE_PCID)) {
		*new_asid = 0;
		*need_flush = true;
		return;
	}

	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
		    next->context.ctx_id)
			continue;

		*new_asid = asid;
		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
			       next_tlb_gen);
		return;
	}

	/*
	 * We don't currently own an ASID slot on this CPU.
	 * Allocate a slot.
	 */
	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
	if (*new_asid >= TLB_NR_DYN_ASIDS) {
		*new_asid = 0;
		this_cpu_write(cpu_tlbstate.next_asid, 1);
	}
	*need_flush = true;
}

void leave_mm(int cpu)
{
	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);

	/*
	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
	 * If so, our callers still expect us to flush the TLB, but there
	 * aren't any user TLB entries in init_mm to worry about.
	 *
	 * This needs to happen before any other sanity checks due to
	 * intel_idle's shenanigans.
	 */
	if (loaded_mm == &init_mm)
		return;

	/* Warn if we're not lazy. */
	WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));

	switch_mm(NULL, &init_mm, NULL);
}

void switch_mm(struct mm_struct *prev, struct mm_struct *next,
	       struct task_struct *tsk)
{
	unsigned long flags;

	local_irq_save(flags);
	switch_mm_irqs_off(prev, next, tsk);
	local_irq_restore(flags);
}

void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			struct task_struct *tsk)
{
	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
	unsigned cpu = smp_processor_id();
	u64 next_tlb_gen;

	/*
	 * NB: The scheduler will call us with prev == next when switching
	 * from lazy TLB mode to normal mode if active_mm isn't changing.
	 * When this happens, we don't assume that CR3 (and hence
	 * cpu_tlbstate.loaded_mm) matches next.
	 *
	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
	 */

	/* We don't want flush_tlb_func_* to run concurrently with us. */
	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
		WARN_ON_ONCE(!irqs_disabled());

	/*
	 * Verify that CR3 is what we think it is.  This will catch
	 * hypothetical buggy code that directly switches to swapper_pg_dir
	 * without going through leave_mm() / switch_mm_irqs_off() or that
	 * does something like write_cr3(read_cr3_pa()).
	 *
	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
	 * isn't free.
	 */
#ifdef CONFIG_DEBUG_VM
	if (WARN_ON_ONCE(__read_cr3() !=
			 (__sme_pa(real_prev->pgd) | prev_asid))) {
		/*
		 * If we were to BUG here, we'd be very likely to kill
		 * the system so hard that we don't see the call trace.
		 * Try to recover instead by ignoring the error and doing
		 * a global flush to minimize the chance of corruption.
		 *
		 * (This is far from being a fully correct recovery.
		 *  Architecturally, the CPU could prefetch something
		 *  back into an incorrect ASID slot and leave it there
		 *  to cause trouble down the road.  It's better than
		 *  nothing, though.)
		 */
		__flush_tlb_all();
	}
#endif

	if (real_prev == next) {
		VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
			  next->context.ctx_id);

		if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
			/*
			 * There's nothing to do: we weren't lazy, and we
			 * aren't changing our mm.  We don't need to flush
			 * anything, nor do we need to update CR3, CR4, or
			 * LDTR.
			 */
			return;
		}

		/* Resume remote flushes and then read tlb_gen. */
		cpumask_set_cpu(cpu, mm_cpumask(next));
		next_tlb_gen = atomic64_read(&next->context.tlb_gen);

		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
		    next_tlb_gen) {
			/*
			 * Ideally, we'd have a flush_tlb() variant that
			 * takes the known CR3 value as input.  This would
			 * be faster on Xen PV and on hypothetical CPUs
			 * on which INVPCID is fast.
			 */
			this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
				       next_tlb_gen);
			write_cr3(__sme_pa(next->pgd) | prev_asid);
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
					TLB_FLUSH_ALL);
		}

		/*
		 * We just exited lazy mode, which means that CR4 and/or LDTR
		 * may be stale.  (Changes to the required CR4 and LDTR states
		 * are not reflected in tlb_gen.)
		 */
	} else {
		u16 new_asid;
		bool need_flush;

		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
			/*
			 * If our current stack is in vmalloc space and isn't
			 * mapped in the new pgd, we'll double-fault.  Forcibly
			 * map it.
			 */
			unsigned int index = pgd_index(current_stack_pointer());
			pgd_t *pgd = next->pgd + index;

			if (unlikely(pgd_none(*pgd)))
				set_pgd(pgd, init_mm.pgd[index]);
		}

		/* Stop remote flushes for the previous mm */
		if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));

		VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));

		/*
		 * Start remote flushes and then read tlb_gen.
		 */
		cpumask_set_cpu(cpu, mm_cpumask(next));
		next_tlb_gen = atomic64_read(&next->context.tlb_gen);

		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);

		if (need_flush) {
			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
			write_cr3(__sme_pa(next->pgd) | new_asid);
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
					TLB_FLUSH_ALL);
		} else {
			/* The new ASID is already up to date. */
			write_cr3(__sme_pa(next->pgd) | new_asid | CR3_NOFLUSH);
			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
		}

		this_cpu_write(cpu_tlbstate.loaded_mm, next);
		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
	}

	load_mm_cr4(next);
	switch_ldt(real_prev, next);
}

/*
 * Call this when reinitializing a CPU.  It fixes the following potential
 * problems:
 *
 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 *   because the CPU was taken down and came back up with CR3's PCID
 *   bits clear.  CPU hotplug can do this.
 *
 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 *
 * - The CPU went so far out to lunch that it may have missed a TLB
 *   flush.
 */
void initialize_tlbstate_and_flush(void)
{
	int i;
	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
	unsigned long cr3 = __read_cr3();

	/* Assert that CR3 already references the right mm. */
	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));

	/*
	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
	 * doesn't work like other CR4 bits because it can only be set from
	 * long mode.)
	 */
	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
		!(cr4_read_shadow() & X86_CR4_PCIDE));

	/* Force ASID 0 and force a TLB flush. */
	write_cr3(cr3 & ~CR3_PCID_MASK);

	/* Reinitialize tlbstate. */
	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
	this_cpu_write(cpu_tlbstate.next_asid, 1);
	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);

	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
}

/*
 * flush_tlb_func_common()'s memory ordering requirement is that any
 * TLB fills that happen after we flush the TLB are ordered after we
 * read active_mm's tlb_gen.  We don't need any explicit barriers
 * because all x86 flush operations are serializing and the
 * atomic64_read operation won't be reordered by the compiler.
 */
static void flush_tlb_func_common(const struct flush_tlb_info *f,
				  bool local, enum tlb_flush_reason reason)
{
	/*
	 * We have three different tlb_gen values in here.  They are:
	 *
	 * - mm_tlb_gen:     the latest generation.
	 * - local_tlb_gen:  the generation that this CPU has already caught
	 *                   up to.
	 * - f->new_tlb_gen: the generation that the requester of the flush
	 *                   wants us to catch up to.
	 */
	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);

	/* This code cannot presently handle being reentered. */
	VM_WARN_ON(!irqs_disabled());

	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
		   loaded_mm->context.ctx_id);

	if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
		/*
		 * We're in lazy mode -- don't flush.  We can get here on
		 * remote flushes due to races and on local flushes if a
		 * kernel thread coincidentally flushes the mm it's lazily
		 * still using.
		 */
		return;
	}

	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
		/*
		 * There's nothing to do: we're already up to date.  This can
		 * happen if two concurrent flushes happen -- the first flush to
		 * be handled can catch us all the way up, leaving no work for
		 * the second flush.
		 */
		trace_tlb_flush(reason, 0);
		return;
	}

	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);

	/*
	 * If we get to this point, we know that our TLB is out of date.
	 * This does not strictly imply that we need to flush (it's
	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
	 * going to need to flush in the very near future, so we might
	 * as well get it over with.
	 *
	 * The only question is whether to do a full or partial flush.
	 *
	 * We do a partial flush if requested and two extra conditions
	 * are met:
	 *
	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
	 *    we've always done all needed flushes to catch up to
	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
	 *    us up to date for tlb_gen 3 is the partial flush we're
	 *    processing.
	 *
	 *    As an example of why this check is needed, suppose that there
	 *    are two concurrent flushes.  The first is a full flush that
	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
	 *    processed on this CPU in reverse order, we'll see
	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
	 *    If we were to use __flush_tlb_single() and set local_tlb_gen to
	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
	 *    1 without the full flush that's needed for tlb_gen 2.
	 *
	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
	 *    Partial TLB flushes are not all that much cheaper than full TLB
	 *    flushes, so it seems unlikely that it would be a performance win
	 *    to do a partial flush if that won't bring our TLB fully up to
	 *    date.  By doing a full flush instead, we can increase
	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
	 *    avoid another flush in the very near future.
	 */
	if (f->end != TLB_FLUSH_ALL &&
	    f->new_tlb_gen == local_tlb_gen + 1 &&
	    f->new_tlb_gen == mm_tlb_gen) {
		/* Partial flush */
		unsigned long addr;
		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;

		addr = f->start;
		while (addr < f->end) {
			__flush_tlb_single(addr);
			addr += PAGE_SIZE;
		}
		if (local)
			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
		trace_tlb_flush(reason, nr_pages);
	} else {
		/* Full flush. */
		local_flush_tlb();
		if (local)
			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
		trace_tlb_flush(reason, TLB_FLUSH_ALL);
	}

	/* Both paths above update our state to mm_tlb_gen. */
	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
}

static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
{
	const struct flush_tlb_info *f = info;

	flush_tlb_func_common(f, true, reason);
}

static void flush_tlb_func_remote(void *info)
{
	const struct flush_tlb_info *f = info;

	inc_irq_stat(irq_tlb_count);

	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
		return;

	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
}

void native_flush_tlb_others(const struct cpumask *cpumask,
			     const struct flush_tlb_info *info)
{
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
	if (info->end == TLB_FLUSH_ALL)
		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
	else
		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
				(info->end - info->start) >> PAGE_SHIFT);

	if (is_uv_system()) {
		/*
		 * This whole special case is confused.  UV has a "Broadcast
		 * Assist Unit", which seems to be a fancy way to send IPIs.
		 * Back when x86 used an explicit TLB flush IPI, UV was
		 * optimized to use its own mechanism.  These days, x86 uses
		 * smp_call_function_many(), but UV still uses a manual IPI,
		 * and that IPI's action is out of date -- it does a manual
		 * flush instead of calling flush_tlb_func_remote().  This
		 * means that the percpu tlb_gen variables won't be updated
		 * and we'll do pointless flushes on future context switches.
		 *
		 * Rather than hooking native_flush_tlb_others() here, I think
		 * that UV should be updated so that smp_call_function_many(),
		 * etc, are optimal on UV.
		 */
		unsigned int cpu;

		cpu = smp_processor_id();
		cpumask = uv_flush_tlb_others(cpumask, info);
		if (cpumask)
			smp_call_function_many(cpumask, flush_tlb_func_remote,
					       (void *)info, 1);
		return;
	}
	smp_call_function_many(cpumask, flush_tlb_func_remote,
			       (void *)info, 1);
}

/*
 * See Documentation/x86/tlb.txt for details.  We choose 33
 * because it is large enough to cover the vast majority (at
 * least 95%) of allocations, and is small enough that we are
 * confident it will not cause too much overhead.  Each single
 * flush is about 100 ns, so this caps the maximum overhead at
 * _about_ 3,000 ns.
 *
 * This is in units of pages.
 */
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;

void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
				unsigned long end, unsigned long vmflag)
{
	int cpu;

	struct flush_tlb_info info = {
		.mm = mm,
	};

	cpu = get_cpu();

	/* This is also a barrier that synchronizes with switch_mm(). */
	info.new_tlb_gen = inc_mm_tlb_gen(mm);

	/* Should we flush just the requested range? */
	if ((end != TLB_FLUSH_ALL) &&
	    !(vmflag & VM_HUGETLB) &&
	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
		info.start = start;
		info.end = end;
	} else {
		info.start = 0UL;
		info.end = TLB_FLUSH_ALL;
	}

	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
		VM_WARN_ON(irqs_disabled());
		local_irq_disable();
		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
		local_irq_enable();
	}

	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
		flush_tlb_others(mm_cpumask(mm), &info);

	put_cpu();
}


static void do_flush_tlb_all(void *info)
{
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
	__flush_tlb_all();
}

void flush_tlb_all(void)
{
	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
	on_each_cpu(do_flush_tlb_all, NULL, 1);
}

static void do_kernel_range_flush(void *info)
{
	struct flush_tlb_info *f = info;
	unsigned long addr;

	/* flush range by one by one 'invlpg' */
	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
		__flush_tlb_single(addr);
}

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{

	/* Balance as user space task's flush, a bit conservative */
	if (end == TLB_FLUSH_ALL ||
	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
		on_each_cpu(do_flush_tlb_all, NULL, 1);
	} else {
		struct flush_tlb_info info;
		info.start = start;
		info.end = end;
		on_each_cpu(do_kernel_range_flush, &info, 1);
	}
}

void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
{
	struct flush_tlb_info info = {
		.mm = NULL,
		.start = 0UL,
		.end = TLB_FLUSH_ALL,
	};

	int cpu = get_cpu();

	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
		VM_WARN_ON(irqs_disabled());
		local_irq_disable();
		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
		local_irq_enable();
	}

	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
		flush_tlb_others(&batch->cpumask, &info);

	cpumask_clear(&batch->cpumask);

	put_cpu();
}

static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
			     size_t count, loff_t *ppos)
{
	char buf[32];
	unsigned int len;

	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}

static ssize_t tlbflush_write_file(struct file *file,
		 const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
	ssize_t len;
	int ceiling;

	len = min(count, sizeof(buf) - 1);
	if (copy_from_user(buf, user_buf, len))
		return -EFAULT;

	buf[len] = '\0';
	if (kstrtoint(buf, 0, &ceiling))
		return -EINVAL;

	if (ceiling < 0)
		return -EINVAL;

	tlb_single_page_flush_ceiling = ceiling;
	return count;
}

static const struct file_operations fops_tlbflush = {
	.read = tlbflush_read_file,
	.write = tlbflush_write_file,
	.llseek = default_llseek,
};

static int __init create_tlb_single_page_flush_ceiling(void)
{
	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
			    arch_debugfs_dir, NULL, &fops_tlbflush);
	return 0;
}
late_initcall(create_tlb_single_page_flush_ceiling);