summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/sev-shared.c
blob: dcf325b7b022956ab241f92ac4b9d55bdd8eaba2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
// SPDX-License-Identifier: GPL-2.0
/*
 * AMD Encrypted Register State Support
 *
 * Author: Joerg Roedel <jroedel@suse.de>
 *
 * This file is not compiled stand-alone. It contains code shared
 * between the pre-decompression boot code and the running Linux kernel
 * and is included directly into both code-bases.
 */

#ifndef __BOOT_COMPRESSED
#define error(v)	pr_err(v)
#define has_cpuflag(f)	boot_cpu_has(f)
#else
#undef WARN
#define WARN(condition, format...) (!!(condition))
#endif

/* I/O parameters for CPUID-related helpers */
struct cpuid_leaf {
	u32 fn;
	u32 subfn;
	u32 eax;
	u32 ebx;
	u32 ecx;
	u32 edx;
};

/*
 * Individual entries of the SNP CPUID table, as defined by the SNP
 * Firmware ABI, Revision 0.9, Section 7.1, Table 14.
 */
struct snp_cpuid_fn {
	u32 eax_in;
	u32 ecx_in;
	u64 xcr0_in;
	u64 xss_in;
	u32 eax;
	u32 ebx;
	u32 ecx;
	u32 edx;
	u64 __reserved;
} __packed;

/*
 * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9,
 * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit
 * of 64 entries per CPUID table.
 */
#define SNP_CPUID_COUNT_MAX 64

struct snp_cpuid_table {
	u32 count;
	u32 __reserved1;
	u64 __reserved2;
	struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX];
} __packed;

/*
 * Since feature negotiation related variables are set early in the boot
 * process they must reside in the .data section so as not to be zeroed
 * out when the .bss section is later cleared.
 *
 * GHCB protocol version negotiated with the hypervisor.
 */
static u16 ghcb_version __ro_after_init;

/* Copy of the SNP firmware's CPUID page. */
static struct snp_cpuid_table cpuid_table_copy __ro_after_init;

/*
 * These will be initialized based on CPUID table so that non-present
 * all-zero leaves (for sparse tables) can be differentiated from
 * invalid/out-of-range leaves. This is needed since all-zero leaves
 * still need to be post-processed.
 */
static u32 cpuid_std_range_max __ro_after_init;
static u32 cpuid_hyp_range_max __ro_after_init;
static u32 cpuid_ext_range_max __ro_after_init;

static bool __init sev_es_check_cpu_features(void)
{
	if (!has_cpuflag(X86_FEATURE_RDRAND)) {
		error("RDRAND instruction not supported - no trusted source of randomness available\n");
		return false;
	}

	return true;
}

static void __noreturn sev_es_terminate(unsigned int set, unsigned int reason)
{
	u64 val = GHCB_MSR_TERM_REQ;

	/* Tell the hypervisor what went wrong. */
	val |= GHCB_SEV_TERM_REASON(set, reason);

	/* Request Guest Termination from Hypvervisor */
	sev_es_wr_ghcb_msr(val);
	VMGEXIT();

	while (true)
		asm volatile("hlt\n" : : : "memory");
}

/*
 * The hypervisor features are available from GHCB version 2 onward.
 */
static u64 get_hv_features(void)
{
	u64 val;

	if (ghcb_version < 2)
		return 0;

	sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
	VMGEXIT();

	val = sev_es_rd_ghcb_msr();
	if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
		return 0;

	return GHCB_MSR_HV_FT_RESP_VAL(val);
}

static void snp_register_ghcb_early(unsigned long paddr)
{
	unsigned long pfn = paddr >> PAGE_SHIFT;
	u64 val;

	sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn));
	VMGEXIT();

	val = sev_es_rd_ghcb_msr();

	/* If the response GPA is not ours then abort the guest */
	if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) ||
	    (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER);
}

static bool sev_es_negotiate_protocol(void)
{
	u64 val;

	/* Do the GHCB protocol version negotiation */
	sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
	VMGEXIT();
	val = sev_es_rd_ghcb_msr();

	if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
		return false;

	if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
	    GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
		return false;

	ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX);

	return true;
}

static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb)
{
	ghcb->save.sw_exit_code = 0;
	__builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}

static bool vc_decoding_needed(unsigned long exit_code)
{
	/* Exceptions don't require to decode the instruction */
	return !(exit_code >= SVM_EXIT_EXCP_BASE &&
		 exit_code <= SVM_EXIT_LAST_EXCP);
}

static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt,
				      struct pt_regs *regs,
				      unsigned long exit_code)
{
	enum es_result ret = ES_OK;

	memset(ctxt, 0, sizeof(*ctxt));
	ctxt->regs = regs;

	if (vc_decoding_needed(exit_code))
		ret = vc_decode_insn(ctxt);

	return ret;
}

static void vc_finish_insn(struct es_em_ctxt *ctxt)
{
	ctxt->regs->ip += ctxt->insn.length;
}

static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	u32 ret;

	ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0);
	if (!ret)
		return ES_OK;

	if (ret == 1) {
		u64 info = ghcb->save.sw_exit_info_2;
		unsigned long v = info & SVM_EVTINJ_VEC_MASK;

		/* Check if exception information from hypervisor is sane. */
		if ((info & SVM_EVTINJ_VALID) &&
		    ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) &&
		    ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) {
			ctxt->fi.vector = v;

			if (info & SVM_EVTINJ_VALID_ERR)
				ctxt->fi.error_code = info >> 32;

			return ES_EXCEPTION;
		}
	}

	return ES_VMM_ERROR;
}

static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb,
					  struct es_em_ctxt *ctxt,
					  u64 exit_code, u64 exit_info_1,
					  u64 exit_info_2)
{
	/* Fill in protocol and format specifiers */
	ghcb->protocol_version = ghcb_version;
	ghcb->ghcb_usage       = GHCB_DEFAULT_USAGE;

	ghcb_set_sw_exit_code(ghcb, exit_code);
	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);

	sev_es_wr_ghcb_msr(__pa(ghcb));
	VMGEXIT();

	return verify_exception_info(ghcb, ctxt);
}

static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
{
	u64 val;

	sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
	VMGEXIT();
	val = sev_es_rd_ghcb_msr();
	if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
		return -EIO;

	*reg = (val >> 32);

	return 0;
}

static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
{
	int ret;

	/*
	 * MSR protocol does not support fetching non-zero subfunctions, but is
	 * sufficient to handle current early-boot cases. Should that change,
	 * make sure to report an error rather than ignoring the index and
	 * grabbing random values. If this issue arises in the future, handling
	 * can be added here to use GHCB-page protocol for cases that occur late
	 * enough in boot that GHCB page is available.
	 */
	if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
		return -EINVAL;

	ret =         __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);

	return ret;
}

static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
	u32 cr4 = native_read_cr4();
	int ret;

	ghcb_set_rax(ghcb, leaf->fn);
	ghcb_set_rcx(ghcb, leaf->subfn);

	if (cr4 & X86_CR4_OSXSAVE)
		/* Safe to read xcr0 */
		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
	else
		/* xgetbv will cause #UD - use reset value for xcr0 */
		ghcb_set_xcr0(ghcb, 1);

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (!(ghcb_rax_is_valid(ghcb) &&
	      ghcb_rbx_is_valid(ghcb) &&
	      ghcb_rcx_is_valid(ghcb) &&
	      ghcb_rdx_is_valid(ghcb)))
		return ES_VMM_ERROR;

	leaf->eax = ghcb->save.rax;
	leaf->ebx = ghcb->save.rbx;
	leaf->ecx = ghcb->save.rcx;
	leaf->edx = ghcb->save.rdx;

	return ES_OK;
}

static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
	return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf)
		    : __sev_cpuid_hv_msr(leaf);
}

/*
 * This may be called early while still running on the initial identity
 * mapping. Use RIP-relative addressing to obtain the correct address
 * while running with the initial identity mapping as well as the
 * switch-over to kernel virtual addresses later.
 */
static const struct snp_cpuid_table *snp_cpuid_get_table(void)
{
	void *ptr;

	asm ("lea cpuid_table_copy(%%rip), %0"
	     : "=r" (ptr)
	     : "p" (&cpuid_table_copy));

	return ptr;
}

/*
 * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
 * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
 * and 1 based on the corresponding features enabled by a particular
 * combination of XCR0 and XSS registers so that a guest can look up the
 * version corresponding to the features currently enabled in its XCR0/XSS
 * registers. The only values that differ between these versions/table
 * entries is the enabled XSAVE area size advertised via EBX.
 *
 * While hypervisors may choose to make use of this support, it is more
 * robust/secure for a guest to simply find the entry corresponding to the
 * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
 * XSAVE area size using subfunctions 2 through 64, as documented in APM
 * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
 *
 * Since base/legacy XSAVE area size is documented as 0x240, use that value
 * directly rather than relying on the base size in the CPUID table.
 *
 * Return: XSAVE area size on success, 0 otherwise.
 */
static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
{
	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
	u64 xfeatures_found = 0;
	u32 xsave_size = 0x240;
	int i;

	for (i = 0; i < cpuid_table->count; i++) {
		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];

		if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
			continue;
		if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
			continue;
		if (xfeatures_found & (BIT_ULL(e->ecx_in)))
			continue;

		xfeatures_found |= (BIT_ULL(e->ecx_in));

		if (compacted)
			xsave_size += e->eax;
		else
			xsave_size = max(xsave_size, e->eax + e->ebx);
	}

	/*
	 * Either the guest set unsupported XCR0/XSS bits, or the corresponding
	 * entries in the CPUID table were not present. This is not a valid
	 * state to be in.
	 */
	if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
		return 0;

	return xsave_size;
}

static bool
snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
{
	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
	int i;

	for (i = 0; i < cpuid_table->count; i++) {
		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];

		if (e->eax_in != leaf->fn)
			continue;

		if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
			continue;

		/*
		 * For 0xD subfunctions 0 and 1, only use the entry corresponding
		 * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
		 * See the comments above snp_cpuid_calc_xsave_size() for more
		 * details.
		 */
		if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
			if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
				continue;

		leaf->eax = e->eax;
		leaf->ebx = e->ebx;
		leaf->ecx = e->ecx;
		leaf->edx = e->edx;

		return true;
	}

	return false;
}

static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
	if (sev_cpuid_hv(ghcb, ctxt, leaf))
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
}

static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
				 struct cpuid_leaf *leaf)
{
	struct cpuid_leaf leaf_hv = *leaf;

	switch (leaf->fn) {
	case 0x1:
		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);

		/* initial APIC ID */
		leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
		/* APIC enabled bit */
		leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));

		/* OSXSAVE enabled bit */
		if (native_read_cr4() & X86_CR4_OSXSAVE)
			leaf->ecx |= BIT(27);
		break;
	case 0x7:
		/* OSPKE enabled bit */
		leaf->ecx &= ~BIT(4);
		if (native_read_cr4() & X86_CR4_PKE)
			leaf->ecx |= BIT(4);
		break;
	case 0xB:
		leaf_hv.subfn = 0;
		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);

		/* extended APIC ID */
		leaf->edx = leaf_hv.edx;
		break;
	case 0xD: {
		bool compacted = false;
		u64 xcr0 = 1, xss = 0;
		u32 xsave_size;

		if (leaf->subfn != 0 && leaf->subfn != 1)
			return 0;

		if (native_read_cr4() & X86_CR4_OSXSAVE)
			xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
		if (leaf->subfn == 1) {
			/* Get XSS value if XSAVES is enabled. */
			if (leaf->eax & BIT(3)) {
				unsigned long lo, hi;

				asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
						     : "c" (MSR_IA32_XSS));
				xss = (hi << 32) | lo;
			}

			/*
			 * The PPR and APM aren't clear on what size should be
			 * encoded in 0xD:0x1:EBX when compaction is not enabled
			 * by either XSAVEC (feature bit 1) or XSAVES (feature
			 * bit 3) since SNP-capable hardware has these feature
			 * bits fixed as 1. KVM sets it to 0 in this case, but
			 * to avoid this becoming an issue it's safer to simply
			 * treat this as unsupported for SNP guests.
			 */
			if (!(leaf->eax & (BIT(1) | BIT(3))))
				return -EINVAL;

			compacted = true;
		}

		xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
		if (!xsave_size)
			return -EINVAL;

		leaf->ebx = xsave_size;
		}
		break;
	case 0x8000001E:
		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);

		/* extended APIC ID */
		leaf->eax = leaf_hv.eax;
		/* compute ID */
		leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
		/* node ID */
		leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
		break;
	default:
		/* No fix-ups needed, use values as-is. */
		break;
	}

	return 0;
}

/*
 * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
 * should be treated as fatal by caller.
 */
static int snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();

	if (!cpuid_table->count)
		return -EOPNOTSUPP;

	if (!snp_cpuid_get_validated_func(leaf)) {
		/*
		 * Some hypervisors will avoid keeping track of CPUID entries
		 * where all values are zero, since they can be handled the
		 * same as out-of-range values (all-zero). This is useful here
		 * as well as it allows virtually all guest configurations to
		 * work using a single SNP CPUID table.
		 *
		 * To allow for this, there is a need to distinguish between
		 * out-of-range entries and in-range zero entries, since the
		 * CPUID table entries are only a template that may need to be
		 * augmented with additional values for things like
		 * CPU-specific information during post-processing. So if it's
		 * not in the table, set the values to zero. Then, if they are
		 * within a valid CPUID range, proceed with post-processing
		 * using zeros as the initial values. Otherwise, skip
		 * post-processing and just return zeros immediately.
		 */
		leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;

		/* Skip post-processing for out-of-range zero leafs. */
		if (!(leaf->fn <= cpuid_std_range_max ||
		      (leaf->fn >= 0x40000000 && leaf->fn <= cpuid_hyp_range_max) ||
		      (leaf->fn >= 0x80000000 && leaf->fn <= cpuid_ext_range_max)))
			return 0;
	}

	return snp_cpuid_postprocess(ghcb, ctxt, leaf);
}

/*
 * Boot VC Handler - This is the first VC handler during boot, there is no GHCB
 * page yet, so it only supports the MSR based communication with the
 * hypervisor and only the CPUID exit-code.
 */
void __init do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
{
	unsigned int subfn = lower_bits(regs->cx, 32);
	unsigned int fn = lower_bits(regs->ax, 32);
	struct cpuid_leaf leaf;
	int ret;

	/* Only CPUID is supported via MSR protocol */
	if (exit_code != SVM_EXIT_CPUID)
		goto fail;

	leaf.fn = fn;
	leaf.subfn = subfn;

	ret = snp_cpuid(NULL, NULL, &leaf);
	if (!ret)
		goto cpuid_done;

	if (ret != -EOPNOTSUPP)
		goto fail;

	if (__sev_cpuid_hv_msr(&leaf))
		goto fail;

cpuid_done:
	regs->ax = leaf.eax;
	regs->bx = leaf.ebx;
	regs->cx = leaf.ecx;
	regs->dx = leaf.edx;

	/*
	 * This is a VC handler and the #VC is only raised when SEV-ES is
	 * active, which means SEV must be active too. Do sanity checks on the
	 * CPUID results to make sure the hypervisor does not trick the kernel
	 * into the no-sev path. This could map sensitive data unencrypted and
	 * make it accessible to the hypervisor.
	 *
	 * In particular, check for:
	 *	- Availability of CPUID leaf 0x8000001f
	 *	- SEV CPUID bit.
	 *
	 * The hypervisor might still report the wrong C-bit position, but this
	 * can't be checked here.
	 */

	if (fn == 0x80000000 && (regs->ax < 0x8000001f))
		/* SEV leaf check */
		goto fail;
	else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
		/* SEV bit */
		goto fail;

	/* Skip over the CPUID two-byte opcode */
	regs->ip += 2;

	return;

fail:
	/* Terminate the guest */
	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}

static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt,
					  void *src, char *buf,
					  unsigned int data_size,
					  unsigned int count,
					  bool backwards)
{
	int i, b = backwards ? -1 : 1;
	enum es_result ret = ES_OK;

	for (i = 0; i < count; i++) {
		void *s = src + (i * data_size * b);
		char *d = buf + (i * data_size);

		ret = vc_read_mem(ctxt, s, d, data_size);
		if (ret != ES_OK)
			break;
	}

	return ret;
}

static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt,
					   void *dst, char *buf,
					   unsigned int data_size,
					   unsigned int count,
					   bool backwards)
{
	int i, s = backwards ? -1 : 1;
	enum es_result ret = ES_OK;

	for (i = 0; i < count; i++) {
		void *d = dst + (i * data_size * s);
		char *b = buf + (i * data_size);

		ret = vc_write_mem(ctxt, d, b, data_size);
		if (ret != ES_OK)
			break;
	}

	return ret;
}

#define IOIO_TYPE_STR  BIT(2)
#define IOIO_TYPE_IN   1
#define IOIO_TYPE_INS  (IOIO_TYPE_IN | IOIO_TYPE_STR)
#define IOIO_TYPE_OUT  0
#define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR)

#define IOIO_REP       BIT(3)

#define IOIO_ADDR_64   BIT(9)
#define IOIO_ADDR_32   BIT(8)
#define IOIO_ADDR_16   BIT(7)

#define IOIO_DATA_32   BIT(6)
#define IOIO_DATA_16   BIT(5)
#define IOIO_DATA_8    BIT(4)

#define IOIO_SEG_ES    (0 << 10)
#define IOIO_SEG_DS    (3 << 10)

static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo)
{
	struct insn *insn = &ctxt->insn;
	*exitinfo = 0;

	switch (insn->opcode.bytes[0]) {
	/* INS opcodes */
	case 0x6c:
	case 0x6d:
		*exitinfo |= IOIO_TYPE_INS;
		*exitinfo |= IOIO_SEG_ES;
		*exitinfo |= (ctxt->regs->dx & 0xffff) << 16;
		break;

	/* OUTS opcodes */
	case 0x6e:
	case 0x6f:
		*exitinfo |= IOIO_TYPE_OUTS;
		*exitinfo |= IOIO_SEG_DS;
		*exitinfo |= (ctxt->regs->dx & 0xffff) << 16;
		break;

	/* IN immediate opcodes */
	case 0xe4:
	case 0xe5:
		*exitinfo |= IOIO_TYPE_IN;
		*exitinfo |= (u8)insn->immediate.value << 16;
		break;

	/* OUT immediate opcodes */
	case 0xe6:
	case 0xe7:
		*exitinfo |= IOIO_TYPE_OUT;
		*exitinfo |= (u8)insn->immediate.value << 16;
		break;

	/* IN register opcodes */
	case 0xec:
	case 0xed:
		*exitinfo |= IOIO_TYPE_IN;
		*exitinfo |= (ctxt->regs->dx & 0xffff) << 16;
		break;

	/* OUT register opcodes */
	case 0xee:
	case 0xef:
		*exitinfo |= IOIO_TYPE_OUT;
		*exitinfo |= (ctxt->regs->dx & 0xffff) << 16;
		break;

	default:
		return ES_DECODE_FAILED;
	}

	switch (insn->opcode.bytes[0]) {
	case 0x6c:
	case 0x6e:
	case 0xe4:
	case 0xe6:
	case 0xec:
	case 0xee:
		/* Single byte opcodes */
		*exitinfo |= IOIO_DATA_8;
		break;
	default:
		/* Length determined by instruction parsing */
		*exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16
						     : IOIO_DATA_32;
	}
	switch (insn->addr_bytes) {
	case 2:
		*exitinfo |= IOIO_ADDR_16;
		break;
	case 4:
		*exitinfo |= IOIO_ADDR_32;
		break;
	case 8:
		*exitinfo |= IOIO_ADDR_64;
		break;
	}

	if (insn_has_rep_prefix(insn))
		*exitinfo |= IOIO_REP;

	return ES_OK;
}

static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	struct pt_regs *regs = ctxt->regs;
	u64 exit_info_1, exit_info_2;
	enum es_result ret;

	ret = vc_ioio_exitinfo(ctxt, &exit_info_1);
	if (ret != ES_OK)
		return ret;

	if (exit_info_1 & IOIO_TYPE_STR) {

		/* (REP) INS/OUTS */

		bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF);
		unsigned int io_bytes, exit_bytes;
		unsigned int ghcb_count, op_count;
		unsigned long es_base;
		u64 sw_scratch;

		/*
		 * For the string variants with rep prefix the amount of in/out
		 * operations per #VC exception is limited so that the kernel
		 * has a chance to take interrupts and re-schedule while the
		 * instruction is emulated.
		 */
		io_bytes   = (exit_info_1 >> 4) & 0x7;
		ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes;

		op_count    = (exit_info_1 & IOIO_REP) ? regs->cx : 1;
		exit_info_2 = min(op_count, ghcb_count);
		exit_bytes  = exit_info_2 * io_bytes;

		es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);

		/* Read bytes of OUTS into the shared buffer */
		if (!(exit_info_1 & IOIO_TYPE_IN)) {
			ret = vc_insn_string_read(ctxt,
					       (void *)(es_base + regs->si),
					       ghcb->shared_buffer, io_bytes,
					       exit_info_2, df);
			if (ret)
				return ret;
		}

		/*
		 * Issue an VMGEXIT to the HV to consume the bytes from the
		 * shared buffer or to have it write them into the shared buffer
		 * depending on the instruction: OUTS or INS.
		 */
		sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer);
		ghcb_set_sw_scratch(ghcb, sw_scratch);
		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO,
					  exit_info_1, exit_info_2);
		if (ret != ES_OK)
			return ret;

		/* Read bytes from shared buffer into the guest's destination. */
		if (exit_info_1 & IOIO_TYPE_IN) {
			ret = vc_insn_string_write(ctxt,
						   (void *)(es_base + regs->di),
						   ghcb->shared_buffer, io_bytes,
						   exit_info_2, df);
			if (ret)
				return ret;

			if (df)
				regs->di -= exit_bytes;
			else
				regs->di += exit_bytes;
		} else {
			if (df)
				regs->si -= exit_bytes;
			else
				regs->si += exit_bytes;
		}

		if (exit_info_1 & IOIO_REP)
			regs->cx -= exit_info_2;

		ret = regs->cx ? ES_RETRY : ES_OK;

	} else {

		/* IN/OUT into/from rAX */

		int bits = (exit_info_1 & 0x70) >> 1;
		u64 rax = 0;

		if (!(exit_info_1 & IOIO_TYPE_IN))
			rax = lower_bits(regs->ax, bits);

		ghcb_set_rax(ghcb, rax);

		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0);
		if (ret != ES_OK)
			return ret;

		if (exit_info_1 & IOIO_TYPE_IN) {
			if (!ghcb_rax_is_valid(ghcb))
				return ES_VMM_ERROR;
			regs->ax = lower_bits(ghcb->save.rax, bits);
		}
	}

	return ret;
}

static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
	struct pt_regs *regs = ctxt->regs;
	struct cpuid_leaf leaf;
	int ret;

	leaf.fn = regs->ax;
	leaf.subfn = regs->cx;
	ret = snp_cpuid(ghcb, ctxt, &leaf);
	if (!ret) {
		regs->ax = leaf.eax;
		regs->bx = leaf.ebx;
		regs->cx = leaf.ecx;
		regs->dx = leaf.edx;
	}

	return ret;
}

static enum es_result vc_handle_cpuid(struct ghcb *ghcb,
				      struct es_em_ctxt *ctxt)
{
	struct pt_regs *regs = ctxt->regs;
	u32 cr4 = native_read_cr4();
	enum es_result ret;
	int snp_cpuid_ret;

	snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt);
	if (!snp_cpuid_ret)
		return ES_OK;
	if (snp_cpuid_ret != -EOPNOTSUPP)
		return ES_VMM_ERROR;

	ghcb_set_rax(ghcb, regs->ax);
	ghcb_set_rcx(ghcb, regs->cx);

	if (cr4 & X86_CR4_OSXSAVE)
		/* Safe to read xcr0 */
		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
	else
		/* xgetbv will cause #GP - use reset value for xcr0 */
		ghcb_set_xcr0(ghcb, 1);

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (!(ghcb_rax_is_valid(ghcb) &&
	      ghcb_rbx_is_valid(ghcb) &&
	      ghcb_rcx_is_valid(ghcb) &&
	      ghcb_rdx_is_valid(ghcb)))
		return ES_VMM_ERROR;

	regs->ax = ghcb->save.rax;
	regs->bx = ghcb->save.rbx;
	regs->cx = ghcb->save.rcx;
	regs->dx = ghcb->save.rdx;

	return ES_OK;
}

static enum es_result vc_handle_rdtsc(struct ghcb *ghcb,
				      struct es_em_ctxt *ctxt,
				      unsigned long exit_code)
{
	bool rdtscp = (exit_code == SVM_EXIT_RDTSCP);
	enum es_result ret;

	ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0);
	if (ret != ES_OK)
		return ret;

	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) &&
	     (!rdtscp || ghcb_rcx_is_valid(ghcb))))
		return ES_VMM_ERROR;

	ctxt->regs->ax = ghcb->save.rax;
	ctxt->regs->dx = ghcb->save.rdx;
	if (rdtscp)
		ctxt->regs->cx = ghcb->save.rcx;

	return ES_OK;
}

struct cc_setup_data {
	struct setup_data header;
	u32 cc_blob_address;
};

/*
 * Search for a Confidential Computing blob passed in as a setup_data entry
 * via the Linux Boot Protocol.
 */
static struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
{
	struct cc_setup_data *sd = NULL;
	struct setup_data *hdr;

	hdr = (struct setup_data *)bp->hdr.setup_data;

	while (hdr) {
		if (hdr->type == SETUP_CC_BLOB) {
			sd = (struct cc_setup_data *)hdr;
			return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
		}
		hdr = (struct setup_data *)hdr->next;
	}

	return NULL;
}

/*
 * Initialize the kernel's copy of the SNP CPUID table, and set up the
 * pointer that will be used to access it.
 *
 * Maintaining a direct mapping of the SNP CPUID table used by firmware would
 * be possible as an alternative, but the approach is brittle since the
 * mapping needs to be updated in sync with all the changes to virtual memory
 * layout and related mapping facilities throughout the boot process.
 */
static void __init setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
{
	const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
	int i;

	if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);

	cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
	if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);

	cpuid_table = snp_cpuid_get_table();
	memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));

	/* Initialize CPUID ranges for range-checking. */
	for (i = 0; i < cpuid_table->count; i++) {
		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];

		if (fn->eax_in == 0x0)
			cpuid_std_range_max = fn->eax;
		else if (fn->eax_in == 0x40000000)
			cpuid_hyp_range_max = fn->eax;
		else if (fn->eax_in == 0x80000000)
			cpuid_ext_range_max = fn->eax;
	}
}

static void pvalidate_pages(struct snp_psc_desc *desc)
{
	struct psc_entry *e;
	unsigned long vaddr;
	unsigned int size;
	unsigned int i;
	bool validate;
	int rc;

	for (i = 0; i <= desc->hdr.end_entry; i++) {
		e = &desc->entries[i];

		vaddr = (unsigned long)pfn_to_kaddr(e->gfn);
		size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
		validate = e->operation == SNP_PAGE_STATE_PRIVATE;

		rc = pvalidate(vaddr, size, validate);
		if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
			unsigned long vaddr_end = vaddr + PMD_SIZE;

			for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) {
				rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
				if (rc)
					break;
			}
		}

		if (rc) {
			WARN(1, "Failed to validate address 0x%lx ret %d", vaddr, rc);
			sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
		}
	}
}

static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
{
	int cur_entry, end_entry, ret = 0;
	struct snp_psc_desc *data;
	struct es_em_ctxt ctxt;

	vc_ghcb_invalidate(ghcb);

	/* Copy the input desc into GHCB shared buffer */
	data = (struct snp_psc_desc *)ghcb->shared_buffer;
	memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));

	/*
	 * As per the GHCB specification, the hypervisor can resume the guest
	 * before processing all the entries. Check whether all the entries
	 * are processed. If not, then keep retrying. Note, the hypervisor
	 * will update the data memory directly to indicate the status, so
	 * reference the data->hdr everywhere.
	 *
	 * The strategy here is to wait for the hypervisor to change the page
	 * state in the RMP table before guest accesses the memory pages. If the
	 * page state change was not successful, then later memory access will
	 * result in a crash.
	 */
	cur_entry = data->hdr.cur_entry;
	end_entry = data->hdr.end_entry;

	while (data->hdr.cur_entry <= data->hdr.end_entry) {
		ghcb_set_sw_scratch(ghcb, (u64)__pa(data));

		/* This will advance the shared buffer data points to. */
		ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);

		/*
		 * Page State Change VMGEXIT can pass error code through
		 * exit_info_2.
		 */
		if (WARN(ret || ghcb->save.sw_exit_info_2,
			 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
			 ret, ghcb->save.sw_exit_info_2)) {
			ret = 1;
			goto out;
		}

		/* Verify that reserved bit is not set */
		if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
			ret = 1;
			goto out;
		}

		/*
		 * Sanity check that entry processing is not going backwards.
		 * This will happen only if hypervisor is tricking us.
		 */
		if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
			 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
			ret = 1;
			goto out;
		}
	}

out:
	return ret;
}