summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/hpet.c
blob: c8eb1ac5125abaaca484810bcb3f1697a54e6119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/hpet.h>
#include <linux/cpu.h>
#include <linux/irq.h>

#include <asm/irq_remapping.h>
#include <asm/hpet.h>
#include <asm/time.h>
#include <asm/mwait.h>

#undef  pr_fmt
#define pr_fmt(fmt) "hpet: " fmt

enum hpet_mode {
	HPET_MODE_UNUSED,
	HPET_MODE_LEGACY,
	HPET_MODE_CLOCKEVT,
	HPET_MODE_DEVICE,
};

struct hpet_channel {
	struct clock_event_device	evt;
	unsigned int			num;
	unsigned int			cpu;
	unsigned int			irq;
	unsigned int			in_use;
	enum hpet_mode			mode;
	unsigned int			boot_cfg;
	char				name[10];
};

struct hpet_base {
	unsigned int			nr_channels;
	unsigned int			nr_clockevents;
	unsigned int			boot_cfg;
	struct hpet_channel		*channels;
};

#define HPET_MASK			CLOCKSOURCE_MASK(32)

#define HPET_MIN_CYCLES			128
#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))

/*
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
 */
unsigned long				hpet_address;
u8					hpet_blockid; /* OS timer block num */
bool					hpet_msi_disable;

#ifdef CONFIG_GENERIC_MSI_IRQ
static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
static struct irq_domain		*hpet_domain;
#endif

static void __iomem			*hpet_virt_address;

static struct hpet_base			hpet_base;

static bool				hpet_legacy_int_enabled;
static unsigned long			hpet_freq;

bool					boot_hpet_disable;
bool					hpet_force_user;
static bool				hpet_verbose;

static inline
struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
{
	return container_of(evt, struct hpet_channel, evt);
}

inline unsigned int hpet_readl(unsigned int a)
{
	return readl(hpet_virt_address + a);
}

static inline void hpet_writel(unsigned int d, unsigned int a)
{
	writel(d, hpet_virt_address + a);
}

static inline void hpet_set_mapping(void)
{
	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
}

static inline void hpet_clear_mapping(void)
{
	iounmap(hpet_virt_address);
	hpet_virt_address = NULL;
}

/*
 * HPET command line enable / disable
 */
static int __init hpet_setup(char *str)
{
	while (str) {
		char *next = strchr(str, ',');

		if (next)
			*next++ = 0;
		if (!strncmp("disable", str, 7))
			boot_hpet_disable = true;
		if (!strncmp("force", str, 5))
			hpet_force_user = true;
		if (!strncmp("verbose", str, 7))
			hpet_verbose = true;
		str = next;
	}
	return 1;
}
__setup("hpet=", hpet_setup);

static int __init disable_hpet(char *str)
{
	boot_hpet_disable = true;
	return 1;
}
__setup("nohpet", disable_hpet);

static inline int is_hpet_capable(void)
{
	return !boot_hpet_disable && hpet_address;
}

/**
 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 */
int is_hpet_enabled(void)
{
	return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);

static void _hpet_print_config(const char *function, int line)
{
	u32 i, id, period, cfg, status, channels, l, h;

	pr_info("%s(%d):\n", function, line);

	id = hpet_readl(HPET_ID);
	period = hpet_readl(HPET_PERIOD);
	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);

	cfg = hpet_readl(HPET_CFG);
	status = hpet_readl(HPET_STATUS);
	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);

	l = hpet_readl(HPET_COUNTER);
	h = hpet_readl(HPET_COUNTER+4);
	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);

	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

	for (i = 0; i < channels; i++) {
		l = hpet_readl(HPET_Tn_CFG(i));
		h = hpet_readl(HPET_Tn_CFG(i)+4);
		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);

		l = hpet_readl(HPET_Tn_CMP(i));
		h = hpet_readl(HPET_Tn_CMP(i)+4);
		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);

		l = hpet_readl(HPET_Tn_ROUTE(i));
		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
	}
}

#define hpet_print_config()					\
do {								\
	if (hpet_verbose)					\
		_hpet_print_config(__func__, __LINE__);	\
} while (0)

/*
 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 * timer 0 and timer 1 in case of RTC emulation.
 */
#ifdef CONFIG_HPET

static void __init hpet_reserve_platform_timers(void)
{
	struct hpet_data hd;
	unsigned int i;

	memset(&hd, 0, sizeof(hd));
	hd.hd_phys_address	= hpet_address;
	hd.hd_address		= hpet_virt_address;
	hd.hd_nirqs		= hpet_base.nr_channels;

	/*
	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
	 * don't bother configuring *any* comparator interrupts.
	 */
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;

	for (i = 0; i < hpet_base.nr_channels; i++) {
		struct hpet_channel *hc = hpet_base.channels + i;

		if (i >= 2)
			hd.hd_irq[i] = hc->irq;

		switch (hc->mode) {
		case HPET_MODE_UNUSED:
		case HPET_MODE_DEVICE:
			hc->mode = HPET_MODE_DEVICE;
			break;
		case HPET_MODE_CLOCKEVT:
		case HPET_MODE_LEGACY:
			hpet_reserve_timer(&hd, hc->num);
			break;
		}
	}

	hpet_alloc(&hd);
}

static void __init hpet_select_device_channel(void)
{
	int i;

	for (i = 0; i < hpet_base.nr_channels; i++) {
		struct hpet_channel *hc = hpet_base.channels + i;

		/* Associate the first unused channel to /dev/hpet */
		if (hc->mode == HPET_MODE_UNUSED) {
			hc->mode = HPET_MODE_DEVICE;
			return;
		}
	}
}

#else
static inline void hpet_reserve_platform_timers(void) { }
static inline void hpet_select_device_channel(void) {}
#endif

/* Common HPET functions */
static void hpet_stop_counter(void)
{
	u32 cfg = hpet_readl(HPET_CFG);

	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

static void hpet_reset_counter(void)
{
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);
}

static void hpet_start_counter(void)
{
	unsigned int cfg = hpet_readl(HPET_CFG);

	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);
}

static void hpet_restart_counter(void)
{
	hpet_stop_counter();
	hpet_reset_counter();
	hpet_start_counter();
}

static void hpet_resume_device(void)
{
	force_hpet_resume();
}

static void hpet_resume_counter(struct clocksource *cs)
{
	hpet_resume_device();
	hpet_restart_counter();
}

static void hpet_enable_legacy_int(void)
{
	unsigned int cfg = hpet_readl(HPET_CFG);

	cfg |= HPET_CFG_LEGACY;
	hpet_writel(cfg, HPET_CFG);
	hpet_legacy_int_enabled = true;
}

static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
{
	unsigned int channel = clockevent_to_channel(evt)->num;
	unsigned int cfg, cmp, now;
	uint64_t delta;

	hpet_stop_counter();
	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
	delta >>= evt->shift;
	now = hpet_readl(HPET_COUNTER);
	cmp = now + (unsigned int)delta;
	cfg = hpet_readl(HPET_Tn_CFG(channel));
	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
	       HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(channel));
	hpet_writel(cmp, HPET_Tn_CMP(channel));
	udelay(1);
	/*
	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
	 * bit is automatically cleared after the first write.
	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
	 * Publication # 24674)
	 */
	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
	hpet_start_counter();
	hpet_print_config();

	return 0;
}

static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
{
	unsigned int channel = clockevent_to_channel(evt)->num;
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(channel));
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_Tn_CFG(channel));

	return 0;
}

static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
{
	unsigned int channel = clockevent_to_channel(evt)->num;
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(channel));
	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_Tn_CFG(channel));

	return 0;
}

static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
{
	hpet_enable_legacy_int();
	hpet_print_config();
	return 0;
}

static int
hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
{
	unsigned int channel = clockevent_to_channel(evt)->num;
	u32 cnt;
	s32 res;

	cnt = hpet_readl(HPET_COUNTER);
	cnt += (u32) delta;
	hpet_writel(cnt, HPET_Tn_CMP(channel));

	/*
	 * HPETs are a complete disaster. The compare register is
	 * based on a equal comparison and neither provides a less
	 * than or equal functionality (which would require to take
	 * the wraparound into account) nor a simple count down event
	 * mode. Further the write to the comparator register is
	 * delayed internally up to two HPET clock cycles in certain
	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
	 * longer delays. We worked around that by reading back the
	 * compare register, but that required another workaround for
	 * ICH9,10 chips where the first readout after write can
	 * return the old stale value. We already had a minimum
	 * programming delta of 5us enforced, but a NMI or SMI hitting
	 * between the counter readout and the comparator write can
	 * move us behind that point easily. Now instead of reading
	 * the compare register back several times, we make the ETIME
	 * decision based on the following: Return ETIME if the
	 * counter value after the write is less than HPET_MIN_CYCLES
	 * away from the event or if the counter is already ahead of
	 * the event. The minimum programming delta for the generic
	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
	 */
	res = (s32)(cnt - hpet_readl(HPET_COUNTER));

	return res < HPET_MIN_CYCLES ? -ETIME : 0;
}

static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
{
	struct clock_event_device *evt = &hc->evt;

	evt->rating		= rating;
	evt->irq		= hc->irq;
	evt->name		= hc->name;
	evt->cpumask		= cpumask_of(hc->cpu);
	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
	evt->set_next_event	= hpet_clkevt_set_next_event;
	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;

	evt->features = CLOCK_EVT_FEAT_ONESHOT;
	if (hc->boot_cfg & HPET_TN_PERIODIC) {
		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
	}
}

static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
{
	/*
	 * Start HPET with the boot CPU's cpumask and make it global after
	 * the IO_APIC has been initialized.
	 */
	hc->cpu = boot_cpu_data.cpu_index;
	strncpy(hc->name, "hpet", sizeof(hc->name));
	hpet_init_clockevent(hc, 50);

	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;

	/*
	 * Legacy horrors and sins from the past. HPET used periodic mode
	 * unconditionally forever on the legacy channel 0. Removing the
	 * below hack and using the conditional in hpet_init_clockevent()
	 * makes at least Qemu and one hardware machine fail to boot.
	 * There are two issues which cause the boot failure:
	 *
	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
	 *    the next interrupt is not delivered despite the HPET channel
	 *    being programmed correctly. Reprogramming the HPET after
	 *    switching to IOAPIC makes it work again. After fixing this,
	 *    the next issue surfaces:
	 *
	 * #2 Due to the unconditional periodic mode availability the Local
	 *    APIC timer calibration can hijack the global clockevents
	 *    event handler without causing damage. Using oneshot at this
	 *    stage makes if hang because the HPET does not get
	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
	 *
	 * Both issues require major surgery and especially the kick HPET
	 * again after enabling IOAPIC results in really nasty hackery.
	 * This 'assume periodic works' magic has survived since HPET
	 * support got added, so it's questionable whether this should be
	 * fixed. Both Qemu and the failing hardware machine support
	 * periodic mode despite the fact that both don't advertise it in
	 * the configuration register and both need that extra kick after
	 * switching to IOAPIC. Seems to be a feature...
	 */
	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;

	/* Start HPET legacy interrupts */
	hpet_enable_legacy_int();

	clockevents_config_and_register(&hc->evt, hpet_freq,
					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
	global_clock_event = &hc->evt;
	pr_debug("Clockevent registered\n");
}

/*
 * HPET MSI Support
 */
#ifdef CONFIG_GENERIC_MSI_IRQ
static void hpet_msi_unmask(struct irq_data *data)
{
	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
}

static void hpet_msi_mask(struct irq_data *data)
{
	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
	unsigned int cfg;

	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
}

static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
{
	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
}

static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
{
	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
}

static struct irq_chip hpet_msi_controller __ro_after_init = {
	.name = "HPET-MSI",
	.irq_unmask = hpet_msi_unmask,
	.irq_mask = hpet_msi_mask,
	.irq_ack = irq_chip_ack_parent,
	.irq_set_affinity = msi_domain_set_affinity,
	.irq_retrigger = irq_chip_retrigger_hierarchy,
	.irq_write_msi_msg = hpet_msi_write_msg,
	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
};

static int hpet_msi_init(struct irq_domain *domain,
			 struct msi_domain_info *info, unsigned int virq,
			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
{
	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
			    handle_edge_irq, arg->data, "edge");

	return 0;
}

static void hpet_msi_free(struct irq_domain *domain,
			  struct msi_domain_info *info, unsigned int virq)
{
	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
}

static struct msi_domain_ops hpet_msi_domain_ops = {
	.msi_init	= hpet_msi_init,
	.msi_free	= hpet_msi_free,
};

static struct msi_domain_info hpet_msi_domain_info = {
	.ops		= &hpet_msi_domain_ops,
	.chip		= &hpet_msi_controller,
	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
};

static struct irq_domain *hpet_create_irq_domain(int hpet_id)
{
	struct msi_domain_info *domain_info;
	struct irq_domain *parent, *d;
	struct fwnode_handle *fn;
	struct irq_fwspec fwspec;

	if (x86_vector_domain == NULL)
		return NULL;

	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
	if (!domain_info)
		return NULL;

	*domain_info = hpet_msi_domain_info;
	domain_info->data = (void *)(long)hpet_id;

	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
					      hpet_id);
	if (!fn) {
		kfree(domain_info);
		return NULL;
	}

	fwspec.fwnode = fn;
	fwspec.param_count = 1;
	fwspec.param[0] = hpet_id;

	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
	if (!parent) {
		irq_domain_free_fwnode(fn);
		kfree(domain_info);
		return NULL;
	}
	if (parent != x86_vector_domain)
		hpet_msi_controller.name = "IR-HPET-MSI";

	d = msi_create_irq_domain(fn, domain_info, parent);
	if (!d) {
		irq_domain_free_fwnode(fn);
		kfree(domain_info);
	}
	return d;
}

static inline int hpet_dev_id(struct irq_domain *domain)
{
	struct msi_domain_info *info = msi_get_domain_info(domain);

	return (int)(long)info->data;
}

static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
			   int dev_num)
{
	struct irq_alloc_info info;

	init_irq_alloc_info(&info, NULL);
	info.type = X86_IRQ_ALLOC_TYPE_HPET;
	info.data = hc;
	info.devid = hpet_dev_id(domain);
	info.hwirq = dev_num;

	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
}

static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
{
	struct hpet_channel *hc = clockevent_to_channel(evt);
	struct irq_data *data = irq_get_irq_data(hc->irq);
	struct msi_msg msg;

	/* Restore the MSI msg and unmask the interrupt */
	irq_chip_compose_msi_msg(data, &msg);
	hpet_msi_write(hc, &msg);
	hpet_msi_unmask(data);
	return 0;
}

static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
{
	struct hpet_channel *hc = data;
	struct clock_event_device *evt = &hc->evt;

	if (!evt->event_handler) {
		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
		return IRQ_HANDLED;
	}

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

static int hpet_setup_msi_irq(struct hpet_channel *hc)
{
	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
			IRQF_TIMER | IRQF_NOBALANCING,
			hc->name, hc))
		return -1;

	disable_irq(hc->irq);
	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
	enable_irq(hc->irq);

	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);

	return 0;
}

/* Invoked from the hotplug callback on @cpu */
static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
{
	struct clock_event_device *evt = &hc->evt;

	hc->cpu = cpu;
	per_cpu(cpu_hpet_channel, cpu) = hc;
	hpet_setup_msi_irq(hc);

	hpet_init_clockevent(hc, 110);
	evt->tick_resume = hpet_clkevt_msi_resume;

	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
					0x7FFFFFFF);
}

static struct hpet_channel *hpet_get_unused_clockevent(void)
{
	int i;

	for (i = 0; i < hpet_base.nr_channels; i++) {
		struct hpet_channel *hc = hpet_base.channels + i;

		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
			continue;
		hc->in_use = 1;
		return hc;
	}
	return NULL;
}

static int hpet_cpuhp_online(unsigned int cpu)
{
	struct hpet_channel *hc = hpet_get_unused_clockevent();

	if (hc)
		init_one_hpet_msi_clockevent(hc, cpu);
	return 0;
}

static int hpet_cpuhp_dead(unsigned int cpu)
{
	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);

	if (!hc)
		return 0;
	free_irq(hc->irq, hc);
	hc->in_use = 0;
	per_cpu(cpu_hpet_channel, cpu) = NULL;
	return 0;
}

static void __init hpet_select_clockevents(void)
{
	unsigned int i;

	hpet_base.nr_clockevents = 0;

	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
		return;

	hpet_print_config();

	hpet_domain = hpet_create_irq_domain(hpet_blockid);
	if (!hpet_domain)
		return;

	for (i = 0; i < hpet_base.nr_channels; i++) {
		struct hpet_channel *hc = hpet_base.channels + i;
		int irq;

		if (hc->mode != HPET_MODE_UNUSED)
			continue;

		/* Only consider HPET channel with MSI support */
		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
			continue;

		sprintf(hc->name, "hpet%d", i);

		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
		if (irq <= 0)
			continue;

		hc->irq = irq;
		hc->mode = HPET_MODE_CLOCKEVT;

		if (++hpet_base.nr_clockevents == num_possible_cpus())
			break;
	}

	pr_info("%d channels of %d reserved for per-cpu timers\n",
		hpet_base.nr_channels, hpet_base.nr_clockevents);
}

#else

static inline void hpet_select_clockevents(void) { }

#define hpet_cpuhp_online	NULL
#define hpet_cpuhp_dead		NULL

#endif

/*
 * Clock source related code
 */
#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
/*
 * Reading the HPET counter is a very slow operation. If a large number of
 * CPUs are trying to access the HPET counter simultaneously, it can cause
 * massive delays and slow down system performance dramatically. This may
 * happen when HPET is the default clock source instead of TSC. For a
 * really large system with hundreds of CPUs, the slowdown may be so
 * severe, that it can actually crash the system because of a NMI watchdog
 * soft lockup, for example.
 *
 * If multiple CPUs are trying to access the HPET counter at the same time,
 * we don't actually need to read the counter multiple times. Instead, the
 * other CPUs can use the counter value read by the first CPU in the group.
 *
 * This special feature is only enabled on x86-64 systems. It is unlikely
 * that 32-bit x86 systems will have enough CPUs to require this feature
 * with its associated locking overhead. We also need 64-bit atomic read.
 *
 * The lock and the HPET value are stored together and can be read in a
 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 * is 32 bits in size.
 */
union hpet_lock {
	struct {
		arch_spinlock_t lock;
		u32 value;
	};
	u64 lockval;
};

static union hpet_lock hpet __cacheline_aligned = {
	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
};

static u64 read_hpet(struct clocksource *cs)
{
	unsigned long flags;
	union hpet_lock old, new;

	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);

	/*
	 * Read HPET directly if in NMI.
	 */
	if (in_nmi())
		return (u64)hpet_readl(HPET_COUNTER);

	/*
	 * Read the current state of the lock and HPET value atomically.
	 */
	old.lockval = READ_ONCE(hpet.lockval);

	if (arch_spin_is_locked(&old.lock))
		goto contended;

	local_irq_save(flags);
	if (arch_spin_trylock(&hpet.lock)) {
		new.value = hpet_readl(HPET_COUNTER);
		/*
		 * Use WRITE_ONCE() to prevent store tearing.
		 */
		WRITE_ONCE(hpet.value, new.value);
		arch_spin_unlock(&hpet.lock);
		local_irq_restore(flags);
		return (u64)new.value;
	}
	local_irq_restore(flags);

contended:
	/*
	 * Contended case
	 * --------------
	 * Wait until the HPET value change or the lock is free to indicate
	 * its value is up-to-date.
	 *
	 * It is possible that old.value has already contained the latest
	 * HPET value while the lock holder was in the process of releasing
	 * the lock. Checking for lock state change will enable us to return
	 * the value immediately instead of waiting for the next HPET reader
	 * to come along.
	 */
	do {
		cpu_relax();
		new.lockval = READ_ONCE(hpet.lockval);
	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));

	return (u64)new.value;
}
#else
/*
 * For UP or 32-bit.
 */
static u64 read_hpet(struct clocksource *cs)
{
	return (u64)hpet_readl(HPET_COUNTER);
}
#endif

static struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= HPET_MASK,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.resume		= hpet_resume_counter,
};

/*
 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 * HPET emulation to provide proper frequency setting.
 *
 * On such systems the SMM code is initialized with the first HPET register
 * access and takes some time to complete. During this time the config
 * register reads 0xffffffff. We check for max 1000 loops whether the
 * config register reads a non-0xffffffff value to make sure that the
 * HPET is up and running before we proceed any further.
 *
 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 *
 * On non-SB700 based machines this check is only done once and has no
 * side effects.
 */
static bool __init hpet_cfg_working(void)
{
	int i;

	for (i = 0; i < 1000; i++) {
		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
			return true;
	}

	pr_warn("Config register invalid. Disabling HPET\n");
	return false;
}

static bool __init hpet_counting(void)
{
	u64 start, now, t1;

	hpet_restart_counter();

	t1 = hpet_readl(HPET_COUNTER);
	start = rdtsc();

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		if (t1 != hpet_readl(HPET_COUNTER))
			return true;
		now = rdtsc();
	} while ((now - start) < 200000UL);

	pr_warn("Counter not counting. HPET disabled\n");
	return false;
}

static bool __init mwait_pc10_supported(void)
{
	unsigned int eax, ebx, ecx, mwait_substates;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return false;

	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
		return false;

	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
		return false;

	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);

	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
	       (mwait_substates & (0xF << 28));
}

/*
 * Check whether the system supports PC10. If so force disable HPET as that
 * stops counting in PC10. This check is overbroad as it does not take any
 * of the following into account:
 *
 *	- ACPI tables
 *	- Enablement of intel_idle
 *	- Command line arguments which limit intel_idle C-state support
 *
 * That's perfectly fine. HPET is a piece of hardware designed by committee
 * and the only reasons why it is still in use on modern systems is the
 * fact that it is impossible to reliably query TSC and CPU frequency via
 * CPUID or firmware.
 *
 * If HPET is functional it is useful for calibrating TSC, but this can be
 * done via PMTIMER as well which seems to be the last remaining timer on
 * X86/INTEL platforms that has not been completely wreckaged by feature
 * creep.
 *
 * In theory HPET support should be removed altogether, but there are older
 * systems out there which depend on it because TSC and APIC timer are
 * dysfunctional in deeper C-states.
 *
 * It's only 20 years now that hardware people have been asked to provide
 * reliable and discoverable facilities which can be used for timekeeping
 * and per CPU timer interrupts.
 *
 * The probability that this problem is going to be solved in the
 * forseeable future is close to zero, so the kernel has to be cluttered
 * with heuristics to keep up with the ever growing amount of hardware and
 * firmware trainwrecks. Hopefully some day hardware people will understand
 * that the approach of "This can be fixed in software" is not sustainable.
 * Hope dies last...
 */
static bool __init hpet_is_pc10_damaged(void)
{
	unsigned long long pcfg;

	/* Check whether PC10 substates are supported */
	if (!mwait_pc10_supported())
		return false;

	/* Check whether PC10 is enabled in PKG C-state limit */
	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
	if ((pcfg & 0xF) < 8)
		return false;

	if (hpet_force_user) {
		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
		return false;
	}

	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
	boot_hpet_disable = true;
	return true;
}

/**
 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 */
int __init hpet_enable(void)
{
	u32 hpet_period, cfg, id, irq;
	unsigned int i, channels;
	struct hpet_channel *hc;
	u64 freq;

	if (!is_hpet_capable())
		return 0;

	if (hpet_is_pc10_damaged())
		return 0;

	hpet_set_mapping();
	if (!hpet_virt_address)
		return 0;

	/* Validate that the config register is working */
	if (!hpet_cfg_working())
		goto out_nohpet;

	/*
	 * Read the period and check for a sane value:
	 */
	hpet_period = hpet_readl(HPET_PERIOD);
	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
		goto out_nohpet;

	/* The period is a femtoseconds value. Convert it to a frequency. */
	freq = FSEC_PER_SEC;
	do_div(freq, hpet_period);
	hpet_freq = freq;

	/*
	 * Read the HPET ID register to retrieve the IRQ routing
	 * information and the number of channels
	 */
	id = hpet_readl(HPET_ID);
	hpet_print_config();

	/* This is the HPET channel number which is zero based */
	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;

	/*
	 * The legacy routing mode needs at least two channels, tick timer
	 * and the rtc emulation channel.
	 */
	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
		goto out_nohpet;

	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
	if (!hc) {
		pr_warn("Disabling HPET.\n");
		goto out_nohpet;
	}
	hpet_base.channels = hc;
	hpet_base.nr_channels = channels;

	/* Read, store and sanitize the global configuration */
	cfg = hpet_readl(HPET_CFG);
	hpet_base.boot_cfg = cfg;
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
	hpet_writel(cfg, HPET_CFG);
	if (cfg)
		pr_warn("Global config: Unknown bits %#x\n", cfg);

	/* Read, store and sanitize the per channel configuration */
	for (i = 0; i < channels; i++, hc++) {
		hc->num = i;

		cfg = hpet_readl(HPET_Tn_CFG(i));
		hc->boot_cfg = cfg;
		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
		hc->irq = irq;

		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
		hpet_writel(cfg, HPET_Tn_CFG(i));

		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
		if (cfg)
			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
	}
	hpet_print_config();

	/*
	 * Validate that the counter is counting. This needs to be done
	 * after sanitizing the config registers to properly deal with
	 * force enabled HPETs.
	 */
	if (!hpet_counting())
		goto out_nohpet;

	if (tsc_clocksource_watchdog_disabled())
		clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);

	if (id & HPET_ID_LEGSUP) {
		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
		return 1;
	}
	return 0;

out_nohpet:
	kfree(hpet_base.channels);
	hpet_base.channels = NULL;
	hpet_base.nr_channels = 0;
	hpet_clear_mapping();
	hpet_address = 0;
	return 0;
}

/*
 * The late initialization runs after the PCI quirks have been invoked
 * which might have detected a system on which the HPET can be enforced.
 *
 * Also, the MSI machinery is not working yet when the HPET is initialized
 * early.
 *
 * If the HPET is enabled, then:
 *
 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
 *  3) Setup /dev/hpet if CONFIG_HPET=y
 *  4) Register hotplug callbacks when clockevents are available
 */
static __init int hpet_late_init(void)
{
	int ret;

	if (!hpet_address) {
		if (!force_hpet_address)
			return -ENODEV;

		hpet_address = force_hpet_address;
		hpet_enable();
	}

	if (!hpet_virt_address)
		return -ENODEV;

	hpet_select_device_channel();
	hpet_select_clockevents();
	hpet_reserve_platform_timers();
	hpet_print_config();

	if (!hpet_base.nr_clockevents)
		return 0;

	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
				hpet_cpuhp_online, NULL);
	if (ret)
		return ret;
	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
				hpet_cpuhp_dead);
	if (ret)
		goto err_cpuhp;
	return 0;

err_cpuhp:
	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
	return ret;
}
fs_initcall(hpet_late_init);

void hpet_disable(void)
{
	unsigned int i;
	u32 cfg;

	if (!is_hpet_capable() || !hpet_virt_address)
		return;

	/* Restore boot configuration with the enable bit cleared */
	cfg = hpet_base.boot_cfg;
	cfg &= ~HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);

	/* Restore the channel boot configuration */
	for (i = 0; i < hpet_base.nr_channels; i++)
		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));

	/* If the HPET was enabled at boot time, reenable it */
	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
}

#ifdef CONFIG_HPET_EMULATE_RTC

/*
 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
 * is enabled, we support RTC interrupt functionality in software.
 *
 * RTC has 3 kinds of interrupts:
 *
 *  1) Update Interrupt - generate an interrupt, every second, when the
 *     RTC clock is updated
 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
 *
 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
 * DEFAULT_RTC_INT_FREQ.
 *
 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
 *
 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
 * if it's higher.
 */
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>

#define DEFAULT_RTC_INT_FREQ	64
#define DEFAULT_RTC_SHIFT	6
#define RTC_NUM_INTS		1

static unsigned long hpet_rtc_flags;
static int hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static u32 hpet_t1_cmp;
static u32 hpet_default_delta;
static u32 hpet_pie_delta;
static unsigned long hpet_pie_limit;

static rtc_irq_handler irq_handler;

/*
 * Check that the HPET counter c1 is ahead of c2
 */
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
{
	return (s32)(c2 - c1) < 0;
}

/*
 * Registers a IRQ handler.
 */
int hpet_register_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return -ENODEV;
	if (irq_handler)
		return -EBUSY;

	irq_handler = handler;

	return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);

/*
 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 * and does cleanup.
 */
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
	if (!is_hpet_enabled())
		return;

	irq_handler = NULL;
	hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);

/*
 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
 * is not supported by all HPET implementations for channel 1.
 *
 * hpet_rtc_timer_init() is called when the rtc is initialized.
 */
int hpet_rtc_timer_init(void)
{
	unsigned int cfg, cnt, delta;
	unsigned long flags;

	if (!is_hpet_enabled())
		return 0;

	if (!hpet_default_delta) {
		struct clock_event_device *evt = &hpet_base.channels[0].evt;
		uint64_t clc;

		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
		hpet_default_delta = clc;
	}

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	local_irq_save(flags);

	cnt = delta + hpet_readl(HPET_COUNTER);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);

static void hpet_disable_rtc_channel(void)
{
	u32 cfg = hpet_readl(HPET_T1_CFG);

	cfg &= ~HPET_TN_ENABLE;
	hpet_writel(cfg, HPET_T1_CFG);
}

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags &= ~bit_mask;
	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	unsigned long oldbits = hpet_rtc_flags;

	if (!is_hpet_enabled())
		return 0;

	hpet_rtc_flags |= bit_mask;

	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
		hpet_prev_update_sec = -1;

	if (!oldbits)
		hpet_rtc_timer_init();

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);

int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	hpet_alarm_time.tm_hour = hrs;
	hpet_alarm_time.tm_min = min;
	hpet_alarm_time.tm_sec = sec;

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);

int hpet_set_periodic_freq(unsigned long freq)
{
	uint64_t clc;

	if (!is_hpet_enabled())
		return 0;

	if (freq <= DEFAULT_RTC_INT_FREQ) {
		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
	} else {
		struct clock_event_device *evt = &hpet_base.channels[0].evt;

		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
		do_div(clc, freq);
		clc >>= evt->shift;
		hpet_pie_delta = clc;
		hpet_pie_limit = 0;
	}

	return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);

int hpet_rtc_dropped_irq(void)
{
	return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);

static void hpet_rtc_timer_reinit(void)
{
	unsigned int delta;
	int lost_ints = -1;

	if (unlikely(!hpet_rtc_flags))
		hpet_disable_rtc_channel();

	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
		delta = hpet_default_delta;
	else
		delta = hpet_pie_delta;

	/*
	 * Increment the comparator value until we are ahead of the
	 * current count.
	 */
	do {
		hpet_t1_cmp += delta;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
		lost_ints++;
	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));

	if (lost_ints) {
		if (hpet_rtc_flags & RTC_PIE)
			hpet_pie_count += lost_ints;
		if (printk_ratelimit())
			pr_warn("Lost %d RTC interrupts\n", lost_ints);
	}
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;

	hpet_rtc_timer_reinit();
	memset(&curr_time, 0, sizeof(struct rtc_time));

	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
		if (unlikely(mc146818_get_time(&curr_time) < 0)) {
			pr_err_ratelimited("unable to read current time from RTC\n");
			return IRQ_HANDLED;
		}
	}

	if (hpet_rtc_flags & RTC_UIE &&
	    curr_time.tm_sec != hpet_prev_update_sec) {
		if (hpet_prev_update_sec >= 0)
			rtc_int_flag = RTC_UF;
		hpet_prev_update_sec = curr_time.tm_sec;
	}

	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
		rtc_int_flag |= RTC_PF;
		hpet_pie_count = 0;
	}

	if (hpet_rtc_flags & RTC_AIE &&
	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
		rtc_int_flag |= RTC_AF;

	if (rtc_int_flag) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
		if (irq_handler)
			irq_handler(rtc_int_flag, dev_id);
	}
	return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif