summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/apb_timer.c
blob: 29ebf5a3b1921072fa83b9fbe9ba472519c781cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * apb_timer.c: Driver for Langwell APB timers
 *
 * (C) Copyright 2009 Intel Corporation
 * Author: Jacob Pan (jacob.jun.pan@intel.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * Note:
 * Langwell is the south complex of Intel Moorestown MID platform. There are
 * eight external timers in total that can be used by the operating system.
 * The timer information, such as frequency and addresses, is provided to the
 * OS via SFI tables.
 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
 * individual redirection table entries (RTE).
 * Unlike HPET, there is no master counter, therefore one of the timers are
 * used as clocksource. The overall allocation looks like:
 *  - timer 0 - NR_CPUs for per cpu timer
 *  - one timer for clocksource
 *  - one timer for watchdog driver.
 * It is also worth notice that APB timer does not support true one-shot mode,
 * free-running mode will be used here to emulate one-shot mode.
 * APB timer can also be used as broadcast timer along with per cpu local APIC
 * timer, but by default APB timer has higher rating than local APIC timers.
 */

#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/sysdev.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/pci.h>
#include <linux/sfi.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/irq.h>

#include <asm/fixmap.h>
#include <asm/apb_timer.h>
#include <asm/mrst.h>

#define APBT_MASK			CLOCKSOURCE_MASK(32)
#define APBT_SHIFT			22
#define APBT_CLOCKEVENT_RATING		110
#define APBT_CLOCKSOURCE_RATING		250
#define APBT_MIN_DELTA_USEC		200

#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
#define APBT_CLOCKEVENT0_NUM   (0)
#define APBT_CLOCKEVENT1_NUM   (1)
#define APBT_CLOCKSOURCE_NUM   (2)

static unsigned long apbt_address;
static int apb_timer_block_enabled;
static void __iomem *apbt_virt_address;
static int phy_cs_timer_id;

/*
 * Common DW APB timer info
 */
static uint64_t apbt_freq;

static void apbt_set_mode(enum clock_event_mode mode,
			  struct clock_event_device *evt);
static int apbt_next_event(unsigned long delta,
			   struct clock_event_device *evt);
static cycle_t apbt_read_clocksource(struct clocksource *cs);
static void apbt_restart_clocksource(struct clocksource *cs);

struct apbt_dev {
	struct clock_event_device evt;
	unsigned int num;
	int cpu;
	unsigned int irq;
	unsigned int tick;
	unsigned int count;
	unsigned int flags;
	char name[10];
};

static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);

#ifdef CONFIG_SMP
static unsigned int apbt_num_timers_used;
static struct apbt_dev *apbt_devs;
#endif

static	inline unsigned long apbt_readl_reg(unsigned long a)
{
	return readl(apbt_virt_address + a);
}

static inline void apbt_writel_reg(unsigned long d, unsigned long a)
{
	writel(d, apbt_virt_address + a);
}

static inline unsigned long apbt_readl(int n, unsigned long a)
{
	return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
}

static inline void apbt_writel(int n, unsigned long d, unsigned long a)
{
	writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
}

static inline void apbt_set_mapping(void)
{
	struct sfi_timer_table_entry *mtmr;

	if (apbt_virt_address) {
		pr_debug("APBT base already mapped\n");
		return;
	}
	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
	if (mtmr == NULL) {
		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
		       APBT_CLOCKEVENT0_NUM);
		return;
	}
	apbt_address = (unsigned long)mtmr->phys_addr;
	if (!apbt_address) {
		printk(KERN_WARNING "No timer base from SFI, use default\n");
		apbt_address = APBT_DEFAULT_BASE;
	}
	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
	if (apbt_virt_address) {
		pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
			 (void *)apbt_address, (void *)apbt_virt_address);
	} else {
		pr_debug("Failed mapping APBT phy address at %p\n",\
			 (void *)apbt_address);
		goto panic_noapbt;
	}
	apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
	sfi_free_mtmr(mtmr);

	/* Now figure out the physical timer id for clocksource device */
	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
	if (mtmr == NULL)
		goto panic_noapbt;

	/* Now figure out the physical timer id */
	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
		/ APBTMRS_REG_SIZE;
	pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
	return;

panic_noapbt:
	panic("Failed to setup APB system timer\n");

}

static inline void apbt_clear_mapping(void)
{
	iounmap(apbt_virt_address);
	apbt_virt_address = NULL;
}

/*
 * APBT timer interrupt enable / disable
 */
static inline int is_apbt_capable(void)
{
	return apbt_virt_address ? 1 : 0;
}

static struct clocksource clocksource_apbt = {
	.name		= "apbt",
	.rating		= APBT_CLOCKSOURCE_RATING,
	.read		= apbt_read_clocksource,
	.mask		= APBT_MASK,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.resume		= apbt_restart_clocksource,
};

/* boot APB clock event device */
static struct clock_event_device apbt_clockevent = {
	.name		= "apbt0",
	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
	.set_mode	= apbt_set_mode,
	.set_next_event = apbt_next_event,
	.shift		= APBT_SHIFT,
	.irq		= 0,
	.rating		= APBT_CLOCKEVENT_RATING,
};

/*
 * start count down from 0xffff_ffff. this is done by toggling the enable bit
 * then load initial load count to ~0.
 */
static void apbt_start_counter(int n)
{
	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);

	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
	apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
	/* enable, mask interrupt */
	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
	/* read it once to get cached counter value initialized */
	apbt_read_clocksource(&clocksource_apbt);
}

static irqreturn_t apbt_interrupt_handler(int irq, void *data)
{
	struct apbt_dev *dev = (struct apbt_dev *)data;
	struct clock_event_device *aevt = &dev->evt;

	if (!aevt->event_handler) {
		printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
		       dev->num);
		return IRQ_NONE;
	}
	aevt->event_handler(aevt);
	return IRQ_HANDLED;
}

static void apbt_restart_clocksource(struct clocksource *cs)
{
	apbt_start_counter(phy_cs_timer_id);
}

static void apbt_enable_int(int n)
{
	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
	/* clear pending intr */
	apbt_readl(n, APBTMR_N_EOI);
	ctrl &= ~APBTMR_CONTROL_INT;
	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
}

static void apbt_disable_int(int n)
{
	unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);

	ctrl |= APBTMR_CONTROL_INT;
	apbt_writel(n, ctrl, APBTMR_N_CONTROL);
}


static int __init apbt_clockevent_register(void)
{
	struct sfi_timer_table_entry *mtmr;
	struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);

	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
	if (mtmr == NULL) {
		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
		       APBT_CLOCKEVENT0_NUM);
		return -ENODEV;
	}

	/*
	 * We need to calculate the scaled math multiplication factor for
	 * nanosecond to apbt tick conversion.
	 * mult = (nsec/cycle)*2^APBT_SHIFT
	 */
	apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
				      , NSEC_PER_SEC, APBT_SHIFT);

	/* Calculate the min / max delta */
	apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
							   &apbt_clockevent);
	apbt_clockevent.min_delta_ns = clockevent_delta2ns(
		APBT_MIN_DELTA_USEC*apbt_freq,
		&apbt_clockevent);
	/*
	 * Start apbt with the boot cpu mask and make it
	 * global if not used for per cpu timer.
	 */
	apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
	adev->num = smp_processor_id();
	memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));

	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
		apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
		global_clock_event = &adev->evt;
		printk(KERN_DEBUG "%s clockevent registered as global\n",
		       global_clock_event->name);
	}

	if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
			apbt_clockevent.name, adev)) {
		printk(KERN_ERR "Failed request IRQ for APBT%d\n",
		       apbt_clockevent.irq);
	}

	clockevents_register_device(&adev->evt);
	/* Start APBT 0 interrupts */
	apbt_enable_int(APBT_CLOCKEVENT0_NUM);

	sfi_free_mtmr(mtmr);
	return 0;
}

#ifdef CONFIG_SMP

static void apbt_setup_irq(struct apbt_dev *adev)
{
	/* timer0 irq has been setup early */
	if (adev->irq == 0)
		return;

	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
	/* APB timer irqs are set up as mp_irqs, timer is edge type */
	__set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");

	if (system_state == SYSTEM_BOOTING) {
		if (request_irq(adev->irq, apbt_interrupt_handler,
					IRQF_TIMER | IRQF_DISABLED |
					IRQF_NOBALANCING,
					adev->name, adev)) {
			printk(KERN_ERR "Failed request IRQ for APBT%d\n",
			       adev->num);
		}
	} else
		enable_irq(adev->irq);
}

/* Should be called with per cpu */
void apbt_setup_secondary_clock(void)
{
	struct apbt_dev *adev;
	struct clock_event_device *aevt;
	int cpu;

	/* Don't register boot CPU clockevent */
	cpu = smp_processor_id();
	if (!cpu)
		return;
	/*
	 * We need to calculate the scaled math multiplication factor for
	 * nanosecond to apbt tick conversion.
	 * mult = (nsec/cycle)*2^APBT_SHIFT
	 */
	printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
	adev = &per_cpu(cpu_apbt_dev, cpu);
	aevt = &adev->evt;

	memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
	aevt->cpumask = cpumask_of(cpu);
	aevt->name = adev->name;
	aevt->mode = CLOCK_EVT_MODE_UNUSED;

	printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
	       cpu, aevt->name, *(u32 *)aevt->cpumask);

	apbt_setup_irq(adev);

	clockevents_register_device(aevt);

	apbt_enable_int(cpu);

	return;
}

/*
 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
 * cpus are disabled/enabled frequently, for performance reasons, we keep the
 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
 *
 * TODO: it might be more reliable to directly disable percpu clockevent device
 * without the notifier chain. currently, cpu 0 may get interrupts from other
 * cpu timers during the offline process due to the ordering of notification.
 * the extra interrupt is harmless.
 */
static int apbt_cpuhp_notify(struct notifier_block *n,
			     unsigned long action, void *hcpu)
{
	unsigned long cpu = (unsigned long)hcpu;
	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);

	switch (action & 0xf) {
	case CPU_DEAD:
		disable_irq(adev->irq);
		apbt_disable_int(cpu);
		if (system_state == SYSTEM_RUNNING) {
			pr_debug("skipping APBT CPU %lu offline\n", cpu);
		} else if (adev) {
			pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
			free_irq(adev->irq, adev);
		}
		break;
	default:
		pr_debug("APBT notified %lu, no action\n", action);
	}
	return NOTIFY_OK;
}

static __init int apbt_late_init(void)
{
	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
		!apb_timer_block_enabled)
		return 0;
	/* This notifier should be called after workqueue is ready */
	hotcpu_notifier(apbt_cpuhp_notify, -20);
	return 0;
}
fs_initcall(apbt_late_init);
#else

void apbt_setup_secondary_clock(void) {}

#endif /* CONFIG_SMP */

static void apbt_set_mode(enum clock_event_mode mode,
			  struct clock_event_device *evt)
{
	unsigned long ctrl;
	uint64_t delta;
	int timer_num;
	struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);

	BUG_ON(!apbt_virt_address);

	timer_num = adev->num;
	pr_debug("%s CPU %d timer %d mode=%d\n",
		 __func__, first_cpu(*evt->cpumask), timer_num, mode);

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
		delta >>= apbt_clockevent.shift;
		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
		ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		/*
		 * DW APB p. 46, have to disable timer before load counter,
		 * may cause sync problem.
		 */
		ctrl &= ~APBTMR_CONTROL_ENABLE;
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		udelay(1);
		pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
		apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
		ctrl |= APBTMR_CONTROL_ENABLE;
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		break;
		/* APB timer does not have one-shot mode, use free running mode */
	case CLOCK_EVT_MODE_ONESHOT:
		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
		/*
		 * set free running mode, this mode will let timer reload max
		 * timeout which will give time (3min on 25MHz clock) to rearm
		 * the next event, therefore emulate the one-shot mode.
		 */
		ctrl &= ~APBTMR_CONTROL_ENABLE;
		ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;

		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		/* write again to set free running mode */
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);

		/*
		 * DW APB p. 46, load counter with all 1s before starting free
		 * running mode.
		 */
		apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
		ctrl &= ~APBTMR_CONTROL_INT;
		ctrl |= APBTMR_CONTROL_ENABLE;
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		break;

	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
		apbt_disable_int(timer_num);
		ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
		ctrl &= ~APBTMR_CONTROL_ENABLE;
		apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
		break;

	case CLOCK_EVT_MODE_RESUME:
		apbt_enable_int(timer_num);
		break;
	}
}

static int apbt_next_event(unsigned long delta,
			   struct clock_event_device *evt)
{
	unsigned long ctrl;
	int timer_num;

	struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);

	timer_num = adev->num;
	/* Disable timer */
	ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
	/* write new count */
	apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
	ctrl |= APBTMR_CONTROL_ENABLE;
	apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
	return 0;
}

/*
 * APB timer clock is not in sync with pclk on Langwell, which translates to
 * unreliable read value caused by sampling error. the error does not add up
 * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
 * would go backwards. the following code is trying to prevent time traveling
 * backwards. little bit paranoid.
 */
static cycle_t apbt_read_clocksource(struct clocksource *cs)
{
	unsigned long t0, t1, t2;
	static unsigned long last_read;

bad_count:
	t1 = apbt_readl(phy_cs_timer_id,
			APBTMR_N_CURRENT_VALUE);
	t2 = apbt_readl(phy_cs_timer_id,
			APBTMR_N_CURRENT_VALUE);
	if (unlikely(t1 < t2)) {
		pr_debug("APBT: read current count error %lx:%lx:%lx\n",
			 t1, t2, t2 - t1);
		goto bad_count;
	}
	/*
	 * check against cached last read, makes sure time does not go back.
	 * it could be a normal rollover but we will do tripple check anyway
	 */
	if (unlikely(t2 > last_read)) {
		/* check if we have a normal rollover */
		unsigned long raw_intr_status =
			apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
		/*
		 * cs timer interrupt is masked but raw intr bit is set if
		 * rollover occurs. then we read EOI reg to clear it.
		 */
		if (raw_intr_status & (1 << phy_cs_timer_id)) {
			apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
			goto out;
		}
		pr_debug("APB CS going back %lx:%lx:%lx ",
			 t2, last_read, t2 - last_read);
bad_count_x3:
		pr_debug("triple check enforced\n");
		t0 = apbt_readl(phy_cs_timer_id,
				APBTMR_N_CURRENT_VALUE);
		udelay(1);
		t1 = apbt_readl(phy_cs_timer_id,
				APBTMR_N_CURRENT_VALUE);
		udelay(1);
		t2 = apbt_readl(phy_cs_timer_id,
				APBTMR_N_CURRENT_VALUE);
		if ((t2 > t1) || (t1 > t0)) {
			printk(KERN_ERR "Error: APB CS tripple check failed\n");
			goto bad_count_x3;
		}
	}
out:
	last_read = t2;
	return (cycle_t)~t2;
}

static int apbt_clocksource_register(void)
{
	u64 start, now;
	cycle_t t1;

	/* Start the counter, use timer 2 as source, timer 0/1 for event */
	apbt_start_counter(phy_cs_timer_id);

	/* Verify whether apbt counter works */
	t1 = apbt_read_clocksource(&clocksource_apbt);
	rdtscll(start);

	/*
	 * We don't know the TSC frequency yet, but waiting for
	 * 200000 TSC cycles is safe:
	 * 4 GHz == 50us
	 * 1 GHz == 200us
	 */
	do {
		rep_nop();
		rdtscll(now);
	} while ((now - start) < 200000UL);

	/* APBT is the only always on clocksource, it has to work! */
	if (t1 == apbt_read_clocksource(&clocksource_apbt))
		panic("APBT counter not counting. APBT disabled\n");

	clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000);

	return 0;
}

/*
 * Early setup the APBT timer, only use timer 0 for booting then switch to
 * per CPU timer if possible.
 * returns 1 if per cpu apbt is setup
 * returns 0 if no per cpu apbt is chosen
 * panic if set up failed, this is the only platform timer on Moorestown.
 */
void __init apbt_time_init(void)
{
#ifdef CONFIG_SMP
	int i;
	struct sfi_timer_table_entry *p_mtmr;
	unsigned int percpu_timer;
	struct apbt_dev *adev;
#endif

	if (apb_timer_block_enabled)
		return;
	apbt_set_mapping();
	if (apbt_virt_address) {
		pr_debug("Found APBT version 0x%lx\n",\
			 apbt_readl_reg(APBTMRS_COMP_VERSION));
	} else
		goto out_noapbt;
	/*
	 * Read the frequency and check for a sane value, for ESL model
	 * we extend the possible clock range to allow time scaling.
	 */

	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
		pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
		goto out_noapbt;
	}
	if (apbt_clocksource_register()) {
		pr_debug("APBT has failed to register clocksource\n");
		goto out_noapbt;
	}
	if (!apbt_clockevent_register())
		apb_timer_block_enabled = 1;
	else {
		pr_debug("APBT has failed to register clockevent\n");
		goto out_noapbt;
	}
#ifdef CONFIG_SMP
	/* kernel cmdline disable apb timer, so we will use lapic timers */
	if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
		printk(KERN_INFO "apbt: disabled per cpu timer\n");
		return;
	}
	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
	if (num_possible_cpus() <= sfi_mtimer_num) {
		percpu_timer = 1;
		apbt_num_timers_used = num_possible_cpus();
	} else {
		percpu_timer = 0;
		apbt_num_timers_used = 1;
		adev = &per_cpu(cpu_apbt_dev, 0);
		adev->flags &= ~APBT_DEV_USED;
	}
	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);

	/* here we set up per CPU timer data structure */
	apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
			    GFP_KERNEL);
	if (!apbt_devs) {
		printk(KERN_ERR "Failed to allocate APB timer devices\n");
		return;
	}
	for (i = 0; i < apbt_num_timers_used; i++) {
		adev = &per_cpu(cpu_apbt_dev, i);
		adev->num = i;
		adev->cpu = i;
		p_mtmr = sfi_get_mtmr(i);
		if (p_mtmr) {
			adev->tick = p_mtmr->freq_hz;
			adev->irq = p_mtmr->irq;
		} else
			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
		adev->count = 0;
		sprintf(adev->name, "apbt%d", i);
	}
#endif

	return;

out_noapbt:
	apbt_clear_mapping();
	apb_timer_block_enabled = 0;
	panic("failed to enable APB timer\n");
}

static inline void apbt_disable(int n)
{
	if (is_apbt_capable()) {
		unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL);
		ctrl &= ~APBTMR_CONTROL_ENABLE;
		apbt_writel(n, ctrl, APBTMR_N_CONTROL);
	}
}

/* called before apb_timer_enable, use early map */
unsigned long apbt_quick_calibrate()
{
	int i, scale;
	u64 old, new;
	cycle_t t1, t2;
	unsigned long khz = 0;
	u32 loop, shift;

	apbt_set_mapping();
	apbt_start_counter(phy_cs_timer_id);

	/* check if the timer can count down, otherwise return */
	old = apbt_read_clocksource(&clocksource_apbt);
	i = 10000;
	while (--i) {
		if (old != apbt_read_clocksource(&clocksource_apbt))
			break;
	}
	if (!i)
		goto failed;

	/* count 16 ms */
	loop = (apbt_freq * 1000) << 4;

	/* restart the timer to ensure it won't get to 0 in the calibration */
	apbt_start_counter(phy_cs_timer_id);

	old = apbt_read_clocksource(&clocksource_apbt);
	old += loop;

	t1 = __native_read_tsc();

	do {
		new = apbt_read_clocksource(&clocksource_apbt);
	} while (new < old);

	t2 = __native_read_tsc();

	shift = 5;
	if (unlikely(loop >> shift == 0)) {
		printk(KERN_INFO
		       "APBT TSC calibration failed, not enough resolution\n");
		return 0;
	}
	scale = (int)div_u64((t2 - t1), loop >> shift);
	khz = (scale * apbt_freq * 1000) >> shift;
	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
	return khz;
failed:
	return 0;
}