1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
// SPDX-License-Identifier: GPL-2.0+
#include <linux/kprobes.h>
#include <linux/extable.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <asm/ptrace.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include <asm/bug.h>
#include <asm/patch.h>
#include "decode-insn.h"
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
{
unsigned long offset = GET_INSN_LENGTH(p->opcode);
p->ainsn.api.restore = (unsigned long)p->addr + offset;
patch_text(p->ainsn.api.insn, p->opcode);
patch_text((void *)((unsigned long)(p->ainsn.api.insn) + offset),
__BUG_INSN_32);
}
static void __kprobes arch_prepare_simulate(struct kprobe *p)
{
p->ainsn.api.restore = 0;
}
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (p->ainsn.api.handler)
p->ainsn.api.handler((u32)p->opcode,
(unsigned long)p->addr, regs);
post_kprobe_handler(kcb, regs);
}
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
unsigned long probe_addr = (unsigned long)p->addr;
if (probe_addr & 0x1) {
pr_warn("Address not aligned.\n");
return -EINVAL;
}
/* copy instruction */
p->opcode = *p->addr;
/* decode instruction */
switch (riscv_probe_decode_insn(p->addr, &p->ainsn.api)) {
case INSN_REJECTED: /* insn not supported */
return -EINVAL;
case INSN_GOOD_NO_SLOT: /* insn need simulation */
p->ainsn.api.insn = NULL;
break;
case INSN_GOOD: /* instruction uses slot */
p->ainsn.api.insn = get_insn_slot();
if (!p->ainsn.api.insn)
return -ENOMEM;
break;
}
/* prepare the instruction */
if (p->ainsn.api.insn)
arch_prepare_ss_slot(p);
else
arch_prepare_simulate(p);
return 0;
}
/* install breakpoint in text */
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
if ((p->opcode & __INSN_LENGTH_MASK) == __INSN_LENGTH_32)
patch_text(p->addr, __BUG_INSN_32);
else
patch_text(p->addr, __BUG_INSN_16);
}
/* remove breakpoint from text */
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
patch_text(p->addr, p->opcode);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
}
static void __kprobes set_current_kprobe(struct kprobe *p)
{
__this_cpu_write(current_kprobe, p);
}
/*
* Interrupts need to be disabled before single-step mode is set, and not
* reenabled until after single-step mode ends.
* Without disabling interrupt on local CPU, there is a chance of
* interrupt occurrence in the period of exception return and start of
* out-of-line single-step, that result in wrongly single stepping
* into the interrupt handler.
*/
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
kcb->saved_status = regs->status;
regs->status &= ~SR_SPIE;
}
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
regs->status = kcb->saved_status;
}
static void __kprobes
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
{
unsigned long offset = GET_INSN_LENGTH(p->opcode);
kcb->ss_ctx.ss_pending = true;
kcb->ss_ctx.match_addr = addr + offset;
}
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
{
kcb->ss_ctx.ss_pending = false;
kcb->ss_ctx.match_addr = 0;
}
static void __kprobes setup_singlestep(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb, int reenter)
{
unsigned long slot;
if (reenter) {
save_previous_kprobe(kcb);
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_REENTER;
} else {
kcb->kprobe_status = KPROBE_HIT_SS;
}
if (p->ainsn.api.insn) {
/* prepare for single stepping */
slot = (unsigned long)p->ainsn.api.insn;
set_ss_context(kcb, slot, p); /* mark pending ss */
/* IRQs and single stepping do not mix well. */
kprobes_save_local_irqflag(kcb, regs);
instruction_pointer_set(regs, slot);
} else {
/* insn simulation */
arch_simulate_insn(p, regs);
}
}
static int __kprobes reenter_kprobe(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
switch (kcb->kprobe_status) {
case KPROBE_HIT_SSDONE:
case KPROBE_HIT_ACTIVE:
kprobes_inc_nmissed_count(p);
setup_singlestep(p, regs, kcb, 1);
break;
case KPROBE_HIT_SS:
case KPROBE_REENTER:
pr_warn("Unrecoverable kprobe detected.\n");
dump_kprobe(p);
BUG();
break;
default:
WARN_ON(1);
return 0;
}
return 1;
}
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
if (!cur)
return;
/* return addr restore if non-branching insn */
if (cur->ainsn.api.restore != 0)
regs->epc = cur->ainsn.api.restore;
/* restore back original saved kprobe variables and continue */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
return;
}
/* call post handler */
kcb->kprobe_status = KPROBE_HIT_SSDONE;
if (cur->post_handler) {
/* post_handler can hit breakpoint and single step
* again, so we enable D-flag for recursive exception.
*/
cur->post_handler(cur, regs, 0);
}
reset_current_kprobe();
}
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
switch (kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the ip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->epc = (unsigned long) cur->addr;
if (!instruction_pointer(regs))
BUG();
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if (fixup_exception(regs))
return 1;
}
return 0;
}
bool __kprobes
kprobe_breakpoint_handler(struct pt_regs *regs)
{
struct kprobe *p, *cur_kprobe;
struct kprobe_ctlblk *kcb;
unsigned long addr = instruction_pointer(regs);
kcb = get_kprobe_ctlblk();
cur_kprobe = kprobe_running();
p = get_kprobe((kprobe_opcode_t *) addr);
if (p) {
if (cur_kprobe) {
if (reenter_kprobe(p, regs, kcb))
return true;
} else {
/* Probe hit */
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
* pre-handler and it returned non-zero, it will
* modify the execution path and no need to single
* stepping. Let's just reset current kprobe and exit.
*
* pre_handler can hit a breakpoint and can step thru
* before return.
*/
if (!p->pre_handler || !p->pre_handler(p, regs))
setup_singlestep(p, regs, kcb, 0);
else
reset_current_kprobe();
}
return true;
}
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
* Return back to original instruction, and continue.
*/
return false;
}
bool __kprobes
kprobe_single_step_handler(struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if ((kcb->ss_ctx.ss_pending)
&& (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
clear_ss_context(kcb); /* clear pending ss */
kprobes_restore_local_irqflag(kcb, regs);
post_kprobe_handler(kcb, regs);
return true;
}
return false;
}
/*
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
*/
int __init arch_populate_kprobe_blacklist(void)
{
int ret;
ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
(unsigned long)__irqentry_text_end);
return ret;
}
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
{
return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->ra;
ri->fp = NULL;
regs->ra = (unsigned long) &kretprobe_trampoline;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}
int __init arch_init_kprobes(void)
{
return 0;
}
|