summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/hugetlbpage.c
blob: a8953f10880897eb62352b6b6734db312d902739 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * PPC Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/moduleparam.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/kmemleak.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/hugetlb.h>
#include <asm/pte-walk.h>

bool hugetlb_disabled = false;

#define hugepd_none(hpd)	(hpd_val(hpd) == 0)

#define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	/*
	 * Only called for hugetlbfs pages, hence can ignore THP and the
	 * irq disabled walk.
	 */
	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
}

static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
			   unsigned long address, unsigned int pdshift,
			   unsigned int pshift, spinlock_t *ptl)
{
	struct kmem_cache *cachep;
	pte_t *new;
	int i;
	int num_hugepd;

	if (pshift >= pdshift) {
		cachep = PGT_CACHE(PTE_T_ORDER);
		num_hugepd = 1 << (pshift - pdshift);
	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
		cachep = PGT_CACHE(PTE_INDEX_SIZE);
		num_hugepd = 1;
	} else {
		cachep = PGT_CACHE(pdshift - pshift);
		num_hugepd = 1;
	}

	if (!cachep) {
		WARN_ONCE(1, "No page table cache created for hugetlb tables");
		return -ENOMEM;
	}

	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));

	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

	if (!new)
		return -ENOMEM;

	/*
	 * Make sure other cpus find the hugepd set only after a
	 * properly initialized page table is visible to them.
	 * For more details look for comment in __pte_alloc().
	 */
	smp_wmb();

	spin_lock(ptl);
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		hugepd_populate(hpdp, new, pshift);
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			*hpdp = __hugepd(0);
		kmem_cache_free(cachep, new);
	} else {
		kmemleak_ignore(new);
	}
	spin_unlock(ptl);
	return 0;
}

/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;
	spinlock_t *ptl;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

#ifdef CONFIG_PPC_BOOK3S_64
	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT) {
		/*
		 * We need to use hugepd table
		 */
		ptl = &mm->page_table_lock;
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (!pu)
			return NULL;
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT) {
			ptl = pud_lockptr(mm, pu);
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (!pm)
				return NULL;
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else {
				ptl = pmd_lockptr(mm, pm);
				hpdp = (hugepd_t *)pm;
			}
		}
	}
#else
	if (pshift >= PGDIR_SHIFT) {
		ptl = &mm->page_table_lock;
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (!pu)
			return NULL;
		if (pshift >= PUD_SHIFT) {
			ptl = pud_lockptr(mm, pu);
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (!pm)
				return NULL;
			ptl = pmd_lockptr(mm, pm);
			hpdp = (hugepd_t *)pm;
		}
	}
#endif
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
						  pdshift, pshift, ptl))
		return NULL;

	return hugepte_offset(*hpdp, addr, pdshift);
}

#ifdef CONFIG_PPC_BOOK3S_64
/*
 * Tracks gpages after the device tree is scanned and before the
 * huge_boot_pages list is ready on pseries.
 */
#define MAX_NUMBER_GPAGES	1024
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
__initdata static unsigned nr_gpages;

/*
 * Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy allocator is setup.
 */
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
	m->hstate = hstate;
	return 1;
}
#endif


int __init alloc_bootmem_huge_page(struct hstate *h)
{

#ifdef CONFIG_PPC_BOOK3S_64
	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
		return pseries_alloc_bootmem_huge_page(h);
#endif
	return __alloc_bootmem_huge_page(h);
}

#ifndef CONFIG_PPC_BOOK3S_64
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

	batchp = &get_cpu_var(hugepd_freelist_cur);

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    mm_is_thread_local(tlb->mm)) {
		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
		put_cpu_var(hugepd_freelist_cur);
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
	put_cpu_var(hugepd_freelist_cur);
}
#else
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
#endif

static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
{
	pte_t *hugepte = hugepd_page(*hpdp);
	int i;

	unsigned long pdmask = ~((1UL << pdshift) - 1);
	unsigned int num_hugepd = 1;
	unsigned int shift = hugepd_shift(*hpdp);

	/* Note: On fsl the hpdp may be the first of several */
	if (shift > pdshift)
		num_hugepd = 1 << (shift - pdshift);

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	for (i = 0; i < num_hugepd; i++, hpdp++)
		*hpdp = __hugepd(0);

	if (shift >= pdshift)
		hugepd_free(tlb, hugepte);
	else if (IS_ENABLED(CONFIG_PPC_8xx))
		pgtable_free_tlb(tlb, hugepte,
				 get_hugepd_cache_index(PTE_INDEX_SIZE));
	else
		pgtable_free_tlb(tlb, hugepte,
				 get_hugepd_cache_index(pdshift - shift));
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
		unsigned long more;

		pmd = pmd_offset(pud, addr);
		next = pmd_addr_end(addr, end);
		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
			continue;
		}
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
		if (more > next)
			next = more;

		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
	} while (addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd, start);
	mm_dec_nr_pmds(tlb->mm);
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
		pud = pud_offset(pgd, addr);
		next = pud_addr_end(addr, end);
		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
			if (pud_none_or_clear_bad(pud))
				continue;
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
					       ceiling);
		} else {
			unsigned long more;
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
			if (more > next)
				next = more;

			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud, start);
	mm_dec_nr_puds(tlb->mm);
}

/*
 * This function frees user-level page tables of a process.
 */
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
	 *
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
	 */

	do {
		next = pgd_addr_end(addr, end);
		pgd = pgd_offset(tlb->mm, addr);
		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
			unsigned long more;
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
			 */
			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
			if (more > next)
				next = more;

			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (addr = next, addr != end);
}

struct page *follow_huge_pd(struct vm_area_struct *vma,
			    unsigned long address, hugepd_t hpd,
			    int flags, int pdshift)
{
	pte_t *ptep;
	spinlock_t *ptl;
	struct page *page = NULL;
	unsigned long mask;
	int shift = hugepd_shift(hpd);
	struct mm_struct *mm = vma->vm_mm;

retry:
	/*
	 * hugepage directory entries are protected by mm->page_table_lock
	 * Use this instead of huge_pte_lockptr
	 */
	ptl = &mm->page_table_lock;
	spin_lock(ptl);

	ptep = hugepte_offset(hpd, address, pdshift);
	if (pte_present(*ptep)) {
		mask = (1UL << shift) - 1;
		page = pte_page(*ptep);
		page += ((address & mask) >> PAGE_SHIFT);
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(*ptep)) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, ptep, ptl);
			goto retry;
		}
	}
	spin_unlock(ptl);
	return page;
}

#ifdef CONFIG_PPC_MM_SLICES
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));

#ifdef CONFIG_PPC_RADIX_MMU
	if (radix_enabled())
		return radix__hugetlb_get_unmapped_area(file, addr, len,
						       pgoff, flags);
#endif
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
}
#endif

unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	/* With radix we don't use slice, so derive it from vma*/
	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

		return 1UL << mmu_psize_to_shift(psize);
	}
	return vma_kernel_pagesize(vma);
}

static int __init add_huge_page_size(unsigned long long size)
{
	int shift = __ffs(size);
	int mmu_psize;

	/* Check that it is a page size supported by the hardware and
	 * that it fits within pagetable and slice limits. */
	if (size <= PAGE_SIZE || !is_power_of_2(size))
		return -EINVAL;

	mmu_psize = check_and_get_huge_psize(shift);
	if (mmu_psize < 0)
		return -EINVAL;

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

	if (add_huge_page_size(size) != 0) {
		hugetlb_bad_size();
		pr_err("Invalid huge page size specified(%llu)\n", size);
	}

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

static int __init hugetlbpage_init(void)
{
	bool configured = false;
	int psize;

	if (hugetlb_disabled) {
		pr_info("HugeTLB support is disabled!\n");
		return 0;
	}

	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
	    !mmu_has_feature(MMU_FTR_16M_PAGE))
		return -ENODEV;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

#ifdef CONFIG_PPC_BOOK3S_64
		if (shift > PGDIR_SHIFT)
			continue;
		else if (shift > PUD_SHIFT)
			pdshift = PGDIR_SHIFT;
		else if (shift > PMD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PMD_SHIFT;
#else
		if (shift < PUD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PGDIR_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
#endif

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
		if (pdshift > shift && IS_ENABLED(CONFIG_PPC_8xx))
			pgtable_cache_add(PTE_INDEX_SIZE);
		else if (pdshift > shift)
			pgtable_cache_add(pdshift - shift);
		else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx))
			pgtable_cache_add(PTE_T_ORDER);

		configured = true;
	}

	if (configured) {
		if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
			hugetlbpage_init_default();
	} else
		pr_info("Failed to initialize. Disabling HugeTLB");

	return 0;
}

arch_initcall(hugetlbpage_init);

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
	void *start;

	BUG_ON(!PageCompound(page));

	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
			start = kmap_atomic(page+i);
			__flush_dcache_icache(start);
			kunmap_atomic(start);
		}
	}
}