1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file contains the 64-bit "server" PowerPC variant
* of the low level exception handling including exception
* vectors, exception return, part of the slb and stab
* handling and other fixed offset specific things.
*
* This file is meant to be #included from head_64.S due to
* position dependent assembly.
*
* Most of this originates from head_64.S and thus has the same
* copyright history.
*
*/
#include <asm/hw_irq.h>
#include <asm/exception-64s.h>
#include <asm/ptrace.h>
#include <asm/cpuidle.h>
#include <asm/head-64.h>
#include <asm/feature-fixups.h>
#include <asm/kup.h>
/*
* Following are fixed section helper macros.
*
* EXC_REAL_BEGIN/END - real, unrelocated exception vectors
* EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
* TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
* TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
* EXC_COMMON - After switching to virtual, relocated mode.
*/
#define EXC_REAL_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_REAL_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
#define EXC_VIRT_BEGIN(name, start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_VIRT_END(name, start, size) \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
#define EXC_COMMON_BEGIN(name) \
USE_TEXT_SECTION(); \
.balign IFETCH_ALIGN_BYTES; \
.global name; \
_ASM_NOKPROBE_SYMBOL(name); \
DEFINE_FIXED_SYMBOL(name); \
name:
#define TRAMP_REAL_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
#define TRAMP_VIRT_BEGIN(name) \
FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
#define EXC_REAL_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
#define EXC_VIRT_NONE(start, size) \
FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
/*
* We're short on space and time in the exception prolog, so we can't
* use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
* Instead we get the base of the kernel from paca->kernelbase and or in the low
* part of label. This requires that the label be within 64KB of kernelbase, and
* that kernelbase be 64K aligned.
*/
#define LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); /* get high part of &label */ \
ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
#define __LOAD_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l
/*
* Branches from unrelocated code (e.g., interrupts) to labels outside
* head-y require >64K offsets.
*/
#define __LOAD_FAR_HANDLER(reg, label) \
ld reg,PACAKBASE(r13); \
ori reg,reg,(ABS_ADDR(label))@l; \
addis reg,reg,(ABS_ADDR(label))@h
/*
* Branch to label using its 0xC000 address. This results in instruction
* address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
* on using mtmsr rather than rfid.
*
* This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
* load KBASE for a slight optimisation.
*/
#define BRANCH_TO_C000(reg, label) \
__LOAD_FAR_HANDLER(reg, label); \
mtctr reg; \
bctr
/*
* Interrupt code generation macros
*/
#define IVEC .L_IVEC_\name\() /* Interrupt vector address */
#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
#define IAREA .L_IAREA_\name\() /* PACA save area */
#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
#define __ISTACK(name) .L_ISTACK_ ## name
#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
#define INT_DEFINE_BEGIN(n) \
.macro int_define_ ## n name
#define INT_DEFINE_END(n) \
.endm ; \
int_define_ ## n n ; \
do_define_int n
.macro do_define_int name
.ifndef IVEC
.error "IVEC not defined"
.endif
.ifndef IHSRR
IHSRR=0
.endif
.ifndef IHSRR_IF_HVMODE
IHSRR_IF_HVMODE=0
.endif
.ifndef IAREA
IAREA=PACA_EXGEN
.endif
.ifndef IVIRT
IVIRT=1
.endif
.ifndef IISIDE
IISIDE=0
.endif
.ifndef IDAR
IDAR=0
.endif
.ifndef IDSISR
IDSISR=0
.endif
.ifndef IBRANCH_TO_COMMON
IBRANCH_TO_COMMON=1
.endif
.ifndef IREALMODE_COMMON
IREALMODE_COMMON=0
.else
.if ! IBRANCH_TO_COMMON
.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
.endif
.endif
.ifndef IMASK
IMASK=0
.endif
.ifndef IKVM_REAL
IKVM_REAL=0
.endif
.ifndef IKVM_VIRT
IKVM_VIRT=0
.endif
.ifndef ISTACK
ISTACK=1
.endif
.ifndef IKUAP
IKUAP=1
.endif
.endm
/*
* All interrupts which set HSRR registers, as well as SRESET and MCE and
* syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
* so they all generally need to test whether they were taken in guest context.
*
* Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
* taken with MSR[HV]=0.
*
* Interrupts which set SRR registers (with the above exceptions) do not
* elevate to MSR[HV]=1 mode, though most can be taken when running with
* MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
* not need to test whether a guest is running because they get delivered to
* the guest directly, including nested HV KVM guests.
*
* The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
* runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
* guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
* delivered to the real-mode entry point, therefore such interrupts only test
* KVM in their real mode handlers, and only when PR KVM is possible.
*
* Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
* delivered in real-mode when the MMU is in hash mode because the MMU
* registers are not set appropriately to translate host addresses. In nested
* radix mode these can be delivered in virt-mode as the host translations are
* used implicitly (see: effective LPID, effective PID).
*/
/*
* If an interrupt is taken while a guest is running, it is immediately routed
* to KVM to handle.
*/
.macro KVMTEST name handler
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
lbz r10,HSTATE_IN_GUEST(r13)
cmpwi r10,0
/* HSRR variants have the 0x2 bit added to their trap number */
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
li r10,(IVEC + 0x2)
FTR_SECTION_ELSE
li r10,(IVEC)
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
li r10,(IVEC + 0x2)
.else
li r10,(IVEC)
.endif
bne \handler
#endif
.endm
/*
* This is the BOOK3S interrupt entry code macro.
*
* This can result in one of several things happening:
* - Branch to the _common handler, relocated, in virtual mode.
* These are normal interrupts (synchronous and asynchronous) handled by
* the kernel.
* - Branch to KVM, relocated but real mode interrupts remain in real mode.
* These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
* / intended for host or guest kernel, but KVM must always be involved
* because the machine state is set for guest execution.
* - Branch to the masked handler, unrelocated.
* These occur when maskable asynchronous interrupts are taken with the
* irq_soft_mask set.
* - Branch to an "early" handler in real mode but relocated.
* This is done if early=1. MCE and HMI use these to handle errors in real
* mode.
* - Fall through and continue executing in real, unrelocated mode.
* This is done if early=2.
*/
.macro GEN_BRANCH_TO_COMMON name, virt
.if IREALMODE_COMMON
LOAD_HANDLER(r10, \name\()_common)
mtctr r10
bctr
.else
.if \virt
#ifndef CONFIG_RELOCATABLE
b \name\()_common_virt
#else
LOAD_HANDLER(r10, \name\()_common_virt)
mtctr r10
bctr
#endif
.else
LOAD_HANDLER(r10, \name\()_common_real)
mtctr r10
bctr
.endif
.endif
.endm
.macro GEN_INT_ENTRY name, virt, ool=0
SET_SCRATCH0(r13) /* save r13 */
GET_PACA(r13)
std r9,IAREA+EX_R9(r13) /* save r9 */
BEGIN_FTR_SECTION
mfspr r9,SPRN_PPR
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
BEGIN_FTR_SECTION
mfspr r10,SPRN_CFAR
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
.if \ool
.if !\virt
b tramp_real_\name
.pushsection .text
TRAMP_REAL_BEGIN(tramp_real_\name)
.else
b tramp_virt_\name
.pushsection .text
TRAMP_VIRT_BEGIN(tramp_virt_\name)
.endif
.endif
BEGIN_FTR_SECTION
std r9,IAREA+EX_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
std r10,IAREA+EX_CFAR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
INTERRUPT_TO_KERNEL
mfctr r10
std r10,IAREA+EX_CTR(r13)
mfcr r9
std r11,IAREA+EX_R11(r13)
std r12,IAREA+EX_R12(r13)
/*
* DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
* because a d-side MCE will clobber those registers so is
* not recoverable if they are live.
*/
GET_SCRATCH0(r10)
std r10,IAREA+EX_R13(r13)
.if IDAR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDAR
.else
mfspr r10,SPRN_DAR
.endif
std r10,IAREA+EX_DAR(r13)
.endif
.if IDSISR && !IISIDE
.if IHSRR
mfspr r10,SPRN_HDSISR
.else
mfspr r10,SPRN_DSISR
.endif
stw r10,IAREA+EX_DSISR(r13)
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
FTR_SECTION_ELSE
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
mfspr r11,SPRN_HSRR0 /* save HSRR0 */
mfspr r12,SPRN_HSRR1 /* and HSRR1 */
.else
mfspr r11,SPRN_SRR0 /* save SRR0 */
mfspr r12,SPRN_SRR1 /* and SRR1 */
.endif
.if IBRANCH_TO_COMMON
GEN_BRANCH_TO_COMMON \name \virt
.endif
.if \ool
.popsection
.endif
.endm
/*
* __GEN_COMMON_ENTRY is required to receive the branch from interrupt
* entry, except in the case of the real-mode handlers which require
* __GEN_REALMODE_COMMON_ENTRY.
*
* This switches to virtual mode and sets MSR[RI].
*/
.macro __GEN_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name kvm_interrupt
.endif
ld r10,PACAKMSR(r13) /* get MSR value for kernel */
/* MSR[RI] is clear iff using SRR regs */
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
xori r10,r10,MSR_RI
END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
.elseif ! IHSRR
xori r10,r10,MSR_RI
.endif
mtmsrd r10
.if IVIRT
.if IKVM_VIRT
b 1f /* skip the virt test coming from real */
.endif
.balign IFETCH_ALIGN_BYTES
DEFINE_FIXED_SYMBOL(\name\()_common_virt)
\name\()_common_virt:
.if IKVM_VIRT
KVMTEST \name kvm_interrupt
1:
.endif
.endif /* IVIRT */
.endm
/*
* Don't switch to virt mode. Used for early MCE and HMI handlers that
* want to run in real mode.
*/
.macro __GEN_REALMODE_COMMON_ENTRY name
DEFINE_FIXED_SYMBOL(\name\()_common_real)
\name\()_common_real:
.if IKVM_REAL
KVMTEST \name kvm_interrupt
.endif
.endm
.macro __GEN_COMMON_BODY name
.if IMASK
.if ! ISTACK
.error "No support for masked interrupt to use custom stack"
.endif
/* If coming from user, skip soft-mask tests. */
andi. r10,r12,MSR_PR
bne 3f
/*
* Kernel code running below __end_soft_masked may be
* implicitly soft-masked if it is within the regions
* in the soft mask table.
*/
LOAD_HANDLER(r10, __end_soft_masked)
cmpld r11,r10
bge+ 1f
/* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */
mtctr r12
stw r9,PACA_EXGEN+EX_CCR(r13)
SEARCH_SOFT_MASK_TABLE
cmpdi r12,0
mfctr r12 /* Restore r12 to SRR1 */
lwz r9,PACA_EXGEN+EX_CCR(r13)
beq 1f /* Not in soft-mask table */
li r10,IMASK
b 2f /* In soft-mask table, always mask */
/* Test the soft mask state against our interrupt's bit */
1: lbz r10,PACAIRQSOFTMASK(r13)
2: andi. r10,r10,IMASK
/* Associate vector numbers with bits in paca->irq_happened */
.if IVEC == 0x500 || IVEC == 0xea0
li r10,PACA_IRQ_EE
.elseif IVEC == 0x900
li r10,PACA_IRQ_DEC
.elseif IVEC == 0xa00 || IVEC == 0xe80
li r10,PACA_IRQ_DBELL
.elseif IVEC == 0xe60
li r10,PACA_IRQ_HMI
.elseif IVEC == 0xf00
li r10,PACA_IRQ_PMI
.else
.abort "Bad maskable vector"
.endif
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
bne masked_Hinterrupt
FTR_SECTION_ELSE
bne masked_interrupt
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
bne masked_Hinterrupt
.else
bne masked_interrupt
.endif
.endif
.if ISTACK
andi. r10,r12,MSR_PR /* See if coming from user */
3: mr r10,r1 /* Save r1 */
subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
beq- 100f
ld r1,PACAKSAVE(r13) /* kernel stack to use */
100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
.endif
std r9,_CCR(r1) /* save CR in stackframe */
std r11,_NIP(r1) /* save SRR0 in stackframe */
std r12,_MSR(r1) /* save SRR1 in stackframe */
std r10,0(r1) /* make stack chain pointer */
std r0,GPR0(r1) /* save r0 in stackframe */
std r10,GPR1(r1) /* save r1 in stackframe */
/* Mark our [H]SRRs valid for return */
li r10,1
.if IHSRR_IF_HVMODE
BEGIN_FTR_SECTION
stb r10,PACAHSRR_VALID(r13)
FTR_SECTION_ELSE
stb r10,PACASRR_VALID(r13)
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
.elseif IHSRR
stb r10,PACAHSRR_VALID(r13)
.else
stb r10,PACASRR_VALID(r13)
.endif
.if ISTACK
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1, cr0
.endif
beq 101f /* if from kernel mode */
BEGIN_FTR_SECTION
ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
std r9,_PPR(r1)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
101:
.else
.if IKUAP
kuap_save_amr_and_lock r9, r10, cr1
.endif
.endif
/* Save original regs values from save area to stack frame. */
ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
ld r10,IAREA+EX_R10(r13)
std r9,GPR9(r1)
std r10,GPR10(r1)
ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
ld r10,IAREA+EX_R12(r13)
ld r11,IAREA+EX_R13(r13)
std r9,GPR11(r1)
std r10,GPR12(r1)
std r11,GPR13(r1)
SAVE_NVGPRS(r1)
.if IDAR
.if IISIDE
ld r10,_NIP(r1)
.else
ld r10,IAREA+EX_DAR(r13)
.endif
std r10,_DAR(r1)
.endif
.if IDSISR
.if IISIDE
ld r10,_MSR(r1)
lis r11,DSISR_SRR1_MATCH_64S@h
and r10,r10,r11
.else
lwz r10,IAREA+EX_DSISR(r13)
.endif
std r10,_DSISR(r1)
.endif
BEGIN_FTR_SECTION
ld r10,IAREA+EX_CFAR(r13)
std r10,ORIG_GPR3(r1)
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
ld r10,IAREA+EX_CTR(r13)
std r10,_CTR(r1)
std r2,GPR2(r1) /* save r2 in stackframe */
SAVE_GPRS(3, 8, r1) /* save r3 - r8 in stackframe */
mflr r9 /* Get LR, later save to stack */
ld r2,PACATOC(r13) /* get kernel TOC into r2 */
std r9,_LINK(r1)
lbz r10,PACAIRQSOFTMASK(r13)
mfspr r11,SPRN_XER /* save XER in stackframe */
std r10,SOFTE(r1)
std r11,_XER(r1)
li r9,IVEC
std r9,_TRAP(r1) /* set trap number */
li r10,0
ld r11,exception_marker@toc(r2)
std r10,RESULT(r1) /* clear regs->result */
std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
.endm
/*
* On entry r13 points to the paca, r9-r13 are saved in the paca,
* r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
* SRR1, and relocation is on.
*
* If stack=0, then the stack is already set in r1, and r1 is saved in r10.
* PPR save and CPU accounting is not done for the !stack case (XXX why not?)
*/
.macro GEN_COMMON name
__GEN_COMMON_ENTRY \name
__GEN_COMMON_BODY \name
.endm
.macro SEARCH_RESTART_TABLE
#ifdef CONFIG_RELOCATABLE
mr r12,r2
ld r2,PACATOC(r13)
LOAD_REG_ADDR(r9, __start___restart_table)
LOAD_REG_ADDR(r10, __stop___restart_table)
mr r2,r12
#else
LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table)
LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table)
#endif
300:
cmpd r9,r10
beq 302f
ld r12,0(r9)
cmpld r11,r12
blt 301f
ld r12,8(r9)
cmpld r11,r12
bge 301f
ld r12,16(r9)
b 303f
301:
addi r9,r9,24
b 300b
302:
li r12,0
303:
.endm
.macro SEARCH_SOFT_MASK_TABLE
#ifdef CONFIG_RELOCATABLE
mr r12,r2
ld r2,PACATOC(r13)
LOAD_REG_ADDR(r9, __start___soft_mask_table)
LOAD_REG_ADDR(r10, __stop___soft_mask_table)
mr r2,r12
#else
LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table)
LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table)
#endif
300:
cmpd r9,r10
beq 302f
ld r12,0(r9)
cmpld r11,r12
blt 301f
ld r12,8(r9)
cmpld r11,r12
bge 301f
li r12,1
b 303f
301:
addi r9,r9,16
b 300b
302:
li r12,0
303:
.endm
/*
* Restore all registers including H/SRR0/1 saved in a stack frame of a
* standard exception.
*/
.macro EXCEPTION_RESTORE_REGS hsrr=0
/* Move original SRR0 and SRR1 into the respective regs */
ld r9,_MSR(r1)
li r10,0
.if \hsrr
mtspr SPRN_HSRR1,r9
stb r10,PACAHSRR_VALID(r13)
.else
mtspr SPRN_SRR1,r9
stb r10,PACASRR_VALID(r13)
.endif
ld r9,_NIP(r1)
.if \hsrr
mtspr SPRN_HSRR0,r9
.else
mtspr SPRN_SRR0,r9
.endif
ld r9,_CTR(r1)
mtctr r9
ld r9,_XER(r1)
mtxer r9
ld r9,_LINK(r1)
mtlr r9
ld r9,_CCR(r1)
mtcr r9
REST_GPRS(2, 13, r1)
REST_GPR(0, r1)
/* restore original r1. */
ld r1,GPR1(r1)
.endm
/*
* There are a few constraints to be concerned with.
* - Real mode exceptions code/data must be located at their physical location.
* - Virtual mode exceptions must be mapped at their 0xc000... location.
* - Fixed location code must not call directly beyond the __end_interrupts
* area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
* must be used.
* - LOAD_HANDLER targets must be within first 64K of physical 0 /
* virtual 0xc00...
* - Conditional branch targets must be within +/-32K of caller.
*
* "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
* therefore don't have to run in physically located code or rfid to
* virtual mode kernel code. However on relocatable kernels they do have
* to branch to KERNELBASE offset because the rest of the kernel (outside
* the exception vectors) may be located elsewhere.
*
* Virtual exceptions correspond with physical, except their entry points
* are offset by 0xc000000000000000 and also tend to get an added 0x4000
* offset applied. Virtual exceptions are enabled with the Alternate
* Interrupt Location (AIL) bit set in the LPCR. However this does not
* guarantee they will be delivered virtually. Some conditions (see the ISA)
* cause exceptions to be delivered in real mode.
*
* The scv instructions are a special case. They get a 0x3000 offset applied.
* scv exceptions have unique reentrancy properties, see below.
*
* It's impossible to receive interrupts below 0x300 via AIL.
*
* KVM: None of the virtual exceptions are from the guest. Anything that
* escalated to HV=1 from HV=0 is delivered via real mode handlers.
*
*
* We layout physical memory as follows:
* 0x0000 - 0x00ff : Secondary processor spin code
* 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
* 0x1900 - 0x2fff : Real mode trampolines
* 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
* 0x5900 - 0x6fff : Relon mode trampolines
* 0x7000 - 0x7fff : FWNMI data area
* 0x8000 - .... : Common interrupt handlers, remaining early
* setup code, rest of kernel.
*
* We could reclaim 0x4000-0x42ff for real mode trampolines if the space
* is necessary. Until then it's more consistent to explicitly put VIRT_NONE
* vectors there.
*/
OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
#ifdef CONFIG_PPC_POWERNV
.globl start_real_trampolines
.globl end_real_trampolines
.globl start_virt_trampolines
.globl end_virt_trampolines
#endif
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* Data area reserved for FWNMI option.
* This address (0x7000) is fixed by the RPA.
* pseries and powernv need to keep the whole page from
* 0x7000 to 0x8000 free for use by the firmware
*/
ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
OPEN_TEXT_SECTION(0x8000)
#else
OPEN_TEXT_SECTION(0x7000)
#endif
USE_FIXED_SECTION(real_vectors)
/*
* This is the start of the interrupt handlers for pSeries
* This code runs with relocation off.
* Code from here to __end_interrupts gets copied down to real
* address 0x100 when we are running a relocatable kernel.
* Therefore any relative branches in this section must only
* branch to labels in this section.
*/
.globl __start_interrupts
__start_interrupts:
/**
* Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
* This is a synchronous interrupt invoked with the "scv" instruction. The
* system call does not alter the HV bit, so it is directed to the OS.
*
* Handling:
* scv instructions enter the kernel without changing EE, RI, ME, or HV.
* In particular, this means we can take a maskable interrupt at any point
* in the scv handler, which is unlike any other interrupt. This is solved
* by treating the instruction addresses in the handler as being soft-masked,
* by adding a SOFT_MASK_TABLE entry for them.
*
* AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
* ensure scv is never executed with relocation off, which means AIL-0
* should never happen.
*
* Before leaving the following inside-__end_soft_masked text, at least of the
* following must be true:
* - MSR[PR]=1 (i.e., return to userspace)
* - MSR_EE|MSR_RI is clear (no reentrant exceptions)
* - Standard kernel environment is set up (stack, paca, etc)
*
* Call convention:
*
* syscall register convention is in Documentation/powerpc/syscall64-abi.rst
*/
EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
/* SCV 0 */
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_tramp
#else
b system_call_vectored_common
#endif
nop
/* SCV 1 - 127 */
.rept 127
mr r9,r13
GET_PACA(r13)
mflr r11
mfctr r12
li r10,IRQS_ALL_DISABLED
stb r10,PACAIRQSOFTMASK(r13)
li r0,-1 /* cause failure */
#ifdef CONFIG_RELOCATABLE
b system_call_vectored_sigill_tramp
#else
b system_call_vectored_sigill
#endif
.endr
EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
// Treat scv vectors as soft-masked, see comment above.
// Use absolute values rather than labels here, so they don't get relocated,
// because this code runs unrelocated.
SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000)
#ifdef CONFIG_RELOCATABLE
TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
__LOAD_HANDLER(r10, system_call_vectored_common)
mtctr r10
bctr
TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
__LOAD_HANDLER(r10, system_call_vectored_sigill)
mtctr r10
bctr
#endif
/* No virt vectors corresponding with 0x0..0x100 */
EXC_VIRT_NONE(0x4000, 0x100)
/**
* Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
* This is a non-maskable, asynchronous interrupt always taken in real-mode.
* It is caused by:
* - Wake from power-saving state, on powernv.
* - An NMI from another CPU, triggered by firmware or hypercall.
* - As crash/debug signal injected from BMC, firmware or hypervisor.
*
* Handling:
* Power-save wakeup is the only performance critical path, so this is
* determined quickly as possible first. In this case volatile registers
* can be discarded and SPRs like CFAR don't need to be read.
*
* If not a powersave wakeup, then it's run as a regular interrupt, however
* it uses its own stack and PACA save area to preserve the regular kernel
* environment for debugging.
*
* This interrupt is not maskable, so triggering it when MSR[RI] is clear,
* or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
* correct to switch to virtual mode to run the regular interrupt handler
* because it might be interrupted when the MMU is in a bad state (e.g., SLB
* is clear).
*
* FWNMI:
* PAPR specifies a "fwnmi" facility which sends the sreset to a different
* entry point with a different register set up. Some hypervisors will
* send the sreset to 0x100 in the guest if it is not fwnmi capable.
*
* KVM:
* Unlike most SRR interrupts, this may be taken by the host while executing
* in a guest, so a KVM test is required. KVM will pull the CPU out of guest
* mode and then raise the sreset.
*/
INT_DEFINE_BEGIN(system_reset)
IVEC=0x100
IAREA=PACA_EXNMI
IVIRT=0 /* no virt entry point */
ISTACK=0
IKVM_REAL=1
INT_DEFINE_END(system_reset)
EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
/*
* If running native on arch 2.06 or later, check if we are waking up
* from nap/sleep/winkle, and branch to idle handler. This tests SRR1
* bits 46:47. A non-0 value indicates that we are coming from a power
* saving state. The idle wakeup handler initially runs in real mode,
* but we branch to the 0xc000... address so we can turn on relocation
* with mtmsrd later, after SPRs are restored.
*
* Careful to minimise cost for the fast path (idle wakeup) while
* also avoiding clobbering CFAR for the debug path (non-idle).
*
* For the idle wake case volatile registers can be clobbered, which
* is why we use those initially. If it turns out to not be an idle
* wake, carefully put everything back the way it was, so we can use
* common exception macros to handle it.
*/
BEGIN_FTR_SECTION
SET_SCRATCH0(r13)
GET_PACA(r13)
std r3,PACA_EXNMI+0*8(r13)
std r4,PACA_EXNMI+1*8(r13)
std r5,PACA_EXNMI+2*8(r13)
mfspr r3,SPRN_SRR1
mfocrf r4,0x80
rlwinm. r5,r3,47-31,30,31
bne+ system_reset_idle_wake
/* Not powersave wakeup. Restore regs for regular interrupt handler. */
mtocrf 0x80,r4
ld r3,PACA_EXNMI+0*8(r13)
ld r4,PACA_EXNMI+1*8(r13)
ld r5,PACA_EXNMI+2*8(r13)
GET_SCRATCH0(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
GEN_INT_ENTRY system_reset, virt=0
/*
* In theory, we should not enable relocation here if it was disabled
* in SRR1, because the MMU may not be configured to support it (e.g.,
* SLB may have been cleared). In practice, there should only be a few
* small windows where that's the case, and sreset is considered to
* be dangerous anyway.
*/
EXC_REAL_END(system_reset, 0x100, 0x100)
EXC_VIRT_NONE(0x4100, 0x100)
#ifdef CONFIG_PPC_P7_NAP
TRAMP_REAL_BEGIN(system_reset_idle_wake)
/* We are waking up from idle, so may clobber any volatile register */
cmpwi cr1,r5,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
#endif
#ifdef CONFIG_PPC_PSERIES
/*
* Vectors for the FWNMI option. Share common code.
*/
TRAMP_REAL_BEGIN(system_reset_fwnmi)
GEN_INT_ENTRY system_reset, virt=0
#endif /* CONFIG_PPC_PSERIES */
EXC_COMMON_BEGIN(system_reset_common)
__GEN_COMMON_ENTRY system_reset
/*
* Increment paca->in_nmi. When the interrupt entry wrapper later
* enable MSR_RI, then SLB or MCE will be able to recover, but a nested
* NMI will notice in_nmi and not recover because of the use of the NMI
* stack. in_nmi reentrancy is tested in system_reset_exception.
*/
lhz r10,PACA_IN_NMI(r13)
addi r10,r10,1
sth r10,PACA_IN_NMI(r13)
mr r10,r1
ld r1,PACA_NMI_EMERG_SP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY system_reset
addi r3,r1,STACK_FRAME_OVERHEAD
bl system_reset_exception
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
/*
* MSR_RI is clear, now we can decrement paca->in_nmi.
*/
lhz r10,PACA_IN_NMI(r13)
subi r10,r10,1
sth r10,PACA_IN_NMI(r13)
kuap_kernel_restore r9, r10
EXCEPTION_RESTORE_REGS
RFI_TO_USER_OR_KERNEL
/**
* Interrupt 0x200 - Machine Check Interrupt (MCE).
* This is a non-maskable interrupt always taken in real-mode. It can be
* synchronous or asynchronous, caused by hardware or software, and it may be
* taken in a power-saving state.
*
* Handling:
* Similarly to system reset, this uses its own stack and PACA save area,
* the difference is re-entrancy is allowed on the machine check stack.
*
* machine_check_early is run in real mode, and carefully decodes the
* machine check and tries to handle it (e.g., flush the SLB if there was an
* error detected there), determines if it was recoverable and logs the
* event.
*
* This early code does not "reconcile" irq soft-mask state like SRESET or
* regular interrupts do, so irqs_disabled() among other things may not work
* properly (irq disable/enable already doesn't work because irq tracing can
* not work in real mode).
*
* Then, depending on the execution context when the interrupt is taken, there
* are 3 main actions:
* - Executing in kernel mode. The event is queued with irq_work, which means
* it is handled when it is next safe to do so (i.e., the kernel has enabled
* interrupts), which could be immediately when the interrupt returns. This
* avoids nasty issues like switching to virtual mode when the MMU is in a
* bad state, or when executing OPAL code. (SRESET is exposed to such issues,
* but it has different priorities). Check to see if the CPU was in power
* save, and return via the wake up code if it was.
*
* - Executing in user mode. machine_check_exception is run like a normal
* interrupt handler, which processes the data generated by the early handler.
*
* - Executing in guest mode. The interrupt is run with its KVM test, and
* branches to KVM to deal with. KVM may queue the event for the host
* to report later.
*
* This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
* or SCRATCH0 is in use, it may cause a crash.
*
* KVM:
* See SRESET.
*/
INT_DEFINE_BEGIN(machine_check_early)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
IREALMODE_COMMON=1
ISTACK=0
IDAR=1
IDSISR=1
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
INT_DEFINE_END(machine_check_early)
INT_DEFINE_BEGIN(machine_check)
IVEC=0x200
IAREA=PACA_EXMC
IVIRT=0 /* no virt entry point */
IDAR=1
IDSISR=1
IKVM_REAL=1
INT_DEFINE_END(machine_check)
EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
GEN_INT_ENTRY machine_check_early, virt=0
EXC_REAL_END(machine_check, 0x200, 0x100)
EXC_VIRT_NONE(0x4200, 0x100)
#ifdef CONFIG_PPC_PSERIES
TRAMP_REAL_BEGIN(machine_check_fwnmi)
/* See comment at machine_check exception, don't turn on RI */
GEN_INT_ENTRY machine_check_early, virt=0
#endif
#define MACHINE_CHECK_HANDLER_WINDUP \
/* Clear MSR_RI before setting SRR0 and SRR1. */\
li r9,0; \
mtmsrd r9,1; /* Clear MSR_RI */ \
/* Decrement paca->in_mce now RI is clear. */ \
lhz r12,PACA_IN_MCE(r13); \
subi r12,r12,1; \
sth r12,PACA_IN_MCE(r13); \
EXCEPTION_RESTORE_REGS
EXC_COMMON_BEGIN(machine_check_early_common)
__GEN_REALMODE_COMMON_ENTRY machine_check_early
/*
* Switch to mc_emergency stack and handle re-entrancy (we limit
* the nested MCE upto level 4 to avoid stack overflow).
* Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
*
* We use paca->in_mce to check whether this is the first entry or
* nested machine check. We increment paca->in_mce to track nested
* machine checks.
*
* If this is the first entry then set stack pointer to
* paca->mc_emergency_sp, otherwise r1 is already pointing to
* stack frame on mc_emergency stack.
*
* NOTE: We are here with MSR_ME=0 (off), which means we risk a
* checkstop if we get another machine check exception before we do
* rfid with MSR_ME=1.
*
* This interrupt can wake directly from idle. If that is the case,
* the machine check is handled then the idle wakeup code is called
* to restore state.
*/
lhz r10,PACA_IN_MCE(r13)
cmpwi r10,0 /* Are we in nested machine check */
cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
addi r10,r10,1 /* increment paca->in_mce */
sth r10,PACA_IN_MCE(r13)
mr r10,r1 /* Save r1 */
bne 1f
/* First machine check entry */
ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1: /* Limit nested MCE to level 4 to avoid stack overflow */
bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY machine_check_early
BEGIN_FTR_SECTION
bl enable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_early
std r3,RESULT(r1) /* Save result */
ld r12,_MSR(r1)
#ifdef CONFIG_PPC_P7_NAP
/*
* Check if thread was in power saving mode. We come here when any
* of the following is true:
* a. thread wasn't in power saving mode
* b. thread was in power saving mode with no state loss,
* supervisor state loss or hypervisor state loss.
*
* Go back to nap/sleep/winkle mode again if (b) is true.
*/
BEGIN_FTR_SECTION
rlwinm. r11,r12,47-31,30,31
bne machine_check_idle_common
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* Check if we are coming from guest. If yes, then run the normal
* exception handler which will take the
* machine_check_kvm->kvm_interrupt branch to deliver the MC event
* to guest.
*/
lbz r11,HSTATE_IN_GUEST(r13)
cmpwi r11,0 /* Check if coming from guest */
bne mce_deliver /* continue if we are. */
#endif
/*
* Check if we are coming from userspace. If yes, then run the normal
* exception handler which will deliver the MC event to this kernel.
*/
andi. r11,r12,MSR_PR /* See if coming from user. */
bne mce_deliver /* continue in V mode if we are. */
/*
* At this point we are coming from kernel context.
* Queue up the MCE event and return from the interrupt.
* But before that, check if this is an un-recoverable exception.
* If yes, then stay on emergency stack and panic.
*/
andi. r11,r12,MSR_RI
beq unrecoverable_mce
/*
* Check if we have successfully handled/recovered from error, if not
* then stay on emergency stack and panic.
*/
ld r3,RESULT(r1) /* Load result */
cmpdi r3,0 /* see if we handled MCE successfully */
beq unrecoverable_mce /* if !handled then panic */
/*
* Return from MC interrupt.
* Queue up the MCE event so that we can log it later, while
* returning from kernel or opal call.
*/
bl machine_check_queue_event
MACHINE_CHECK_HANDLER_WINDUP
RFI_TO_KERNEL
mce_deliver:
/*
* This is a host user or guest MCE. Restore all registers, then
* run the "late" handler. For host user, this will run the
* machine_check_exception handler in virtual mode like a normal
* interrupt handler. For guest, this will trigger the KVM test
* and branch to the KVM interrupt similarly to other interrupts.
*/
BEGIN_FTR_SECTION
ld r10,ORIG_GPR3(r1)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
MACHINE_CHECK_HANDLER_WINDUP
GEN_INT_ENTRY machine_check, virt=0
EXC_COMMON_BEGIN(machine_check_common)
/*
* Machine check is different because we use a different
* save area: PACA_EXMC instead of PACA_EXGEN.
*/
GEN_COMMON machine_check
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception_async
b interrupt_return_srr
#ifdef CONFIG_PPC_P7_NAP
/*
* This is an idle wakeup. Low level machine check has already been
* done. Queue the event then call the idle code to do the wake up.
*/
EXC_COMMON_BEGIN(machine_check_idle_common)
bl machine_check_queue_event
/*
* GPR-loss wakeups are relatively straightforward, because the
* idle sleep code has saved all non-volatile registers on its
* own stack, and r1 in PACAR1.
*
* For no-loss wakeups the r1 and lr registers used by the
* early machine check handler have to be restored first. r2 is
* the kernel TOC, so no need to restore it.
*
* Then decrement MCE nesting after finishing with the stack.
*/
ld r3,_MSR(r1)
ld r4,_LINK(r1)
ld r1,GPR1(r1)
lhz r11,PACA_IN_MCE(r13)
subi r11,r11,1
sth r11,PACA_IN_MCE(r13)
mtlr r4
rlwinm r10,r3,47-31,30,31
cmpwi cr1,r10,2
bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
b idle_return_gpr_loss
#endif
EXC_COMMON_BEGIN(unrecoverable_mce)
/*
* We are going down. But there are chances that we might get hit by
* another MCE during panic path and we may run into unstable state
* with no way out. Hence, turn ME bit off while going down, so that
* when another MCE is hit during panic path, system will checkstop
* and hypervisor will get restarted cleanly by SP.
*/
BEGIN_FTR_SECTION
li r10,0 /* clear MSR_RI */
mtmsrd r10,1
bl disable_machine_check
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
ld r10,PACAKMSR(r13)
li r3,MSR_ME
andc r10,r10,r3
mtmsrd r10
lhz r12,PACA_IN_MCE(r13)
subi r12,r12,1
sth r12,PACA_IN_MCE(r13)
/*
* Invoke machine_check_exception to print MCE event and panic.
* This is the NMI version of the handler because we are called from
* the early handler which is a true NMI.
*/
addi r3,r1,STACK_FRAME_OVERHEAD
bl machine_check_exception
/*
* We will not reach here. Even if we did, there is no way out.
* Call unrecoverable_exception and die.
*/
addi r3,r1,STACK_FRAME_OVERHEAD
bl unrecoverable_exception
b .
/**
* Interrupt 0x300 - Data Storage Interrupt (DSI).
* This is a synchronous interrupt generated due to a data access exception,
* e.g., a load orstore which does not have a valid page table entry with
* permissions. DAWR matches also fault here, as do RC updates, and minor misc
* errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
*
* Handling:
* - Hash MMU
* Go to do_hash_fault, which attempts to fill the HPT from an entry in the
* Linux page table. Hash faults can hit in kernel mode in a fairly
* arbitrary state (e.g., interrupts disabled, locks held) when accessing
* "non-bolted" regions, e.g., vmalloc space. However these should always be
* backed by Linux page table entries.
*
* If no entry is found the Linux page fault handler is invoked (by
* do_hash_fault). Linux page faults can happen in kernel mode due to user
* copy operations of course.
*
* KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
* MMU context, which may cause a DSI in the host, which must go to the
* KVM handler. MSR[IR] is not enabled, so the real-mode handler will
* always be used regardless of AIL setting.
*
* - Radix MMU
* The hardware loads from the Linux page table directly, so a fault goes
* immediately to Linux page fault.
*
* Conditions like DAWR match are handled on the way in to Linux page fault.
*/
INT_DEFINE_BEGIN(data_access)
IVEC=0x300
IDAR=1
IDSISR=1
IKVM_REAL=1
INT_DEFINE_END(data_access)
EXC_REAL_BEGIN(data_access, 0x300, 0x80)
GEN_INT_ENTRY data_access, virt=0
EXC_REAL_END(data_access, 0x300, 0x80)
EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
GEN_INT_ENTRY data_access, virt=1
EXC_VIRT_END(data_access, 0x4300, 0x80)
EXC_COMMON_BEGIN(data_access_common)
GEN_COMMON data_access
ld r4,_DSISR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
andis. r0,r4,DSISR_DABRMATCH@h
bne- 1f
#ifdef CONFIG_PPC_64S_HASH_MMU
BEGIN_MMU_FTR_SECTION
bl do_hash_fault
MMU_FTR_SECTION_ELSE
bl do_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
#else
bl do_page_fault
#endif
b interrupt_return_srr
1: bl do_break
/*
* do_break() may have changed the NV GPRS while handling a breakpoint.
* If so, we need to restore them with their updated values.
*/
REST_NVGPRS(r1)
b interrupt_return_srr
/**
* Interrupt 0x380 - Data Segment Interrupt (DSLB).
* This is a synchronous interrupt in response to an MMU fault missing SLB
* entry for HPT, or an address outside RPT translation range.
*
* Handling:
* - HPT:
* This refills the SLB, or reports an access fault similarly to a bad page
* fault. When coming from user-mode, the SLB handler may access any kernel
* data, though it may itself take a DSLB. When coming from kernel mode,
* recursive faults must be avoided so access is restricted to the kernel
* image text/data, kernel stack, and any data allocated below
* ppc64_bolted_size (first segment). The kernel handler must avoid stomping
* on user-handler data structures.
*
* KVM: Same as 0x300, DSLB must test for KVM guest.
*/
INT_DEFINE_BEGIN(data_access_slb)
IVEC=0x380
IDAR=1
IKVM_REAL=1
INT_DEFINE_END(data_access_slb)
EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=0
EXC_REAL_END(data_access_slb, 0x380, 0x80)
EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
GEN_INT_ENTRY data_access_slb, virt=1
EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
EXC_COMMON_BEGIN(data_access_slb_common)
GEN_COMMON data_access_slb
#ifdef CONFIG_PPC_64S_HASH_MMU
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return_srr
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
#else
li r3,-EFAULT
#endif
std r3,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_segment_interrupt
b interrupt_return_srr
/**
* Interrupt 0x400 - Instruction Storage Interrupt (ISI).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSI, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
*/
INT_DEFINE_BEGIN(instruction_access)
IVEC=0x400
IISIDE=1
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access)
EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
GEN_INT_ENTRY instruction_access, virt=0
EXC_REAL_END(instruction_access, 0x400, 0x80)
EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
GEN_INT_ENTRY instruction_access, virt=1
EXC_VIRT_END(instruction_access, 0x4400, 0x80)
EXC_COMMON_BEGIN(instruction_access_common)
GEN_COMMON instruction_access
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_64S_HASH_MMU
BEGIN_MMU_FTR_SECTION
bl do_hash_fault
MMU_FTR_SECTION_ELSE
bl do_page_fault
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
#else
bl do_page_fault
#endif
b interrupt_return_srr
/**
* Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
* This is a synchronous interrupt in response to an MMU fault due to an
* instruction fetch.
*
* Handling:
* Similar to DSLB, though in response to fetch. The faulting address is found
* in SRR0 (rather than DAR).
*/
INT_DEFINE_BEGIN(instruction_access_slb)
IVEC=0x480
IISIDE=1
IDAR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_access_slb)
EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=0
EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
GEN_INT_ENTRY instruction_access_slb, virt=1
EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
EXC_COMMON_BEGIN(instruction_access_slb_common)
GEN_COMMON instruction_access_slb
#ifdef CONFIG_PPC_64S_HASH_MMU
BEGIN_MMU_FTR_SECTION
/* HPT case, do SLB fault */
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_slb_fault
cmpdi r3,0
bne- 1f
b fast_interrupt_return_srr
1: /* Error case */
MMU_FTR_SECTION_ELSE
/* Radix case, access is outside page table range */
li r3,-EFAULT
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
#else
li r3,-EFAULT
#endif
std r3,RESULT(r1)
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_bad_segment_interrupt
b interrupt_return_srr
/**
* Interrupt 0x500 - External Interrupt.
* This is an asynchronous maskable interrupt in response to an "external
* exception" from the interrupt controller or hypervisor (e.g., device
* interrupt). It is maskable in hardware by clearing MSR[EE], and
* soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* When running in HV mode, Linux sets up the LPCR[LPES] bit such that
* interrupts are delivered with HSRR registers, guests use SRRs, which
* reqiures IHSRR_IF_HVMODE.
*
* On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
* external interrupts are delivered as Hypervisor Virtualization Interrupts
* rather than External Interrupts.
*
* Handling:
* This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
* because registers at the time of the interrupt are not so important as it is
* asynchronous.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(hardware_interrupt)
IVEC=0x500
IHSRR_IF_HVMODE=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hardware_interrupt)
EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=0
EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
GEN_INT_ENTRY hardware_interrupt, virt=1
EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
EXC_COMMON_BEGIN(hardware_interrupt_common)
GEN_COMMON hardware_interrupt
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
BEGIN_FTR_SECTION
b interrupt_return_hsrr
FTR_SECTION_ELSE
b interrupt_return_srr
ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
/**
* Interrupt 0x600 - Alignment Interrupt
* This is a synchronous interrupt in response to data alignment fault.
*/
INT_DEFINE_BEGIN(alignment)
IVEC=0x600
IDAR=1
IDSISR=1
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(alignment)
EXC_REAL_BEGIN(alignment, 0x600, 0x100)
GEN_INT_ENTRY alignment, virt=0
EXC_REAL_END(alignment, 0x600, 0x100)
EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
GEN_INT_ENTRY alignment, virt=1
EXC_VIRT_END(alignment, 0x4600, 0x100)
EXC_COMMON_BEGIN(alignment_common)
GEN_COMMON alignment
addi r3,r1,STACK_FRAME_OVERHEAD
bl alignment_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return_srr
/**
* Interrupt 0x700 - Program Interrupt (program check).
* This is a synchronous interrupt in response to various instruction faults:
* traps, privilege errors, TM errors, floating point exceptions.
*
* Handling:
* This interrupt may use the "emergency stack" in some cases when being taken
* from kernel context, which complicates handling.
*/
INT_DEFINE_BEGIN(program_check)
IVEC=0x700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(program_check)
EXC_REAL_BEGIN(program_check, 0x700, 0x100)
#ifdef CONFIG_CPU_LITTLE_ENDIAN
/*
* There's a short window during boot where although the kernel is
* running little endian, any exceptions will cause the CPU to switch
* back to big endian. For example a WARN() boils down to a trap
* instruction, which will cause a program check, and we end up here but
* with the CPU in big endian mode. The first instruction of the program
* check handler (in GEN_INT_ENTRY below) is an mtsprg, which when
* executed in the wrong endian is an lhzu with a ~3GB displacement from
* r3. The content of r3 is random, so that is a load from some random
* location, and depending on the system can easily lead to a checkstop,
* or an infinitely recursive page fault.
*
* So to handle that case we have a trampoline here that can detect we
* are in the wrong endian and flip us back to the correct endian. We
* can't flip MSR[LE] using mtmsr, so we have to use rfid. That requires
* backing up SRR0/1 as well as a GPR. To do that we use SPRG0/2/3, as
* SPRG1 is already used for the paca. SPRG3 is user readable, but this
* trampoline is only active very early in boot, and SPRG3 will be
* reinitialised in vdso_getcpu_init() before userspace starts.
*/
BEGIN_FTR_SECTION
tdi 0,0,0x48 // Trap never, or in reverse endian: b . + 8
b 1f // Skip trampoline if endian is correct
.long 0xa643707d // mtsprg 0, r11 Backup r11
.long 0xa6027a7d // mfsrr0 r11
.long 0xa643727d // mtsprg 2, r11 Backup SRR0 in SPRG2
.long 0xa6027b7d // mfsrr1 r11
.long 0xa643737d // mtsprg 3, r11 Backup SRR1 in SPRG3
.long 0xa600607d // mfmsr r11
.long 0x01006b69 // xori r11, r11, 1 Invert MSR[LE]
.long 0xa6037b7d // mtsrr1 r11
.long 0x34076039 // li r11, 0x734
.long 0xa6037a7d // mtsrr0 r11
.long 0x2400004c // rfid
mfsprg r11, 3
mtsrr1 r11 // Restore SRR1
mfsprg r11, 2
mtsrr0 r11 // Restore SRR0
mfsprg r11, 0 // Restore r11
1:
END_FTR_SECTION(0, 1) // nop out after boot
#endif /* CONFIG_CPU_LITTLE_ENDIAN */
GEN_INT_ENTRY program_check, virt=0
EXC_REAL_END(program_check, 0x700, 0x100)
EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
GEN_INT_ENTRY program_check, virt=1
EXC_VIRT_END(program_check, 0x4700, 0x100)
EXC_COMMON_BEGIN(program_check_common)
__GEN_COMMON_ENTRY program_check
/*
* It's possible to receive a TM Bad Thing type program check with
* userspace register values (in particular r1), but with SRR1 reporting
* that we came from the kernel. Normally that would confuse the bad
* stack logic, and we would report a bad kernel stack pointer. Instead
* we switch to the emergency stack if we're taking a TM Bad Thing from
* the kernel.
*/
andi. r10,r12,MSR_PR
bne .Lnormal_stack /* If userspace, go normal path */
andis. r10,r12,(SRR1_PROGTM)@h
bne .Lemergency_stack /* If TM, emergency */
cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
blt .Lnormal_stack /* normal path if not */
/* Use the emergency stack */
.Lemergency_stack:
andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
/* 3 in EXCEPTION_PROLOG_COMMON */
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__ISTACK(program_check)=0
__GEN_COMMON_BODY program_check
b .Ldo_program_check
.Lnormal_stack:
__ISTACK(program_check)=1
__GEN_COMMON_BODY program_check
.Ldo_program_check:
addi r3,r1,STACK_FRAME_OVERHEAD
bl program_check_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return_srr
/*
* Interrupt 0x800 - Floating-Point Unavailable Interrupt.
* This is a synchronous interrupt in response to executing an fp instruction
* with MSR[FP]=0.
*
* Handling:
* This will load FP registers and enable the FP bit if coming from userspace,
* otherwise report a bad kernel use of FP.
*/
INT_DEFINE_BEGIN(fp_unavailable)
IVEC=0x800
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(fp_unavailable)
EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=0
EXC_REAL_END(fp_unavailable, 0x800, 0x100)
EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
GEN_INT_ENTRY fp_unavailable, virt=1
EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
EXC_COMMON_BEGIN(fp_unavailable_common)
GEN_COMMON fp_unavailable
bne 1f /* if from user, just load it up */
addi r3,r1,STACK_FRAME_OVERHEAD
bl kernel_fp_unavailable_exception
0: trap
EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1:
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_IFSET(CPU_FTR_TM)
#endif
bl load_up_fpu
b fast_interrupt_return_srr
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
addi r3,r1,STACK_FRAME_OVERHEAD
bl fp_unavailable_tm
b interrupt_return_srr
#endif
/**
* Interrupt 0x900 - Decrementer Interrupt.
* This is an asynchronous interrupt in response to a decrementer exception
* (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
* MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
* local_irq_disable()).
*
* Handling:
* This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
* in the interrupted context.
* If PPC_WATCHDOG is configured, the soft masked handler will actually set
* things back up to run soft_nmi_interrupt as a regular interrupt handler
* on the emergency stack.
*/
INT_DEFINE_BEGIN(decrementer)
IVEC=0x900
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(decrementer)
EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
GEN_INT_ENTRY decrementer, virt=0
EXC_REAL_END(decrementer, 0x900, 0x80)
EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
GEN_INT_ENTRY decrementer, virt=1
EXC_VIRT_END(decrementer, 0x4900, 0x80)
EXC_COMMON_BEGIN(decrementer_common)
GEN_COMMON decrementer
addi r3,r1,STACK_FRAME_OVERHEAD
bl timer_interrupt
b interrupt_return_srr
/**
* Interrupt 0x980 - Hypervisor Decrementer Interrupt.
* This is an asynchronous interrupt, similar to 0x900 but for the HDEC
* register.
*
* Handling:
* Linux does not use this outside KVM where it's used to keep a host timer
* while the guest is given control of DEC. It should normally be caught by
* the KVM test and routed there.
*/
INT_DEFINE_BEGIN(hdecrementer)
IVEC=0x980
IHSRR=1
ISTACK=0
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(hdecrementer)
EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=0
EXC_REAL_END(hdecrementer, 0x980, 0x80)
EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
GEN_INT_ENTRY hdecrementer, virt=1
EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
EXC_COMMON_BEGIN(hdecrementer_common)
__GEN_COMMON_ENTRY hdecrementer
/*
* Hypervisor decrementer interrupts not caught by the KVM test
* shouldn't occur but are sometimes left pending on exit from a KVM
* guest. We don't need to do anything to clear them, as they are
* edge-triggered.
*
* Be careful to avoid touching the kernel stack.
*/
li r10,0
stb r10,PACAHSRR_VALID(r13)
ld r10,PACA_EXGEN+EX_CTR(r13)
mtctr r10
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_KERNEL
/**
* Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsndp doorbell.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* Guests may use this for IPIs between threads in a core if the
* hypervisor supports it. NVGPRS are not saved (see 0x500).
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, leaving MSR[EE] enabled in the interrupted context because the
* doorbells are edge triggered.
*/
INT_DEFINE_BEGIN(doorbell_super)
IVEC=0xa00
IMASK=IRQS_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(doorbell_super)
EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=0
EXC_REAL_END(doorbell_super, 0xa00, 0x100)
EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
GEN_INT_ENTRY doorbell_super, virt=1
EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
EXC_COMMON_BEGIN(doorbell_super_common)
GEN_COMMON doorbell_super
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_async_exception
#endif
b interrupt_return_srr
EXC_REAL_NONE(0xb00, 0x100)
EXC_VIRT_NONE(0x4b00, 0x100)
/**
* Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
* This is a synchronous interrupt invoked with the "sc" instruction. The
* system call is invoked with "sc 0" and does not alter the HV bit, so it
* is directed to the currently running OS. The hypercall is invoked with
* "sc 1" and it sets HV=1, so it elevates to hypervisor.
*
* In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
* 0x4c00 virtual mode.
*
* Handling:
* If the KVM test fires then it was due to a hypercall and is accordingly
* routed to KVM. Otherwise this executes a normal Linux system call.
*
* Call convention:
*
* syscall and hypercalls register conventions are documented in
* Documentation/powerpc/syscall64-abi.rst and
* Documentation/powerpc/papr_hcalls.rst respectively.
*
* The intersection of volatile registers that don't contain possible
* inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
* without saving, though xer is not a good idea to use, as hardware may
* interpret some bits so it may be costly to change them.
*/
INT_DEFINE_BEGIN(system_call)
IVEC=0xc00
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(system_call)
.macro SYSTEM_CALL virt
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
/*
* There is a little bit of juggling to get syscall and hcall
* working well. Save r13 in ctr to avoid using SPRG scratch
* register.
*
* Userspace syscalls have already saved the PPR, hcalls must save
* it before setting HMT_MEDIUM.
*/
mtctr r13
GET_PACA(r13)
std r10,PACA_EXGEN+EX_R10(r13)
INTERRUPT_TO_KERNEL
KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */
mfctr r9
#else
mr r9,r13
GET_PACA(r13)
INTERRUPT_TO_KERNEL
#endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
BEGIN_FTR_SECTION
cmpdi r0,0x1ebe
beq- 1f
END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
#endif
/* We reach here with PACA in r13, r13 in r9. */
mfspr r11,SPRN_SRR0
mfspr r12,SPRN_SRR1
HMT_MEDIUM
.if ! \virt
__LOAD_HANDLER(r10, system_call_common_real)
mtctr r10
bctr
.else
#ifdef CONFIG_RELOCATABLE
__LOAD_HANDLER(r10, system_call_common)
mtctr r10
bctr
#else
b system_call_common
#endif
.endif
#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
/* Fast LE/BE switch system call */
1: mfspr r12,SPRN_SRR1
xori r12,r12,MSR_LE
mtspr SPRN_SRR1,r12
mr r13,r9
RFI_TO_USER /* return to userspace */
b . /* prevent speculative execution */
#endif
.endm
EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
SYSTEM_CALL 0
EXC_REAL_END(system_call, 0xc00, 0x100)
EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
SYSTEM_CALL 1
EXC_VIRT_END(system_call, 0x4c00, 0x100)
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
TRAMP_REAL_BEGIN(kvm_hcall)
std r9,PACA_EXGEN+EX_R9(r13)
std r11,PACA_EXGEN+EX_R11(r13)
std r12,PACA_EXGEN+EX_R12(r13)
mfcr r9
mfctr r10
std r10,PACA_EXGEN+EX_R13(r13)
li r10,0
std r10,PACA_EXGEN+EX_CFAR(r13)
std r10,PACA_EXGEN+EX_CTR(r13)
/*
* Save the PPR (on systems that support it) before changing to
* HMT_MEDIUM. That allows the KVM code to save that value into the
* guest state (it is the guest's PPR value).
*/
BEGIN_FTR_SECTION
mfspr r10,SPRN_PPR
std r10,PACA_EXGEN+EX_PPR(r13)
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
HMT_MEDIUM
#ifdef CONFIG_RELOCATABLE
/*
* Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives
* outside the head section.
*/
__LOAD_FAR_HANDLER(r10, kvmppc_hcall)
mtctr r10
bctr
#else
b kvmppc_hcall
#endif
#endif
/**
* Interrupt 0xd00 - Trace Interrupt.
* This is a synchronous interrupt in response to instruction step or
* breakpoint faults.
*/
INT_DEFINE_BEGIN(single_step)
IVEC=0xd00
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(single_step)
EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
GEN_INT_ENTRY single_step, virt=0
EXC_REAL_END(single_step, 0xd00, 0x100)
EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
GEN_INT_ENTRY single_step, virt=1
EXC_VIRT_END(single_step, 0x4d00, 0x100)
EXC_COMMON_BEGIN(single_step_common)
GEN_COMMON single_step
addi r3,r1,STACK_FRAME_OVERHEAD
bl single_step_exception
b interrupt_return_srr
/**
* Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest data access.
*
* Handling:
* This should always get routed to KVM. In radix MMU mode, this is caused
* by a guest nested radix access that can't be performed due to the
* partition scope page table. In hash mode, this can be caused by guests
* running with translation disabled (virtual real mode) or with VPM enabled.
* KVM will update the page table structures or disallow the access.
*/
INT_DEFINE_BEGIN(h_data_storage)
IVEC=0xe00
IHSRR=1
IDAR=1
IDSISR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_data_storage)
EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=0, ool=1
EXC_REAL_END(h_data_storage, 0xe00, 0x20)
EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
GEN_INT_ENTRY h_data_storage, virt=1, ool=1
EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
EXC_COMMON_BEGIN(h_data_storage_common)
GEN_COMMON h_data_storage
addi r3,r1,STACK_FRAME_OVERHEAD
BEGIN_MMU_FTR_SECTION
bl do_bad_page_fault_segv
MMU_FTR_SECTION_ELSE
bl unknown_exception
ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
b interrupt_return_hsrr
/**
* Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
* This is a synchronous interrupt in response to an MMU fault caused by a
* guest instruction fetch, similar to HDSI.
*/
INT_DEFINE_BEGIN(h_instr_storage)
IVEC=0xe20
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_instr_storage)
EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
EXC_COMMON_BEGIN(h_instr_storage_common)
GEN_COMMON h_instr_storage
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return_hsrr
/**
* Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
*/
INT_DEFINE_BEGIN(emulation_assist)
IVEC=0xe40
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(emulation_assist)
EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=0, ool=1
EXC_REAL_END(emulation_assist, 0xe40, 0x20)
EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
GEN_INT_ENTRY emulation_assist, virt=1, ool=1
EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
EXC_COMMON_BEGIN(emulation_assist_common)
GEN_COMMON emulation_assist
addi r3,r1,STACK_FRAME_OVERHEAD
bl emulation_assist_interrupt
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return_hsrr
/**
* Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
* This is an asynchronous interrupt caused by a Hypervisor Maintenance
* Exception. It is always taken in real mode but uses HSRR registers
* unlike SRESET and MCE.
*
* It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
* with IRQS_DISABLED mask (i.e., local_irq_disable()).
*
* Handling:
* This is a special case, this is handled similarly to machine checks, with an
* initial real mode handler that is not soft-masked, which attempts to fix the
* problem. Then a regular handler which is soft-maskable and reports the
* problem.
*
* The emergency stack is used for the early real mode handler.
*
* XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
* either use soft-masking for the MCE, or use irq_work for the HMI.
*
* KVM:
* Unlike MCE, this calls into KVM without calling the real mode handler
* first.
*/
INT_DEFINE_BEGIN(hmi_exception_early)
IVEC=0xe60
IHSRR=1
IREALMODE_COMMON=1
ISTACK=0
IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
IKVM_REAL=1
INT_DEFINE_END(hmi_exception_early)
INT_DEFINE_BEGIN(hmi_exception)
IVEC=0xe60
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
INT_DEFINE_END(hmi_exception)
EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
EXC_REAL_END(hmi_exception, 0xe60, 0x20)
EXC_VIRT_NONE(0x4e60, 0x20)
EXC_COMMON_BEGIN(hmi_exception_early_common)
__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
mr r10,r1 /* Save r1 */
ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
__GEN_COMMON_BODY hmi_exception_early
addi r3,r1,STACK_FRAME_OVERHEAD
bl hmi_exception_realmode
cmpdi cr0,r3,0
bne 1f
EXCEPTION_RESTORE_REGS hsrr=1
HRFI_TO_USER_OR_KERNEL
1:
/*
* Go to virtual mode and pull the HMI event information from
* firmware.
*/
EXCEPTION_RESTORE_REGS hsrr=1
GEN_INT_ENTRY hmi_exception, virt=0
EXC_COMMON_BEGIN(hmi_exception_common)
GEN_COMMON hmi_exception
addi r3,r1,STACK_FRAME_OVERHEAD
bl handle_hmi_exception
b interrupt_return_hsrr
/**
* Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
* This is an asynchronous interrupt in response to a msgsnd doorbell.
* Similar to the 0xa00 doorbell but for host rather than guest.
*/
INT_DEFINE_BEGIN(h_doorbell)
IVEC=0xe80
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_doorbell)
EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=0, ool=1
EXC_REAL_END(h_doorbell, 0xe80, 0x20)
EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
GEN_INT_ENTRY h_doorbell, virt=1, ool=1
EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
EXC_COMMON_BEGIN(h_doorbell_common)
GEN_COMMON h_doorbell
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_PPC_DOORBELL
bl doorbell_exception
#else
bl unknown_async_exception
#endif
b interrupt_return_hsrr
/**
* Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
* This is an asynchronous interrupt in response to an "external exception".
* Similar to 0x500 but for host only.
*/
INT_DEFINE_BEGIN(h_virt_irq)
IVEC=0xea0
IHSRR=1
IMASK=IRQS_DISABLED
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_virt_irq)
EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
EXC_COMMON_BEGIN(h_virt_irq_common)
GEN_COMMON h_virt_irq
addi r3,r1,STACK_FRAME_OVERHEAD
bl do_IRQ
b interrupt_return_hsrr
EXC_REAL_NONE(0xec0, 0x20)
EXC_VIRT_NONE(0x4ec0, 0x20)
EXC_REAL_NONE(0xee0, 0x20)
EXC_VIRT_NONE(0x4ee0, 0x20)
/*
* Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
* This is an asynchronous interrupt in response to a PMU exception.
* It is maskable in hardware by clearing MSR[EE], and soft-maskable with
* IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
*
* Handling:
* This calls into the perf subsystem.
*
* Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
* runs under local_irq_disable. However it may be soft-masked in
* powerpc-specific code.
*
* If soft masked, the masked handler will note the pending interrupt for
* replay, and clear MSR[EE] in the interrupted context.
*/
INT_DEFINE_BEGIN(performance_monitor)
IVEC=0xf00
IMASK=IRQS_PMI_DISABLED
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(performance_monitor)
EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=0, ool=1
EXC_REAL_END(performance_monitor, 0xf00, 0x20)
EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
GEN_INT_ENTRY performance_monitor, virt=1, ool=1
EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
EXC_COMMON_BEGIN(performance_monitor_common)
GEN_COMMON performance_monitor
addi r3,r1,STACK_FRAME_OVERHEAD
bl performance_monitor_exception
b interrupt_return_srr
/**
* Interrupt 0xf20 - Vector Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a vector (or altivec) instruction with MSR[VEC]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(altivec_unavailable)
IVEC=0xf20
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_unavailable)
EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
EXC_COMMON_BEGIN(altivec_unavailable_common)
GEN_COMMON altivec_unavailable
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
bl load_up_altivec
b fast_interrupt_return_srr
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_tm
b interrupt_return_srr
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
#endif
addi r3,r1,STACK_FRAME_OVERHEAD
bl altivec_unavailable_exception
b interrupt_return_srr
/**
* Interrupt 0xf40 - VSX Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing a VSX instruction with MSR[VSX]=0.
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(vsx_unavailable)
IVEC=0xf40
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(vsx_unavailable)
EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
EXC_COMMON_BEGIN(vsx_unavailable_common)
GEN_COMMON vsx_unavailable
#ifdef CONFIG_VSX
BEGIN_FTR_SECTION
beq 1f
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
BEGIN_FTR_SECTION_NESTED(69)
/* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
* transaction), go do TM stuff
*/
rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
bne- 2f
END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
#endif
b load_up_vsx
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2: /* User process was in a transaction */
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_tm
b interrupt_return_srr
#endif
1:
END_FTR_SECTION_IFSET(CPU_FTR_VSX)
#endif
addi r3,r1,STACK_FRAME_OVERHEAD
bl vsx_unavailable_exception
b interrupt_return_srr
/**
* Interrupt 0xf60 - Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can be
* resolved by the OS (e.g., FSCR, MSR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(facility_unavailable)
IVEC=0xf60
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(facility_unavailable)
EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
EXC_COMMON_BEGIN(facility_unavailable_common)
GEN_COMMON facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
b interrupt_return_srr
/**
* Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
* This is a synchronous interrupt in response to
* executing an instruction without access to the facility that can only
* be resolved in HV mode (e.g., HFSCR).
* Similar to FP unavailable.
*/
INT_DEFINE_BEGIN(h_facility_unavailable)
IVEC=0xf80
IHSRR=1
IKVM_REAL=1
IKVM_VIRT=1
INT_DEFINE_END(h_facility_unavailable)
EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
EXC_COMMON_BEGIN(h_facility_unavailable_common)
GEN_COMMON h_facility_unavailable
addi r3,r1,STACK_FRAME_OVERHEAD
bl facility_unavailable_exception
REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
b interrupt_return_hsrr
EXC_REAL_NONE(0xfa0, 0x20)
EXC_VIRT_NONE(0x4fa0, 0x20)
EXC_REAL_NONE(0xfc0, 0x20)
EXC_VIRT_NONE(0x4fc0, 0x20)
EXC_REAL_NONE(0xfe0, 0x20)
EXC_VIRT_NONE(0x4fe0, 0x20)
EXC_REAL_NONE(0x1000, 0x100)
EXC_VIRT_NONE(0x5000, 0x100)
EXC_REAL_NONE(0x1100, 0x100)
EXC_VIRT_NONE(0x5100, 0x100)
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_system_error)
IVEC=0x1200
IHSRR=1
INT_DEFINE_END(cbe_system_error)
EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
GEN_INT_ENTRY cbe_system_error, virt=0
EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
EXC_COMMON_BEGIN(cbe_system_error_common)
GEN_COMMON cbe_system_error
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_system_error_exception
b interrupt_return_hsrr
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1200, 0x100)
EXC_VIRT_NONE(0x5200, 0x100)
#endif
/**
* Interrupt 0x1300 - Instruction Address Breakpoint Interrupt.
* This has been removed from the ISA before 2.01, which is the earliest
* 64-bit BookS ISA supported, however the G5 / 970 implements this
* interrupt with a non-architected feature available through the support
* processor interface.
*/
INT_DEFINE_BEGIN(instruction_breakpoint)
IVEC=0x1300
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(instruction_breakpoint)
EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=0
EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
GEN_INT_ENTRY instruction_breakpoint, virt=1
EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
EXC_COMMON_BEGIN(instruction_breakpoint_common)
GEN_COMMON instruction_breakpoint
addi r3,r1,STACK_FRAME_OVERHEAD
bl instruction_breakpoint_exception
b interrupt_return_srr
EXC_REAL_NONE(0x1400, 0x100)
EXC_VIRT_NONE(0x5400, 0x100)
/**
* Interrupt 0x1500 - Soft Patch Interrupt
*
* Handling:
* This is an implementation specific interrupt which can be used for a
* range of exceptions.
*
* This interrupt handler is unique in that it runs the denormal assist
* code even for guests (and even in guest context) without going to KVM,
* for speed. POWER9 does not raise denorm exceptions, so this special case
* could be phased out in future to reduce special cases.
*/
INT_DEFINE_BEGIN(denorm_exception)
IVEC=0x1500
IHSRR=1
IBRANCH_TO_COMMON=0
IKVM_REAL=1
INT_DEFINE_END(denorm_exception)
EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=0
#ifdef CONFIG_PPC_DENORMALISATION
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
#endif
GEN_BRANCH_TO_COMMON denorm_exception, virt=0
EXC_REAL_END(denorm_exception, 0x1500, 0x100)
#ifdef CONFIG_PPC_DENORMALISATION
EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
GEN_INT_ENTRY denorm_exception, virt=1
andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
bne+ denorm_assist
GEN_BRANCH_TO_COMMON denorm_exception, virt=1
EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
#else
EXC_VIRT_NONE(0x5500, 0x100)
#endif
#ifdef CONFIG_PPC_DENORMALISATION
TRAMP_REAL_BEGIN(denorm_assist)
BEGIN_FTR_SECTION
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER6 do that here for all FP regs.
*/
mfmsr r10
ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
xori r10,r10,(MSR_FE0|MSR_FE1)
mtmsrd r10
sync
.Lreg=0
.rept 32
fmr .Lreg,.Lreg
.Lreg=.Lreg+1
.endr
FTR_SECTION_ELSE
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER7 do that here for the first 32 VSX registers only.
*/
mfmsr r10
oris r10,r10,MSR_VSX@h
mtmsrd r10
sync
.Lreg=0
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
BEGIN_FTR_SECTION
b denorm_done
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
/*
* To denormalise we need to move a copy of the register to itself.
* For POWER8 we need to do that for all 64 VSX registers
*/
.Lreg=32
.rept 32
XVCPSGNDP(.Lreg,.Lreg,.Lreg)
.Lreg=.Lreg+1
.endr
denorm_done:
mfspr r11,SPRN_HSRR0
subi r11,r11,4
mtspr SPRN_HSRR0,r11
mtcrf 0x80,r9
ld r9,PACA_EXGEN+EX_R9(r13)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_PPR(r13)
mtspr SPRN_PPR,r10
END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
BEGIN_FTR_SECTION
ld r10,PACA_EXGEN+EX_CFAR(r13)
mtspr SPRN_CFAR,r10
END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
li r10,0
stb r10,PACAHSRR_VALID(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
HRFI_TO_UNKNOWN
b .
#endif
EXC_COMMON_BEGIN(denorm_exception_common)
GEN_COMMON denorm_exception
addi r3,r1,STACK_FRAME_OVERHEAD
bl unknown_exception
b interrupt_return_hsrr
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_maintenance)
IVEC=0x1600
IHSRR=1
INT_DEFINE_END(cbe_maintenance)
EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
GEN_INT_ENTRY cbe_maintenance, virt=0
EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
EXC_COMMON_BEGIN(cbe_maintenance_common)
GEN_COMMON cbe_maintenance
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_maintenance_exception
b interrupt_return_hsrr
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1600, 0x100)
EXC_VIRT_NONE(0x5600, 0x100)
#endif
INT_DEFINE_BEGIN(altivec_assist)
IVEC=0x1700
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
IKVM_REAL=1
#endif
INT_DEFINE_END(altivec_assist)
EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=0
EXC_REAL_END(altivec_assist, 0x1700, 0x100)
EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
GEN_INT_ENTRY altivec_assist, virt=1
EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
EXC_COMMON_BEGIN(altivec_assist_common)
GEN_COMMON altivec_assist
addi r3,r1,STACK_FRAME_OVERHEAD
#ifdef CONFIG_ALTIVEC
bl altivec_assist_exception
REST_NVGPRS(r1) /* instruction emulation may change GPRs */
#else
bl unknown_exception
#endif
b interrupt_return_srr
#ifdef CONFIG_CBE_RAS
INT_DEFINE_BEGIN(cbe_thermal)
IVEC=0x1800
IHSRR=1
INT_DEFINE_END(cbe_thermal)
EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
GEN_INT_ENTRY cbe_thermal, virt=0
EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
EXC_COMMON_BEGIN(cbe_thermal_common)
GEN_COMMON cbe_thermal
addi r3,r1,STACK_FRAME_OVERHEAD
bl cbe_thermal_exception
b interrupt_return_hsrr
#else /* CONFIG_CBE_RAS */
EXC_REAL_NONE(0x1800, 0x100)
EXC_VIRT_NONE(0x5800, 0x100)
#endif
#ifdef CONFIG_PPC_WATCHDOG
INT_DEFINE_BEGIN(soft_nmi)
IVEC=0x900
ISTACK=0
INT_DEFINE_END(soft_nmi)
/*
* Branch to soft_nmi_interrupt using the emergency stack. The emergency
* stack is one that is usable by maskable interrupts so long as MSR_EE
* remains off. It is used for recovery when something has corrupted the
* normal kernel stack, for example. The "soft NMI" must not use the process
* stack because we want irq disabled sections to avoid touching the stack
* at all (other than PMU interrupts), so use the emergency stack for this,
* and run it entirely with interrupts hard disabled.
*/
EXC_COMMON_BEGIN(soft_nmi_common)
mr r10,r1
ld r1,PACAEMERGSP(r13)
subi r1,r1,INT_FRAME_SIZE
__GEN_COMMON_BODY soft_nmi
addi r3,r1,STACK_FRAME_OVERHEAD
bl soft_nmi_interrupt
/* Clear MSR_RI before setting SRR0 and SRR1. */
li r9,0
mtmsrd r9,1
kuap_kernel_restore r9, r10
EXCEPTION_RESTORE_REGS hsrr=0
RFI_TO_KERNEL
#endif /* CONFIG_PPC_WATCHDOG */
/*
* An interrupt came in while soft-disabled. We set paca->irq_happened, then:
* - If it was a decrementer interrupt, we bump the dec to max and and return.
* - If it was a doorbell we return immediately since doorbells are edge
* triggered and won't automatically refire.
* - If it was a HMI we return immediately since we handled it in realmode
* and it won't refire.
* - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
* This is called with r10 containing the value to OR to the paca field.
*/
.macro MASKED_INTERRUPT hsrr=0
.if \hsrr
masked_Hinterrupt:
.else
masked_interrupt:
.endif
stw r9,PACA_EXGEN+EX_CCR(r13)
lbz r9,PACAIRQHAPPENED(r13)
or r9,r9,r10
stb r9,PACAIRQHAPPENED(r13)
.if ! \hsrr
cmpwi r10,PACA_IRQ_DEC
bne 1f
LOAD_REG_IMMEDIATE(r9, 0x7fffffff)
mtspr SPRN_DEC,r9
#ifdef CONFIG_PPC_WATCHDOG
lwz r9,PACA_EXGEN+EX_CCR(r13)
b soft_nmi_common
#else
b 2f
#endif
.endif
1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
beq 2f
xori r12,r12,MSR_EE /* clear MSR_EE */
.if \hsrr
mtspr SPRN_HSRR1,r12
.else
mtspr SPRN_SRR1,r12
.endif
ori r9,r9,PACA_IRQ_HARD_DIS
stb r9,PACAIRQHAPPENED(r13)
2: /* done */
li r9,0
.if \hsrr
stb r9,PACAHSRR_VALID(r13)
.else
stb r9,PACASRR_VALID(r13)
.endif
SEARCH_RESTART_TABLE
cmpdi r12,0
beq 3f
.if \hsrr
mtspr SPRN_HSRR0,r12
.else
mtspr SPRN_SRR0,r12
.endif
3:
ld r9,PACA_EXGEN+EX_CTR(r13)
mtctr r9
lwz r9,PACA_EXGEN+EX_CCR(r13)
mtcrf 0x80,r9
std r1,PACAR1(r13)
ld r9,PACA_EXGEN+EX_R9(r13)
ld r10,PACA_EXGEN+EX_R10(r13)
ld r11,PACA_EXGEN+EX_R11(r13)
ld r12,PACA_EXGEN+EX_R12(r13)
ld r13,PACA_EXGEN+EX_R13(r13)
/* May return to masked low address where r13 is not set up */
.if \hsrr
HRFI_TO_KERNEL
.else
RFI_TO_KERNEL
.endif
b .
.endm
TRAMP_REAL_BEGIN(stf_barrier_fallback)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
sync
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ori 31,31,0
.rept 14
b 1f
1:
.endr
blr
/* Clobbers r10, r11, ctr */
.macro L1D_DISPLACEMENT_FLUSH
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load addresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
.endm
TRAMP_REAL_BEGIN(entry_flush_fallback)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
blr
/*
* The SCV entry flush happens with interrupts enabled, so it must disable
* to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10
* (containing LR) does not need to be preserved here because scv entry
* puts 0 in the pt_regs, CTR can be clobbered for the same reason.
*/
TRAMP_REAL_BEGIN(scv_entry_flush_fallback)
li r10,0
mtmsrd r10,1
lbz r10,PACAIRQHAPPENED(r13)
ori r10,r10,PACA_IRQ_HARD_DIS
stb r10,PACAIRQHAPPENED(r13)
std r11,PACA_EXRFI+EX_R11(r13)
L1D_DISPLACEMENT_FLUSH
ld r11,PACA_EXRFI+EX_R11(r13)
li r10,MSR_RI
mtmsrd r10,1
blr
TRAMP_REAL_BEGIN(rfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
rfid
TRAMP_REAL_BEGIN(hrfi_flush_fallback)
SET_SCRATCH0(r13);
GET_PACA(r13);
std r1,PACA_EXRFI+EX_R12(r13)
ld r1,PACAKSAVE(r13)
std r9,PACA_EXRFI+EX_R9(r13)
std r10,PACA_EXRFI+EX_R10(r13)
std r11,PACA_EXRFI+EX_R11(r13)
mfctr r9
L1D_DISPLACEMENT_FLUSH
mtctr r9
ld r9,PACA_EXRFI+EX_R9(r13)
ld r10,PACA_EXRFI+EX_R10(r13)
ld r11,PACA_EXRFI+EX_R11(r13)
ld r1,PACA_EXRFI+EX_R12(r13)
GET_SCRATCH0(r13);
hrfid
TRAMP_REAL_BEGIN(rfscv_flush_fallback)
/* system call volatile */
mr r7,r13
GET_PACA(r13);
mr r8,r1
ld r1,PACAKSAVE(r13)
mfctr r9
ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
ld r11,PACA_L1D_FLUSH_SIZE(r13)
srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
mtctr r11
DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
/* order ld/st prior to dcbt stop all streams with flushing */
sync
/*
* The load adresses are at staggered offsets within cachelines,
* which suits some pipelines better (on others it should not
* hurt).
*/
1:
ld r11,(0x80 + 8)*0(r10)
ld r11,(0x80 + 8)*1(r10)
ld r11,(0x80 + 8)*2(r10)
ld r11,(0x80 + 8)*3(r10)
ld r11,(0x80 + 8)*4(r10)
ld r11,(0x80 + 8)*5(r10)
ld r11,(0x80 + 8)*6(r10)
ld r11,(0x80 + 8)*7(r10)
addi r10,r10,0x80*8
bdnz 1b
mtctr r9
li r9,0
li r10,0
li r11,0
mr r1,r8
mr r13,r7
RFSCV
USE_TEXT_SECTION()
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
kvm_interrupt:
/*
* The conditional branch in KVMTEST can't reach all the way,
* make a stub.
*/
b kvmppc_interrupt
#endif
_GLOBAL(do_uaccess_flush)
UACCESS_FLUSH_FIXUP_SECTION
nop
nop
nop
blr
L1D_DISPLACEMENT_FLUSH
blr
_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
EXPORT_SYMBOL(do_uaccess_flush)
MASKED_INTERRUPT
MASKED_INTERRUPT hsrr=1
/*
* Relocation-on interrupts: A subset of the interrupts can be delivered
* with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
* it. Addresses are the same as the original interrupt addresses, but
* offset by 0xc000000000004000.
* It's impossible to receive interrupts below 0x300 via this mechanism.
* KVM: None of these traps are from the guest ; anything that escalated
* to HV=1 from HV=0 is delivered via real mode handlers.
*/
/*
* This uses the standard macro, since the original 0x300 vector
* only has extra guff for STAB-based processors -- which never
* come here.
*/
USE_FIXED_SECTION(virt_trampolines)
/*
* All code below __end_soft_masked is treated as soft-masked. If
* any code runs here with MSR[EE]=1, it must then cope with pending
* soft interrupt being raised (i.e., by ensuring it is replayed).
*
* The __end_interrupts marker must be past the out-of-line (OOL)
* handlers, so that they are copied to real address 0x100 when running
* a relocatable kernel. This ensures they can be reached from the short
* trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
* directly, without using LOAD_HANDLER().
*/
.align 7
.globl __end_interrupts
__end_interrupts:
DEFINE_FIXED_SYMBOL(__end_interrupts)
CLOSE_FIXED_SECTION(real_vectors);
CLOSE_FIXED_SECTION(real_trampolines);
CLOSE_FIXED_SECTION(virt_vectors);
CLOSE_FIXED_SECTION(virt_trampolines);
USE_TEXT_SECTION()
/* MSR[RI] should be clear because this uses SRR[01] */
enable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
ori r3,r3,MSR_ME
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
/* MSR[RI] should be clear because this uses SRR[01] */
disable_machine_check:
mflr r0
bcl 20,31,$+4
0: mflr r3
addi r3,r3,(1f - 0b)
mtspr SPRN_SRR0,r3
mfmsr r3
li r4,MSR_ME
andc r3,r3,r4
mtspr SPRN_SRR1,r3
RFI_TO_KERNEL
1: mtlr r0
blr
|