1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/*
* arch/m68k/bvme6000/config.c
*
* Copyright (C) 1997 Richard Hirst [richard@sleepie.demon.co.uk]
*
* Based on:
*
* linux/amiga/config.c
*
* Copyright (C) 1993 Hamish Macdonald
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file README.legal in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/clocksource.h>
#include <linux/console.h>
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/genhd.h>
#include <linux/rtc.h>
#include <linux/interrupt.h>
#include <linux/bcd.h>
#include <asm/bootinfo.h>
#include <asm/bootinfo-vme.h>
#include <asm/byteorder.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/traps.h>
#include <asm/machdep.h>
#include <asm/bvme6000hw.h>
static void bvme6000_get_model(char *model);
extern void bvme6000_sched_init(irq_handler_t handler);
extern int bvme6000_hwclk (int, struct rtc_time *);
extern void bvme6000_reset (void);
void bvme6000_set_vectors (void);
int __init bvme6000_parse_bootinfo(const struct bi_record *bi)
{
if (be16_to_cpu(bi->tag) == BI_VME_TYPE)
return 0;
else
return 1;
}
void bvme6000_reset(void)
{
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
pr_info("\r\n\nCalled bvme6000_reset\r\n"
"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r");
/* The string of returns is to delay the reset until the whole
* message is output. */
/* Enable the watchdog, via PIT port C bit 4 */
pit->pcddr |= 0x10; /* WDOG enable */
while(1)
;
}
static void bvme6000_get_model(char *model)
{
sprintf(model, "BVME%d000", m68k_cputype == CPU_68060 ? 6 : 4);
}
/*
* This function is called during kernel startup to initialize
* the bvme6000 IRQ handling routines.
*/
static void __init bvme6000_init_IRQ(void)
{
m68k_setup_user_interrupt(VEC_USER, 192);
}
void __init config_bvme6000(void)
{
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
/* Board type is only set by newer versions of vmelilo/tftplilo */
if (!vme_brdtype) {
if (m68k_cputype == CPU_68060)
vme_brdtype = VME_TYPE_BVME6000;
else
vme_brdtype = VME_TYPE_BVME4000;
}
#if 0
/* Call bvme6000_set_vectors() so ABORT will work, along with BVMBug
* debugger. Note trap_init() will splat the abort vector, but
* bvme6000_init_IRQ() will put it back again. Hopefully. */
bvme6000_set_vectors();
#endif
mach_max_dma_address = 0xffffffff;
mach_sched_init = bvme6000_sched_init;
mach_init_IRQ = bvme6000_init_IRQ;
mach_hwclk = bvme6000_hwclk;
mach_reset = bvme6000_reset;
mach_get_model = bvme6000_get_model;
pr_info("Board is %sconfigured as a System Controller\n",
*config_reg_ptr & BVME_CONFIG_SW1 ? "" : "not ");
/* Now do the PIT configuration */
pit->pgcr = 0x00; /* Unidirectional 8 bit, no handshake for now */
pit->psrr = 0x18; /* PIACK and PIRQ functions enabled */
pit->pacr = 0x00; /* Sub Mode 00, H2 i/p, no DMA */
pit->padr = 0x00; /* Just to be tidy! */
pit->paddr = 0x00; /* All inputs for now (safest) */
pit->pbcr = 0x80; /* Sub Mode 1x, H4 i/p, no DMA */
pit->pbdr = 0xbc | (*config_reg_ptr & BVME_CONFIG_SW1 ? 0 : 0x40);
/* PRI, SYSCON?, Level3, SCC clks from xtal */
pit->pbddr = 0xf3; /* Mostly outputs */
pit->pcdr = 0x01; /* PA transceiver disabled */
pit->pcddr = 0x03; /* WDOG disable */
/* Disable snooping for Ethernet and VME accesses */
bvme_acr_addrctl = 0;
}
irqreturn_t bvme6000_abort_int (int irq, void *dev_id)
{
unsigned long *new = (unsigned long *)vectors;
unsigned long *old = (unsigned long *)0xf8000000;
/* Wait for button release */
while (*(volatile unsigned char *)BVME_LOCAL_IRQ_STAT & BVME_ABORT_STATUS)
;
*(new+4) = *(old+4); /* Illegal instruction */
*(new+9) = *(old+9); /* Trace */
*(new+47) = *(old+47); /* Trap #15 */
*(new+0x1f) = *(old+0x1f); /* ABORT switch */
return IRQ_HANDLED;
}
static u64 bvme6000_read_clk(struct clocksource *cs);
static struct clocksource bvme6000_clk = {
.name = "rtc",
.rating = 250,
.read = bvme6000_read_clk,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 clk_total, clk_offset;
#define RTC_TIMER_CLOCK_FREQ 8000000
#define RTC_TIMER_CYCLES (RTC_TIMER_CLOCK_FREQ / HZ)
#define RTC_TIMER_COUNT ((RTC_TIMER_CYCLES / 2) - 1)
static irqreturn_t bvme6000_timer_int (int irq, void *dev_id)
{
irq_handler_t timer_routine = dev_id;
unsigned long flags;
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr;
local_irq_save(flags);
msr = rtc->msr & 0xc0;
rtc->msr = msr | 0x20; /* Ack the interrupt */
clk_total += RTC_TIMER_CYCLES;
clk_offset = 0;
timer_routine(0, NULL);
local_irq_restore(flags);
return IRQ_HANDLED;
}
/*
* Set up the RTC timer 1 to mode 2, so T1 output toggles every 5ms
* (40000 x 125ns). It will interrupt every 10ms, when T1 goes low.
* So, when reading the elapsed time, you should read timer1,
* subtract it from 39999, and then add 40000 if T1 is high.
* That gives you the number of 125ns ticks in to the 10ms period,
* so divide by 8 to get the microsecond result.
*/
void bvme6000_sched_init (irq_handler_t timer_routine)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
rtc->msr = 0; /* Ensure timer registers accessible */
if (request_irq(BVME_IRQ_RTC, bvme6000_timer_int, IRQF_TIMER, "timer",
timer_routine))
panic ("Couldn't register timer int");
rtc->t1cr_omr = 0x04; /* Mode 2, ext clk */
rtc->t1msb = RTC_TIMER_COUNT >> 8;
rtc->t1lsb = RTC_TIMER_COUNT & 0xff;
rtc->irr_icr1 &= 0xef; /* Route timer 1 to INTR pin */
rtc->msr = 0x40; /* Access int.cntrl, etc */
rtc->pfr_icr0 = 0x80; /* Just timer 1 ints enabled */
rtc->irr_icr1 = 0;
rtc->t1cr_omr = 0x0a; /* INTR+T1 active lo, push-pull */
rtc->t0cr_rtmr &= 0xdf; /* Stop timers in standby */
rtc->msr = 0; /* Access timer 1 control */
rtc->t1cr_omr = 0x05; /* Mode 2, ext clk, GO */
rtc->msr = msr;
clocksource_register_hz(&bvme6000_clk, RTC_TIMER_CLOCK_FREQ);
if (request_irq(BVME_IRQ_ABORT, bvme6000_abort_int, 0,
"abort", bvme6000_abort_int))
panic ("Couldn't register abort int");
}
/*
* NOTE: Don't accept any readings within 5us of rollover, as
* the T1INT bit may be a little slow getting set. There is also
* a fault in the chip, meaning that reads may produce invalid
* results...
*/
static u64 bvme6000_read_clk(struct clocksource *cs)
{
unsigned long flags;
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
unsigned char msr, msb;
unsigned char t1int, t1op;
u32 v = 800000, ov;
local_irq_save(flags);
msr = rtc->msr & 0xc0;
rtc->msr = 0; /* Ensure timer registers accessible */
do {
ov = v;
t1int = rtc->msr & 0x20;
t1op = pit->pcdr & 0x04;
rtc->t1cr_omr |= 0x40; /* Latch timer1 */
msb = rtc->t1msb; /* Read timer1 */
v = (msb << 8) | rtc->t1lsb; /* Read timer1 */
} while (t1int != (rtc->msr & 0x20) ||
t1op != (pit->pcdr & 0x04) ||
abs(ov-v) > 80 ||
v > RTC_TIMER_COUNT - (RTC_TIMER_COUNT / 100));
v = RTC_TIMER_COUNT - v;
if (!t1op) /* If in second half cycle.. */
v += RTC_TIMER_CYCLES / 2;
if (msb > 0 && t1int)
clk_offset = RTC_TIMER_CYCLES;
rtc->msr = msr;
v += clk_offset + clk_total;
local_irq_restore(flags);
return v;
}
/*
* Looks like op is non-zero for setting the clock, and zero for
* reading the clock.
*
* struct hwclk_time {
* unsigned sec; 0..59
* unsigned min; 0..59
* unsigned hour; 0..23
* unsigned day; 1..31
* unsigned mon; 0..11
* unsigned year; 00...
* int wday; 0..6, 0 is Sunday, -1 means unknown/don't set
* };
*/
int bvme6000_hwclk(int op, struct rtc_time *t)
{
volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
unsigned char msr = rtc->msr & 0xc0;
rtc->msr = 0x40; /* Ensure clock and real-time-mode-register
* are accessible */
if (op)
{ /* Write.... */
rtc->t0cr_rtmr = t->tm_year%4;
rtc->bcd_tenms = 0;
rtc->bcd_sec = bin2bcd(t->tm_sec);
rtc->bcd_min = bin2bcd(t->tm_min);
rtc->bcd_hr = bin2bcd(t->tm_hour);
rtc->bcd_dom = bin2bcd(t->tm_mday);
rtc->bcd_mth = bin2bcd(t->tm_mon + 1);
rtc->bcd_year = bin2bcd(t->tm_year%100);
if (t->tm_wday >= 0)
rtc->bcd_dow = bin2bcd(t->tm_wday+1);
rtc->t0cr_rtmr = t->tm_year%4 | 0x08;
}
else
{ /* Read.... */
do {
t->tm_sec = bcd2bin(rtc->bcd_sec);
t->tm_min = bcd2bin(rtc->bcd_min);
t->tm_hour = bcd2bin(rtc->bcd_hr);
t->tm_mday = bcd2bin(rtc->bcd_dom);
t->tm_mon = bcd2bin(rtc->bcd_mth)-1;
t->tm_year = bcd2bin(rtc->bcd_year);
if (t->tm_year < 70)
t->tm_year += 100;
t->tm_wday = bcd2bin(rtc->bcd_dow)-1;
} while (t->tm_sec != bcd2bin(rtc->bcd_sec));
}
rtc->msr = msr;
return 0;
}
|