1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// SPDX-License-Identifier: GPL-2.0
/*
* Common time service routines for LoongArch machines.
*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/sched_clock.h>
#include <linux/spinlock.h>
#include <asm/cpu-features.h>
#include <asm/loongarch.h>
#include <asm/time.h>
u64 cpu_clock_freq;
EXPORT_SYMBOL(cpu_clock_freq);
u64 const_clock_freq;
EXPORT_SYMBOL(const_clock_freq);
static DEFINE_RAW_SPINLOCK(state_lock);
static DEFINE_PER_CPU(struct clock_event_device, constant_clockevent_device);
static void constant_event_handler(struct clock_event_device *dev)
{
}
irqreturn_t constant_timer_interrupt(int irq, void *data)
{
int cpu = smp_processor_id();
struct clock_event_device *cd;
/* Clear Timer Interrupt */
write_csr_tintclear(CSR_TINTCLR_TI);
cd = &per_cpu(constant_clockevent_device, cpu);
cd->event_handler(cd);
return IRQ_HANDLED;
}
static int constant_set_state_oneshot(struct clock_event_device *evt)
{
unsigned long timer_config;
raw_spin_lock(&state_lock);
timer_config = csr_read64(LOONGARCH_CSR_TCFG);
timer_config |= CSR_TCFG_EN;
timer_config &= ~CSR_TCFG_PERIOD;
csr_write64(timer_config, LOONGARCH_CSR_TCFG);
raw_spin_unlock(&state_lock);
return 0;
}
static int constant_set_state_oneshot_stopped(struct clock_event_device *evt)
{
unsigned long timer_config;
raw_spin_lock(&state_lock);
timer_config = csr_read64(LOONGARCH_CSR_TCFG);
timer_config &= ~CSR_TCFG_EN;
csr_write64(timer_config, LOONGARCH_CSR_TCFG);
raw_spin_unlock(&state_lock);
return 0;
}
static int constant_set_state_periodic(struct clock_event_device *evt)
{
unsigned long period;
unsigned long timer_config;
raw_spin_lock(&state_lock);
period = const_clock_freq / HZ;
timer_config = period & CSR_TCFG_VAL;
timer_config |= (CSR_TCFG_PERIOD | CSR_TCFG_EN);
csr_write64(timer_config, LOONGARCH_CSR_TCFG);
raw_spin_unlock(&state_lock);
return 0;
}
static int constant_set_state_shutdown(struct clock_event_device *evt)
{
return 0;
}
static int constant_timer_next_event(unsigned long delta, struct clock_event_device *evt)
{
unsigned long timer_config;
delta &= CSR_TCFG_VAL;
timer_config = delta | CSR_TCFG_EN;
csr_write64(timer_config, LOONGARCH_CSR_TCFG);
return 0;
}
static unsigned long __init get_loops_per_jiffy(void)
{
unsigned long lpj = (unsigned long)const_clock_freq;
do_div(lpj, HZ);
return lpj;
}
static long init_timeval;
void sync_counter(void)
{
/* Ensure counter begin at 0 */
csr_write64(-init_timeval, LOONGARCH_CSR_CNTC);
}
int constant_clockevent_init(void)
{
unsigned int irq;
unsigned int cpu = smp_processor_id();
unsigned long min_delta = 0x600;
unsigned long max_delta = (1UL << 48) - 1;
struct clock_event_device *cd;
static int timer_irq_installed = 0;
irq = EXCCODE_TIMER - EXCCODE_INT_START;
cd = &per_cpu(constant_clockevent_device, cpu);
cd->name = "Constant";
cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_PERCPU;
cd->irq = irq;
cd->rating = 320;
cd->cpumask = cpumask_of(cpu);
cd->set_state_oneshot = constant_set_state_oneshot;
cd->set_state_oneshot_stopped = constant_set_state_oneshot_stopped;
cd->set_state_periodic = constant_set_state_periodic;
cd->set_state_shutdown = constant_set_state_shutdown;
cd->set_next_event = constant_timer_next_event;
cd->event_handler = constant_event_handler;
clockevents_config_and_register(cd, const_clock_freq, min_delta, max_delta);
if (timer_irq_installed)
return 0;
timer_irq_installed = 1;
sync_counter();
if (request_irq(irq, constant_timer_interrupt, IRQF_PERCPU | IRQF_TIMER, "timer", NULL))
pr_err("Failed to request irq %d (timer)\n", irq);
lpj_fine = get_loops_per_jiffy();
pr_info("Constant clock event device register\n");
return 0;
}
static u64 read_const_counter(struct clocksource *clk)
{
return drdtime();
}
static u64 native_sched_clock(void)
{
return read_const_counter(NULL);
}
static struct clocksource clocksource_const = {
.name = "Constant",
.rating = 400,
.read = read_const_counter,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
int __init constant_clocksource_init(void)
{
int res;
unsigned long freq = const_clock_freq;
res = clocksource_register_hz(&clocksource_const, freq);
sched_clock_register(native_sched_clock, 64, freq);
pr_info("Constant clock source device register\n");
return res;
}
void __init time_init(void)
{
if (!cpu_has_cpucfg)
const_clock_freq = cpu_clock_freq;
else
const_clock_freq = calc_const_freq();
init_timeval = drdtime() - csr_read64(LOONGARCH_CSR_CNTC);
constant_clockevent_init();
constant_clocksource_init();
}
|