summaryrefslogtreecommitdiff
path: root/arch/ia64/include/asm/uaccess.h
blob: a217bcfe6700ae46b3ecabab9f21e0d18feca85e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#ifndef _ASM_IA64_UACCESS_H
#define _ASM_IA64_UACCESS_H

/*
 * This file defines various macros to transfer memory areas across
 * the user/kernel boundary.  This needs to be done carefully because
 * this code is executed in kernel mode and uses user-specified
 * addresses.  Thus, we need to be careful not to let the user to
 * trick us into accessing kernel memory that would normally be
 * inaccessible.  This code is also fairly performance sensitive,
 * so we want to spend as little time doing safety checks as
 * possible.
 *
 * To make matters a bit more interesting, these macros sometimes also
 * called from within the kernel itself, in which case the address
 * validity check must be skipped.  The get_fs() macro tells us what
 * to do: if get_fs()==USER_DS, checking is performed, if
 * get_fs()==KERNEL_DS, checking is bypassed.
 *
 * Note that even if the memory area specified by the user is in a
 * valid address range, it is still possible that we'll get a page
 * fault while accessing it.  This is handled by filling out an
 * exception handler fixup entry for each instruction that has the
 * potential to fault.  When such a fault occurs, the page fault
 * handler checks to see whether the faulting instruction has a fixup
 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
 * then resumes execution at the continuation point.
 *
 * Based on <asm-alpha/uaccess.h>.
 *
 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 */

#include <linux/compiler.h>
#include <linux/page-flags.h>
#include <linux/mm.h>

#include <asm/intrinsics.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/extable.h>

/*
 * For historical reasons, the following macros are grossly misnamed:
 */
#define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
#define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */

#define get_ds()  (KERNEL_DS)
#define get_fs()  (current_thread_info()->addr_limit)
#define set_fs(x) (current_thread_info()->addr_limit = (x))

#define segment_eq(a, b)	((a).seg == (b).seg)

/*
 * When accessing user memory, we need to make sure the entire area really is in
 * user-level space.  In order to do this efficiently, we make sure that the page at
 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
 * point inside the virtually mapped linear page table.
 */
static inline int __access_ok(const void __user *p, unsigned long size)
{
	unsigned long addr = (unsigned long)p;
	unsigned long seg = get_fs().seg;
	return likely(addr <= seg) &&
	 (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
}
#define access_ok(type, addr, size)	__access_ok((addr), (size))

/*
 * These are the main single-value transfer routines.  They automatically
 * use the right size if we just have the right pointer type.
 *
 * Careful to not
 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 * (b) require any knowledge of processes at this stage
 */
#define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
#define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)))

/*
 * The "__xxx" versions do not do address space checking, useful when
 * doing multiple accesses to the same area (the programmer has to do the
 * checks by hand with "access_ok()")
 */
#define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
#define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))

#ifdef ASM_SUPPORTED
  struct __large_struct { unsigned long buf[100]; };
# define __m(x) (*(struct __large_struct __user *)(x))

/* We need to declare the __ex_table section before we can use it in .xdata.  */
asm (".section \"__ex_table\", \"a\"\n\t.previous");

# define __get_user_size(val, addr, n, err)							\
do {												\
	register long __gu_r8 asm ("r8") = 0;							\
	register long __gu_r9 asm ("r9");							\
	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
	     "[1:]"										\
	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
	(err) = __gu_r8;									\
	(val) = __gu_r9;									\
} while (0)

/*
 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
 * is because they do not write to any memory gcc knows about, so there are no aliasing
 * issues.
 */
# define __put_user_size(val, addr, n, err)							\
do {												\
	register long __pu_r8 asm ("r8") = 0;							\
	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
		      "[1:]"									\
		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
	(err) = __pu_r8;									\
} while (0)

#else /* !ASM_SUPPORTED */
# define RELOC_TYPE	2	/* ip-rel */
# define __get_user_size(val, addr, n, err)				\
do {									\
	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
	(err) = ia64_getreg(_IA64_REG_R8);				\
	(val) = ia64_getreg(_IA64_REG_R9);				\
} while (0)
# define __put_user_size(val, addr, n, err)				\
do {									\
	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
		  (__force unsigned long) (val));			\
	(err) = ia64_getreg(_IA64_REG_R8);				\
} while (0)
#endif /* !ASM_SUPPORTED */

extern void __get_user_unknown (void);

/*
 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
 * using r8/r9.
 */
#define __do_get_user(check, x, ptr, size)						\
({											\
	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
	__typeof__ (size) __gu_size = (size);						\
	long __gu_err = -EFAULT;							\
	unsigned long __gu_val = 0;							\
	if (!check || __access_ok(__gu_ptr, size))					\
		switch (__gu_size) {							\
		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
		      default: __get_user_unknown(); break;				\
		}									\
	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
	__gu_err;									\
})

#define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size)
#define __get_user_check(x, ptr, size)	__do_get_user(1, x, ptr, size)

extern void __put_user_unknown (void);

/*
 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
 */
#define __do_put_user(check, x, ptr, size)						\
({											\
	__typeof__ (x) __pu_x = (x);							\
	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
	__typeof__ (size) __pu_size = (size);						\
	long __pu_err = -EFAULT;							\
											\
	if (!check || __access_ok(__pu_ptr, __pu_size))					\
		switch (__pu_size) {							\
		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
		      default: __put_user_unknown(); break;				\
		}									\
	__pu_err;									\
})

#define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size)
#define __put_user_check(x, ptr, size)	__do_put_user(1, x, ptr, size)

/*
 * Complex access routines
 */
extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
					       unsigned long count);

static inline unsigned long
raw_copy_to_user(void __user *to, const void *from, unsigned long count)
{
	return __copy_user(to, (__force void __user *) from, count);
}

static inline unsigned long
raw_copy_from_user(void *to, const void __user *from, unsigned long count)
{
	return __copy_user((__force void __user *) to, from, count);
}

#define INLINE_COPY_FROM_USER
#define INLINE_COPY_TO_USER

extern unsigned long __do_clear_user (void __user *, unsigned long);

#define __clear_user(to, n)		__do_clear_user(to, n)

#define clear_user(to, n)					\
({								\
	unsigned long __cu_len = (n);				\
	if (__access_ok(to, __cu_len))				\
		__cu_len = __do_clear_user(to, __cu_len);	\
	__cu_len;						\
})


/*
 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
 * strlen.
 */
extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);

#define strncpy_from_user(to, from, n)					\
({									\
	const char __user * __sfu_from = (from);			\
	long __sfu_ret = -EFAULT;					\
	if (__access_ok(__sfu_from, 0))					\
		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
	__sfu_ret;							\
})

/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
extern unsigned long __strlen_user (const char __user *);

#define strlen_user(str)				\
({							\
	const char __user *__su_str = (str);		\
	unsigned long __su_ret = 0;			\
	if (__access_ok(__su_str, 0))			\
		__su_ret = __strlen_user(__su_str);	\
	__su_ret;					\
})

/*
 * Returns: 0 if exception before NUL or reaching the supplied limit
 * (N), a value greater than N if the limit would be exceeded, else
 * strlen.
 */
extern unsigned long __strnlen_user (const char __user *, long);

#define strnlen_user(str, len)					\
({								\
	const char __user *__su_str = (str);			\
	unsigned long __su_ret = 0;				\
	if (__access_ok(__su_str, 0))				\
		__su_ret = __strnlen_user(__su_str, len);	\
	__su_ret;						\
})

#define ARCH_HAS_TRANSLATE_MEM_PTR	1
static __inline__ void *
xlate_dev_mem_ptr(phys_addr_t p)
{
	struct page *page;
	void *ptr;

	page = pfn_to_page(p >> PAGE_SHIFT);
	if (PageUncached(page))
		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
	else
		ptr = __va(p);

	return ptr;
}

/*
 * Convert a virtual cached kernel memory pointer to an uncached pointer
 */
static __inline__ void *
xlate_dev_kmem_ptr(void *p)
{
	struct page *page;
	void *ptr;

	page = virt_to_page((unsigned long)p);
	if (PageUncached(page))
		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
	else
		ptr = p;

	return ptr;
}

#endif /* _ASM_IA64_UACCESS_H */