summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/topology.c
blob: 543c67cae02ff7d4c96dc027e85ec3d2b075ecc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
 * arch/arm64/kernel/topology.c
 *
 * Copyright (C) 2011,2013,2014 Linaro Limited.
 *
 * Based on the arm32 version written by Vincent Guittot in turn based on
 * arch/sh/kernel/topology.c
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */

#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cacheinfo.h>
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/percpu.h>

#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>

void store_cpu_topology(unsigned int cpuid)
{
	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
	u64 mpidr;

	if (cpuid_topo->package_id != -1)
		goto topology_populated;

	mpidr = read_cpuid_mpidr();

	/* Uniprocessor systems can rely on default topology values */
	if (mpidr & MPIDR_UP_BITMASK)
		return;

	/*
	 * This would be the place to create cpu topology based on MPIDR.
	 *
	 * However, it cannot be trusted to depict the actual topology; some
	 * pieces of the architecture enforce an artificial cap on Aff0 values
	 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
	 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
	 * having absolutely no relationship to the actual underlying system
	 * topology, and cannot be reasonably used as core / package ID.
	 *
	 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
	 * we still wouldn't be able to obtain a sane core ID. This means we
	 * need to entirely ignore MPIDR for any topology deduction.
	 */
	cpuid_topo->thread_id  = -1;
	cpuid_topo->core_id    = cpuid;
	cpuid_topo->package_id = cpu_to_node(cpuid);

	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
		 cpuid_topo->thread_id, mpidr);

topology_populated:
	update_siblings_masks(cpuid);
}

#ifdef CONFIG_ACPI
static bool __init acpi_cpu_is_threaded(int cpu)
{
	int is_threaded = acpi_pptt_cpu_is_thread(cpu);

	/*
	 * if the PPTT doesn't have thread information, assume a homogeneous
	 * machine and return the current CPU's thread state.
	 */
	if (is_threaded < 0)
		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;

	return !!is_threaded;
}

/*
 * Propagate the topology information of the processor_topology_node tree to the
 * cpu_topology array.
 */
int __init parse_acpi_topology(void)
{
	int cpu, topology_id;

	if (acpi_disabled)
		return 0;

	for_each_possible_cpu(cpu) {
		int i, cache_id;

		topology_id = find_acpi_cpu_topology(cpu, 0);
		if (topology_id < 0)
			return topology_id;

		if (acpi_cpu_is_threaded(cpu)) {
			cpu_topology[cpu].thread_id = topology_id;
			topology_id = find_acpi_cpu_topology(cpu, 1);
			cpu_topology[cpu].core_id   = topology_id;
		} else {
			cpu_topology[cpu].thread_id  = -1;
			cpu_topology[cpu].core_id    = topology_id;
		}
		topology_id = find_acpi_cpu_topology_package(cpu);
		cpu_topology[cpu].package_id = topology_id;

		i = acpi_find_last_cache_level(cpu);

		if (i > 0) {
			/*
			 * this is the only part of cpu_topology that has
			 * a direct relationship with the cache topology
			 */
			cache_id = find_acpi_cpu_cache_topology(cpu, i);
			if (cache_id > 0)
				cpu_topology[cpu].llc_id = cache_id;
		}
	}

	return 0;
}
#endif

#ifdef CONFIG_ARM64_AMU_EXTN

#undef pr_fmt
#define pr_fmt(fmt) "AMU: " fmt

static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
static cpumask_var_t amu_fie_cpus;

/* Initialize counter reference per-cpu variables for the current CPU */
void init_cpu_freq_invariance_counters(void)
{
	this_cpu_write(arch_core_cycles_prev,
		       read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
	this_cpu_write(arch_const_cycles_prev,
		       read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
}

static int validate_cpu_freq_invariance_counters(int cpu)
{
	u64 max_freq_hz, ratio;

	if (!cpu_has_amu_feat(cpu)) {
		pr_debug("CPU%d: counters are not supported.\n", cpu);
		return -EINVAL;
	}

	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
		     !per_cpu(arch_core_cycles_prev, cpu))) {
		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
		return -EINVAL;
	}

	/* Convert maximum frequency from KHz to Hz and validate */
	max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
	if (unlikely(!max_freq_hz)) {
		pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
		return -EINVAL;
	}

	/*
	 * Pre-compute the fixed ratio between the frequency of the constant
	 * counter and the maximum frequency of the CPU.
	 *
	 *			      const_freq
	 * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALE²
	 *			   cpuinfo_max_freq
	 *
	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
	 * in order to ensure a good resolution for arch_max_freq_scale for
	 * very low arch timer frequencies (down to the KHz range which should
	 * be unlikely).
	 */
	ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
	ratio = div64_u64(ratio, max_freq_hz);
	if (!ratio) {
		WARN_ONCE(1, "System timer frequency too low.\n");
		return -EINVAL;
	}

	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;

	return 0;
}

static inline bool
enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
{
	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);

	if (!policy) {
		pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
		return false;
	}

	if (cpumask_subset(policy->related_cpus, valid_cpus))
		cpumask_or(amu_fie_cpus, policy->related_cpus,
			   amu_fie_cpus);

	cpufreq_cpu_put(policy);

	return true;
}

static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
#define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)

static int __init init_amu_fie(void)
{
	cpumask_var_t valid_cpus;
	bool have_policy = false;
	int ret = 0;
	int cpu;

	if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
		return -ENOMEM;

	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
		ret = -ENOMEM;
		goto free_valid_mask;
	}

	for_each_present_cpu(cpu) {
		if (validate_cpu_freq_invariance_counters(cpu))
			continue;
		cpumask_set_cpu(cpu, valid_cpus);
		have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
	}

	/*
	 * If we are not restricted by cpufreq policies, we only enable
	 * the use of the AMU feature for FIE if all CPUs support AMU.
	 * Otherwise, enable_policy_freq_counters has already enabled
	 * policy cpus.
	 */
	if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
		cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);

	if (!cpumask_empty(amu_fie_cpus)) {
		pr_info("CPUs[%*pbl]: counters will be used for FIE.",
			cpumask_pr_args(amu_fie_cpus));
		static_branch_enable(&amu_fie_key);
	}

	/*
	 * If the system is not fully invariant after AMU init, disable
	 * partial use of counters for frequency invariance.
	 */
	if (!topology_scale_freq_invariant())
		static_branch_disable(&amu_fie_key);

free_valid_mask:
	free_cpumask_var(valid_cpus);

	return ret;
}
late_initcall_sync(init_amu_fie);

bool arch_freq_counters_available(const struct cpumask *cpus)
{
	return amu_freq_invariant() &&
	       cpumask_subset(cpus, amu_fie_cpus);
}

void topology_scale_freq_tick(void)
{
	u64 prev_core_cnt, prev_const_cnt;
	u64 core_cnt, const_cnt, scale;
	int cpu = smp_processor_id();

	if (!amu_freq_invariant())
		return;

	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
		return;

	const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
	core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);

	if (unlikely(core_cnt <= prev_core_cnt ||
		     const_cnt <= prev_const_cnt))
		goto store_and_exit;

	/*
	 *	    /\core    arch_max_freq_scale
	 * scale =  ------- * --------------------
	 *	    /\const   SCHED_CAPACITY_SCALE
	 *
	 * See validate_cpu_freq_invariance_counters() for details on
	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
	 */
	scale = core_cnt - prev_core_cnt;
	scale *= this_cpu_read(arch_max_freq_scale);
	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
			  const_cnt - prev_const_cnt);

	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
	this_cpu_write(freq_scale, (unsigned long)scale);

store_and_exit:
	this_cpu_write(arch_core_cycles_prev, core_cnt);
	this_cpu_write(arch_const_cycles_prev, const_cnt);
}
#endif /* CONFIG_ARM64_AMU_EXTN */