1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/context_tracking.h>
#include <linux/kasan.h>
#include <linux/linkage.h>
#include <linux/lockdep.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/irq_regs.h>
#include <asm/kprobes.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/sdei.h>
#include <asm/stacktrace.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
/*
* Handle IRQ/context state management when entering from kernel mode.
* Before this function is called it is not safe to call regular kernel code,
* instrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_enter(), handling the kernel
* mode transitions only.
*/
static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
{
regs->exit_rcu = false;
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
lockdep_hardirqs_off(CALLER_ADDR0);
ct_irq_enter();
trace_hardirqs_off_finish();
regs->exit_rcu = true;
return;
}
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter_check_tick();
trace_hardirqs_off_finish();
}
static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
{
__enter_from_kernel_mode(regs);
mte_check_tfsr_entry();
mte_disable_tco_entry(current);
}
/*
* Handle IRQ/context state management when exiting to kernel mode.
* After this function returns it is not safe to call regular kernel code,
* instrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_exit(), handling the kernel
* mode transitions only, and with preemption handled elsewhere.
*/
static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
{
lockdep_assert_irqs_disabled();
if (interrupts_enabled(regs)) {
if (regs->exit_rcu) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
ct_irq_exit();
lockdep_hardirqs_on(CALLER_ADDR0);
return;
}
trace_hardirqs_on();
} else {
if (regs->exit_rcu)
ct_irq_exit();
}
}
static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
{
mte_check_tfsr_exit();
__exit_to_kernel_mode(regs);
}
/*
* Handle IRQ/context state management when entering from user mode.
* Before this function is called it is not safe to call regular kernel code,
* instrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __enter_from_user_mode(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
CT_WARN_ON(ct_state() != CONTEXT_USER);
user_exit_irqoff();
trace_hardirqs_off_finish();
mte_disable_tco_entry(current);
}
static __always_inline void enter_from_user_mode(struct pt_regs *regs)
{
__enter_from_user_mode();
}
/*
* Handle IRQ/context state management when exiting to user mode.
* After this function returns it is not safe to call regular kernel code,
* instrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __exit_to_user_mode(void)
{
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
user_enter_irqoff();
lockdep_hardirqs_on(CALLER_ADDR0);
}
static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs)
{
unsigned long flags;
local_daif_mask();
flags = read_thread_flags();
if (unlikely(flags & _TIF_WORK_MASK))
do_notify_resume(regs, flags);
lockdep_sys_exit();
}
static __always_inline void exit_to_user_mode(struct pt_regs *regs)
{
exit_to_user_mode_prepare(regs);
mte_check_tfsr_exit();
__exit_to_user_mode();
}
asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
{
exit_to_user_mode(regs);
}
/*
* Handle IRQ/context state management when entering an NMI from user/kernel
* mode. Before this function is called it is not safe to call regular kernel
* code, instrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_nmi(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
__nmi_enter();
lockdep_hardirqs_off(CALLER_ADDR0);
lockdep_hardirq_enter();
ct_nmi_enter();
trace_hardirqs_off_finish();
ftrace_nmi_enter();
}
/*
* Handle IRQ/context state management when exiting an NMI from user/kernel
* mode. After this function returns it is not safe to call regular kernel
* code, instrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_nmi(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
ftrace_nmi_exit();
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
}
ct_nmi_exit();
lockdep_hardirq_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
__nmi_exit();
}
/*
* Handle IRQ/context state management when entering a debug exception from
* kernel mode. Before this function is called it is not safe to call regular
* kernel code, instrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
lockdep_hardirqs_off(CALLER_ADDR0);
ct_nmi_enter();
trace_hardirqs_off_finish();
}
/*
* Handle IRQ/context state management when exiting a debug exception from
* kernel mode. After this function returns it is not safe to call regular
* kernel code, instrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
}
ct_nmi_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
}
#ifdef CONFIG_PREEMPT_DYNAMIC
DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
#define need_irq_preemption() \
(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
#else
#define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION))
#endif
static void __sched arm64_preempt_schedule_irq(void)
{
if (!need_irq_preemption())
return;
/*
* Note: thread_info::preempt_count includes both thread_info::count
* and thread_info::need_resched, and is not equivalent to
* preempt_count().
*/
if (READ_ONCE(current_thread_info()->preempt_count) != 0)
return;
/*
* DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
* priority masking is used the GIC irqchip driver will clear DAIF.IF
* using gic_arch_enable_irqs() for normal IRQs. If anything is set in
* DAIF we must have handled an NMI, so skip preemption.
*/
if (system_uses_irq_prio_masking() && read_sysreg(daif))
return;
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack. cpufeature's enable calls may modify PSTATE, but
* resuming one of these preempted tasks would undo those changes.
*
* Only allow a task to be preempted once cpufeatures have been
* enabled.
*/
if (system_capabilities_finalized())
preempt_schedule_irq();
}
static void do_interrupt_handler(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
struct pt_regs *old_regs = set_irq_regs(regs);
if (on_thread_stack())
call_on_irq_stack(regs, handler);
else
handler(regs);
set_irq_regs(old_regs);
}
extern void (*handle_arch_irq)(struct pt_regs *);
extern void (*handle_arch_fiq)(struct pt_regs *);
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
unsigned long esr)
{
arm64_enter_nmi(regs);
console_verbose();
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
vector, smp_processor_id(), esr,
esr_get_class_string(esr));
__show_regs(regs);
panic("Unhandled exception");
}
#define UNHANDLED(el, regsize, vector) \
asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
{ \
const char *desc = #regsize "-bit " #el " " #vector; \
__panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
}
#ifdef CONFIG_ARM64_ERRATUM_1463225
static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static void cortex_a76_erratum_1463225_svc_handler(void)
{
u32 reg, val;
if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
return;
if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
return;
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
reg = read_sysreg(mdscr_el1);
val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
write_sysreg(val, mdscr_el1);
asm volatile("msr daifclr, #8");
isb();
/* We will have taken a single-step exception by this point */
write_sysreg(reg, mdscr_el1);
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
}
static __always_inline bool
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
return false;
/*
* We've taken a dummy step exception from the kernel to ensure
* that interrupts are re-enabled on the syscall path. Return back
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
* masked so that we can safely restore the mdscr and get on with
* handling the syscall.
*/
regs->pstate |= PSR_D_BIT;
return true;
}
#else /* CONFIG_ARM64_ERRATUM_1463225 */
static void cortex_a76_erratum_1463225_svc_handler(void) { }
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
return false;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
/*
* As per the ABI exit SME streaming mode and clear the SVE state not
* shared with FPSIMD on syscall entry.
*/
static inline void fp_user_discard(void)
{
/*
* If SME is active then exit streaming mode. If ZA is active
* then flush the SVE registers but leave userspace access to
* both SVE and SME enabled, otherwise disable SME for the
* task and fall through to disabling SVE too. This means
* that after a syscall we never have any streaming mode
* register state to track, if this changes the KVM code will
* need updating.
*/
if (system_supports_sme())
sme_smstop_sm();
if (!system_supports_sve())
return;
if (test_thread_flag(TIF_SVE)) {
unsigned int sve_vq_minus_one;
sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
sve_flush_live(true, sve_vq_minus_one);
}
}
UNHANDLED(el1t, 64, sync)
UNHANDLED(el1t, 64, irq)
UNHANDLED(el1t, 64, fiq)
UNHANDLED(el1t, 64, error)
static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_mem_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_sp_pc_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_el1_undef(regs, esr);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_el1_bti(regs, esr);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
arm64_enter_el1_dbg(regs);
if (!cortex_a76_erratum_1463225_debug_handler(regs))
do_debug_exception(far, esr, regs);
arm64_exit_el1_dbg(regs);
}
static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_el1_fpac(regs, esr);
local_daif_mask();
exit_to_kernel_mode(regs);
}
asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_CUR:
case ESR_ELx_EC_IABT_CUR:
el1_abort(regs, esr);
break;
/*
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
* recursive exception when trying to push the initial pt_regs.
*/
case ESR_ELx_EC_PC_ALIGN:
el1_pc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_UNKNOWN:
el1_undef(regs, esr);
break;
case ESR_ELx_EC_BTI:
el1_bti(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_CUR:
case ESR_ELx_EC_SOFTSTP_CUR:
case ESR_ELx_EC_WATCHPT_CUR:
case ESR_ELx_EC_BRK64:
el1_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el1_fpac(regs, esr);
break;
default:
__panic_unhandled(regs, "64-bit el1h sync", esr);
}
}
static __always_inline void __el1_pnmi(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
arm64_enter_nmi(regs);
do_interrupt_handler(regs, handler);
arm64_exit_nmi(regs);
}
static __always_inline void __el1_irq(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
enter_from_kernel_mode(regs);
irq_enter_rcu();
do_interrupt_handler(regs, handler);
irq_exit_rcu();
arm64_preempt_schedule_irq();
exit_to_kernel_mode(regs);
}
static void noinstr el1_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
__el1_pnmi(regs, handler);
else
__el1_irq(regs, handler);
}
asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
}
static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(far))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sve_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sme_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_exc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_sys(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(regs->sp, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_undef(regs, esr);
exit_to_user_mode(regs);
}
static void noinstr el0_bti(struct pt_regs *regs)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_bti(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_mops(regs, esr);
exit_to_user_mode(regs);
}
static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
bad_el0_sync(regs, 0, esr);
exit_to_user_mode(regs);
}
static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
do_debug_exception(far, esr, regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
static void noinstr el0_svc(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
fp_user_discard();
local_daif_restore(DAIF_PROCCTX);
do_el0_svc(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_fpac(regs, esr);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_SVE:
el0_sve_acc(regs, esr);
break;
case ESR_ELx_EC_SME:
el0_sme_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC64:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_WFx:
el0_sys(regs, esr);
break;
case ESR_ELx_EC_SP_ALIGN:
el0_sp(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
el0_undef(regs, esr);
break;
case ESR_ELx_EC_BTI:
el0_bti(regs);
break;
case ESR_ELx_EC_MOPS:
el0_mops(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BRK64:
el0_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el0_fpac(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
static void noinstr el0_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
enter_from_user_mode(regs);
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
if (regs->pc & BIT(55))
arm64_apply_bp_hardening();
irq_enter_rcu();
do_interrupt_handler(regs, handler);
irq_exit_rcu();
exit_to_user_mode(regs);
}
static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
static void noinstr __el0_error_handler_common(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#ifdef CONFIG_COMPAT
static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_el0_cp15(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_svc_compat(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
local_daif_restore(DAIF_PROCCTX);
do_el0_svc_compat(regs);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC32:
el0_svc_compat(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC32:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_LS:
case ESR_ELx_EC_CP14_64:
el0_undef(regs, esr);
break;
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
el0_cp15(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BKPT32:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#else /* CONFIG_COMPAT */
UNHANDLED(el0t, 32, sync)
UNHANDLED(el0t, 32, irq)
UNHANDLED(el0t, 32, fiq)
UNHANDLED(el0t, 32, error)
#endif /* CONFIG_COMPAT */
#ifdef CONFIG_VMAP_STACK
asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
unsigned long far = read_sysreg(far_el1);
arm64_enter_nmi(regs);
panic_bad_stack(regs, esr, far);
}
#endif /* CONFIG_VMAP_STACK */
#ifdef CONFIG_ARM_SDE_INTERFACE
asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
{
unsigned long ret;
/*
* We didn't take an exception to get here, so the HW hasn't
* set/cleared bits in PSTATE that we may rely on.
*
* The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
* whether PSTATE bits are inherited unchanged or generated from
* scratch, and the TF-A implementation always clears PAN and always
* clears UAO. There are no other known implementations.
*
* Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
* PSTATE is modified upon architectural exceptions, and so PAN is
* either inherited or set per SCTLR_ELx.SPAN, and UAO is always
* cleared.
*
* We must explicitly reset PAN to the expected state, including
* clearing it when the host isn't using it, in case a VM had it set.
*/
if (system_uses_hw_pan())
set_pstate_pan(1);
else if (cpu_has_pan())
set_pstate_pan(0);
arm64_enter_nmi(regs);
ret = do_sdei_event(regs, arg);
arm64_exit_nmi(regs);
return ret;
}
#endif /* CONFIG_ARM_SDE_INTERFACE */
|