summaryrefslogtreecommitdiff
path: root/arch/arm/kernel/topology.c
blob: f8a3ab82e77f511200a25e5bad8394b61c2159de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
 * arch/arm/kernel/topology.c
 *
 * Copyright (C) 2011 Linaro Limited.
 * Written by: Vincent Guittot
 *
 * based on arch/sh/kernel/topology.c
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 */

#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>
#include <linux/string.h>

#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>

/*
 * cpu capacity scale management
 */

/*
 * cpu capacity table
 * This per cpu data structure describes the relative capacity of each core.
 * On a heteregenous system, cores don't have the same computation capacity
 * and we reflect that difference in the cpu_capacity field so the scheduler
 * can take this difference into account during load balance. A per cpu
 * structure is preferred because each CPU updates its own cpu_capacity field
 * during the load balance except for idle cores. One idle core is selected
 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
 * updated during this sequence.
 */
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
static DEFINE_MUTEX(cpu_scale_mutex);

unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
	return per_cpu(cpu_scale, cpu);
}

static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
{
	per_cpu(cpu_scale, cpu) = capacity;
}

#ifdef CONFIG_PROC_SYSCTL
static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

	return sprintf(buf, "%lu\n",
			arch_scale_cpu_capacity(NULL, cpu->dev.id));
}

static ssize_t cpu_capacity_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf,
				  size_t count)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);
	int this_cpu = cpu->dev.id, i;
	unsigned long new_capacity;
	ssize_t ret;

	if (count) {
		ret = kstrtoul(buf, 0, &new_capacity);
		if (ret)
			return ret;
		if (new_capacity > SCHED_CAPACITY_SCALE)
			return -EINVAL;

		mutex_lock(&cpu_scale_mutex);
		for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
			set_capacity_scale(i, new_capacity);
		mutex_unlock(&cpu_scale_mutex);
	}

	return count;
}

static DEVICE_ATTR_RW(cpu_capacity);

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
#endif

#ifdef CONFIG_OF
struct cpu_efficiency {
	const char *compatible;
	unsigned long efficiency;
};

/*
 * Table of relative efficiency of each processors
 * The efficiency value must fit in 20bit and the final
 * cpu_scale value must be in the range
 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
 * in order to return at most 1 when DIV_ROUND_CLOSEST
 * is used to compute the capacity of a CPU.
 * Processors that are not defined in the table,
 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
 */
static const struct cpu_efficiency table_efficiency[] = {
	{"arm,cortex-a15", 3891},
	{"arm,cortex-a7",  2048},
	{NULL, },
};

static unsigned long *__cpu_capacity;
#define cpu_capacity(cpu)	__cpu_capacity[cpu]

static unsigned long middle_capacity = 1;
static bool cap_from_dt = true;
static u32 *raw_capacity;
static bool cap_parsing_failed;
static u32 capacity_scale;

static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
	int ret = 1;
	u32 cpu_capacity;

	if (cap_parsing_failed)
		return !ret;

	ret = of_property_read_u32(cpu_node,
				   "capacity-dmips-mhz",
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
				cap_parsing_failed = true;
				return !ret;
			}
		}
		capacity_scale = max(cpu_capacity, capacity_scale);
		raw_capacity[cpu] = cpu_capacity;
		pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
			cpu_node->full_name, raw_capacity[cpu]);
	} else {
		if (raw_capacity) {
			pr_err("cpu_capacity: missing %s raw capacity\n",
				cpu_node->full_name);
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
		kfree(raw_capacity);
	}

	return !ret;
}

static void normalize_cpu_capacity(void)
{
	u64 capacity;
	int cpu;

	if (!raw_capacity || cap_parsing_failed)
		return;

	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
	mutex_lock(&cpu_scale_mutex);
	for_each_possible_cpu(cpu) {
		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
			/ capacity_scale;
		set_capacity_scale(cpu, capacity);
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
			cpu, arch_scale_cpu_capacity(NULL, cpu));
	}
	mutex_unlock(&cpu_scale_mutex);
}

#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static bool cap_parsing_done;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);

static int
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

	if (cap_parsing_failed || cap_parsing_done)
		return 0;

	switch (val) {
	case CPUFREQ_NOTIFY:
		pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
				cpumask_pr_args(policy->related_cpus),
				cpumask_pr_args(cpus_to_visit));
		cpumask_andnot(cpus_to_visit,
			       cpus_to_visit,
			       policy->related_cpus);
		for_each_cpu(cpu, policy->related_cpus) {
			raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
					    policy->cpuinfo.max_freq / 1000UL;
			capacity_scale = max(raw_capacity[cpu], capacity_scale);
		}
		if (cpumask_empty(cpus_to_visit)) {
			normalize_cpu_capacity();
			kfree(raw_capacity);
			pr_debug("cpu_capacity: parsing done\n");
			cap_parsing_done = true;
			schedule_work(&parsing_done_work);
		}
	}
	return 0;
}

static struct notifier_block init_cpu_capacity_notifier = {
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
	if (cap_parsing_failed)
		return -EINVAL;

	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
		return -ENOMEM;
	}
	cpumask_copy(cpus_to_visit, cpu_possible_mask);

	return cpufreq_register_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(register_cpufreq_notifier);

static void parsing_done_workfn(struct work_struct *work)
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
}

#else
static int __init free_raw_capacity(void)
{
	kfree(raw_capacity);

	return 0;
}
core_initcall(free_raw_capacity);
#endif

/*
 * Iterate all CPUs' descriptor in DT and compute the efficiency
 * (as per table_efficiency). Also calculate a middle efficiency
 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
 * This is later used to scale the cpu_capacity field such that an
 * 'average' CPU is of middle capacity. Also see the comments near
 * table_efficiency[] and update_cpu_capacity().
 */
static void __init parse_dt_topology(void)
{
	const struct cpu_efficiency *cpu_eff;
	struct device_node *cn = NULL;
	unsigned long min_capacity = ULONG_MAX;
	unsigned long max_capacity = 0;
	unsigned long capacity = 0;
	int cpu = 0;

	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
				 GFP_NOWAIT);

	cn = of_find_node_by_path("/cpus");
	if (!cn) {
		pr_err("No CPU information found in DT\n");
		return;
	}

	for_each_possible_cpu(cpu) {
		const u32 *rate;
		int len;

		/* too early to use cpu->of_node */
		cn = of_get_cpu_node(cpu, NULL);
		if (!cn) {
			pr_err("missing device node for CPU %d\n", cpu);
			continue;
		}

		if (parse_cpu_capacity(cn, cpu)) {
			of_node_put(cn);
			continue;
		}

		cap_from_dt = false;

		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
			if (of_device_is_compatible(cn, cpu_eff->compatible))
				break;

		if (cpu_eff->compatible == NULL)
			continue;

		rate = of_get_property(cn, "clock-frequency", &len);
		if (!rate || len != 4) {
			pr_err("%s missing clock-frequency property\n",
				cn->full_name);
			continue;
		}

		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;

		/* Save min capacity of the system */
		if (capacity < min_capacity)
			min_capacity = capacity;

		/* Save max capacity of the system */
		if (capacity > max_capacity)
			max_capacity = capacity;

		cpu_capacity(cpu) = capacity;
	}

	/* If min and max capacities are equals, we bypass the update of the
	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
	 * compute a middle_capacity factor that will ensure that the capacity
	 * of an 'average' CPU of the system will be as close as possible to
	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
	 * constraint explained near table_efficiency[].
	 */
	if (4*max_capacity < (3*(max_capacity + min_capacity)))
		middle_capacity = (min_capacity + max_capacity)
				>> (SCHED_CAPACITY_SHIFT+1);
	else
		middle_capacity = ((max_capacity / 3)
				>> (SCHED_CAPACITY_SHIFT-1)) + 1;

	if (cap_from_dt && !cap_parsing_failed)
		normalize_cpu_capacity();
}

/*
 * Look for a customed capacity of a CPU in the cpu_capacity table during the
 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
 * function returns directly for SMP system.
 */
static void update_cpu_capacity(unsigned int cpu)
{
	if (!cpu_capacity(cpu) || cap_from_dt)
		return;

	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);

	pr_info("CPU%u: update cpu_capacity %lu\n",
		cpu, arch_scale_cpu_capacity(NULL, cpu));
}

#else
static inline void parse_dt_topology(void) {}
static inline void update_cpu_capacity(unsigned int cpuid) {}
#endif

 /*
 * cpu topology table
 */
struct cputopo_arm cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);

const struct cpumask *cpu_coregroup_mask(int cpu)
{
	return &cpu_topology[cpu].core_sibling;
}

/*
 * The current assumption is that we can power gate each core independently.
 * This will be superseded by DT binding once available.
 */
const struct cpumask *cpu_corepower_mask(int cpu)
{
	return &cpu_topology[cpu].thread_sibling;
}

static void update_siblings_masks(unsigned int cpuid)
{
	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_possible_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

		if (cpuid_topo->socket_id != cpu_topo->socket_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		if (cpu != cpuid)
			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
	smp_wmb();
}

/*
 * store_cpu_topology is called at boot when only one cpu is running
 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
 * which prevents simultaneous write access to cpu_topology array
 */
void store_cpu_topology(unsigned int cpuid)
{
	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
	unsigned int mpidr;

	/* If the cpu topology has been already set, just return */
	if (cpuid_topo->core_id != -1)
		return;

	mpidr = read_cpuid_mpidr();

	/* create cpu topology mapping */
	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
		/*
		 * This is a multiprocessor system
		 * multiprocessor format & multiprocessor mode field are set
		 */

		if (mpidr & MPIDR_MT_BITMASK) {
			/* core performance interdependency */
			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
		} else {
			/* largely independent cores */
			cpuid_topo->thread_id = -1;
			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
		}
	} else {
		/*
		 * This is an uniprocessor system
		 * we are in multiprocessor format but uniprocessor system
		 * or in the old uniprocessor format
		 */
		cpuid_topo->thread_id = -1;
		cpuid_topo->core_id = 0;
		cpuid_topo->socket_id = -1;
	}

	update_siblings_masks(cpuid);

	update_cpu_capacity(cpuid);

	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
		cpuid, cpu_topology[cpuid].thread_id,
		cpu_topology[cpuid].core_id,
		cpu_topology[cpuid].socket_id, mpidr);
}

static inline int cpu_corepower_flags(void)
{
	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
}

static struct sched_domain_topology_level arm_topology[] = {
#ifdef CONFIG_SCHED_MC
	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

/*
 * init_cpu_topology is called at boot when only one cpu is running
 * which prevent simultaneous write access to cpu_topology array
 */
void __init init_cpu_topology(void)
{
	unsigned int cpu;

	/* init core mask and capacity */
	for_each_possible_cpu(cpu) {
		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);

		cpu_topo->thread_id = -1;
		cpu_topo->core_id =  -1;
		cpu_topo->socket_id = -1;
		cpumask_clear(&cpu_topo->core_sibling);
		cpumask_clear(&cpu_topo->thread_sibling);
	}
	smp_wmb();

	parse_dt_topology();

	/* Set scheduler topology descriptor */
	set_sched_topology(arm_topology);
}