summaryrefslogtreecommitdiff
path: root/arch/arm/crypto/aes-ce-glue.c
blob: 8857531915bfb0261cc35b9b1d8c70e1c4912f55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
 * aes-ce-glue.c - wrapper code for ARMv8 AES
 *
 * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <asm/hwcap.h>
#include <asm/neon.h>
#include <asm/hwcap.h>
#include <crypto/aes.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/module.h>
#include <crypto/xts.h>

MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");

/* defined in aes-ce-core.S */
asmlinkage u32 ce_aes_sub(u32 input);
asmlinkage void ce_aes_invert(void *dst, void *src);

asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
				   int rounds, int blocks);
asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
				   int rounds, int blocks);

asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
				   int rounds, int blocks, u8 iv[]);
asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
				   int rounds, int blocks, u8 iv[]);

asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
				   int rounds, int blocks, u8 ctr[]);

asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
				   int rounds, int blocks, u8 iv[],
				   u8 const rk2[], int first);
asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
				   int rounds, int blocks, u8 iv[],
				   u8 const rk2[], int first);

struct aes_block {
	u8 b[AES_BLOCK_SIZE];
};

static int num_rounds(struct crypto_aes_ctx *ctx)
{
	/*
	 * # of rounds specified by AES:
	 * 128 bit key		10 rounds
	 * 192 bit key		12 rounds
	 * 256 bit key		14 rounds
	 * => n byte key	=> 6 + (n/4) rounds
	 */
	return 6 + ctx->key_length / 4;
}

static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
			    unsigned int key_len)
{
	/*
	 * The AES key schedule round constants
	 */
	static u8 const rcon[] = {
		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
	};

	u32 kwords = key_len / sizeof(u32);
	struct aes_block *key_enc, *key_dec;
	int i, j;

	if (key_len != AES_KEYSIZE_128 &&
	    key_len != AES_KEYSIZE_192 &&
	    key_len != AES_KEYSIZE_256)
		return -EINVAL;

	memcpy(ctx->key_enc, in_key, key_len);
	ctx->key_length = key_len;

	kernel_neon_begin();
	for (i = 0; i < sizeof(rcon); i++) {
		u32 *rki = ctx->key_enc + (i * kwords);
		u32 *rko = rki + kwords;

#ifndef CONFIG_CPU_BIG_ENDIAN
		rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
		rko[0] = rko[0] ^ rki[0] ^ rcon[i];
#else
		rko[0] = rol32(ce_aes_sub(rki[kwords - 1]), 8);
		rko[0] = rko[0] ^ rki[0] ^ (rcon[i] << 24);
#endif
		rko[1] = rko[0] ^ rki[1];
		rko[2] = rko[1] ^ rki[2];
		rko[3] = rko[2] ^ rki[3];

		if (key_len == AES_KEYSIZE_192) {
			if (i >= 7)
				break;
			rko[4] = rko[3] ^ rki[4];
			rko[5] = rko[4] ^ rki[5];
		} else if (key_len == AES_KEYSIZE_256) {
			if (i >= 6)
				break;
			rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
			rko[5] = rko[4] ^ rki[5];
			rko[6] = rko[5] ^ rki[6];
			rko[7] = rko[6] ^ rki[7];
		}
	}

	/*
	 * Generate the decryption keys for the Equivalent Inverse Cipher.
	 * This involves reversing the order of the round keys, and applying
	 * the Inverse Mix Columns transformation on all but the first and
	 * the last one.
	 */
	key_enc = (struct aes_block *)ctx->key_enc;
	key_dec = (struct aes_block *)ctx->key_dec;
	j = num_rounds(ctx);

	key_dec[0] = key_enc[j];
	for (i = 1, j--; j > 0; i++, j--)
		ce_aes_invert(key_dec + i, key_enc + j);
	key_dec[i] = key_enc[0];

	kernel_neon_end();
	return 0;
}

static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
			 unsigned int key_len)
{
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	ret = ce_aes_expandkey(ctx, in_key, key_len);
	if (!ret)
		return 0;

	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
	return -EINVAL;
}

struct crypto_aes_xts_ctx {
	struct crypto_aes_ctx key1;
	struct crypto_aes_ctx __aligned(8) key2;
};

static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int ret;

	ret = xts_verify_key(tfm, in_key, key_len);
	if (ret)
		return ret;

	ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
	if (!ret)
		ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
				       key_len / 2);
	if (!ret)
		return 0;

	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
	return -EINVAL;
}

static int ecb_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int blocks;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
		ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();
	return err;
}

static int ecb_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int blocks;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
		ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();
	return err;
}

static int cbc_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int blocks;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
		ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
				   walk.iv);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();
	return err;
}

static int cbc_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	unsigned int blocks;
	int err;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
		ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
				   walk.iv);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();
	return err;
}

static int ctr_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_walk walk;
	int err, blocks;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
		ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
				   walk.iv);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	if (walk.nbytes) {
		u8 __aligned(8) tail[AES_BLOCK_SIZE];
		unsigned int nbytes = walk.nbytes;
		u8 *tdst = walk.dst.virt.addr;
		u8 *tsrc = walk.src.virt.addr;

		/*
		 * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
		 * to tell aes_ctr_encrypt() to only read half a block.
		 */
		blocks = (nbytes <= 8) ? -1 : 1;

		ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
				   num_rounds(ctx), blocks, walk.iv);
		memcpy(tdst, tail, nbytes);
		err = skcipher_walk_done(&walk, 0);
	}
	kernel_neon_end();

	return err;
}

static int xts_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int err, first, rounds = num_rounds(&ctx->key1);
	struct skcipher_walk walk;
	unsigned int blocks;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
		ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key1.key_enc, rounds, blocks,
				   walk.iv, (u8 *)ctx->key2.key_enc, first);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();

	return err;
}

static int xts_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
	int err, first, rounds = num_rounds(&ctx->key1);
	struct skcipher_walk walk;
	unsigned int blocks;

	err = skcipher_walk_virt(&walk, req, true);

	kernel_neon_begin();
	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
		ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
				   (u8 *)ctx->key1.key_dec, rounds, blocks,
				   walk.iv, (u8 *)ctx->key2.key_enc, first);
		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
	}
	kernel_neon_end();

	return err;
}

static struct skcipher_alg aes_algs[] = { {
	.base = {
		.cra_name		= "__ecb(aes)",
		.cra_driver_name	= "__ecb-aes-ce",
		.cra_priority		= 300,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
		.cra_alignmask		= 7,
		.cra_module		= THIS_MODULE,
	},
	.min_keysize	= AES_MIN_KEY_SIZE,
	.max_keysize	= AES_MAX_KEY_SIZE,
	.setkey		= ce_aes_setkey,
	.encrypt	= ecb_encrypt,
	.decrypt	= ecb_decrypt,
}, {
	.base = {
		.cra_name		= "__cbc(aes)",
		.cra_driver_name	= "__cbc-aes-ce",
		.cra_priority		= 300,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
		.cra_alignmask		= 7,
		.cra_module		= THIS_MODULE,
	},
	.min_keysize	= AES_MIN_KEY_SIZE,
	.max_keysize	= AES_MAX_KEY_SIZE,
	.ivsize		= AES_BLOCK_SIZE,
	.setkey		= ce_aes_setkey,
	.encrypt	= cbc_encrypt,
	.decrypt	= cbc_decrypt,
}, {
	.base = {
		.cra_name		= "__ctr(aes)",
		.cra_driver_name	= "__ctr-aes-ce",
		.cra_priority		= 300,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= 1,
		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
		.cra_alignmask		= 7,
		.cra_module		= THIS_MODULE,
	},
	.min_keysize	= AES_MIN_KEY_SIZE,
	.max_keysize	= AES_MAX_KEY_SIZE,
	.ivsize		= AES_BLOCK_SIZE,
	.chunksize	= AES_BLOCK_SIZE,
	.setkey		= ce_aes_setkey,
	.encrypt	= ctr_encrypt,
	.decrypt	= ctr_encrypt,
}, {
	.base = {
		.cra_name		= "__xts(aes)",
		.cra_driver_name	= "__xts-aes-ce",
		.cra_priority		= 300,
		.cra_flags		= CRYPTO_ALG_INTERNAL,
		.cra_blocksize		= AES_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
		.cra_alignmask		= 7,
		.cra_module		= THIS_MODULE,
	},
	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
	.ivsize		= AES_BLOCK_SIZE,
	.setkey		= xts_set_key,
	.encrypt	= xts_encrypt,
	.decrypt	= xts_decrypt,
} };

static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];

static void aes_exit(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
		simd_skcipher_free(aes_simd_algs[i]);

	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
}

static int __init aes_init(void)
{
	struct simd_skcipher_alg *simd;
	const char *basename;
	const char *algname;
	const char *drvname;
	int err;
	int i;

	if (!(elf_hwcap2 & HWCAP2_AES))
		return -ENODEV;

	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
	if (err)
		return err;

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
		algname = aes_algs[i].base.cra_name + 2;
		drvname = aes_algs[i].base.cra_driver_name + 2;
		basename = aes_algs[i].base.cra_driver_name;
		simd = simd_skcipher_create_compat(algname, drvname, basename);
		err = PTR_ERR(simd);
		if (IS_ERR(simd))
			goto unregister_simds;

		aes_simd_algs[i] = simd;
	}

	return 0;

unregister_simds:
	aes_exit();
	return err;
}

module_init(aes_init);
module_exit(aes_exit);