1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
.. _sphinxdoc:
Introduction
============
The Linux kernel uses `Sphinx`_ to generate pretty documentation from
`reStructuredText`_ files under ``Documentation``. To build the documentation in
HTML or PDF formats, use ``make htmldocs`` or ``make pdfdocs``. The generated
documentation is placed in ``Documentation/output``.
.. _Sphinx: http://www.sphinx-doc.org/
.. _reStructuredText: http://docutils.sourceforge.net/rst.html
The reStructuredText files may contain directives to include structured
documentation comments, or kernel-doc comments, from source files. Usually these
are used to describe the functions and types and design of the code. The
kernel-doc comments have some special structure and formatting, but beyond that
they are also treated as reStructuredText.
Finally, there are thousands of plain text documentation files scattered around
``Documentation``. Some of these will likely be converted to reStructuredText
over time, but the bulk of them will remain in plain text.
.. _sphinx_install:
Sphinx Install
==============
The ReST markups currently used by the Documentation/ files are meant to be
built with ``Sphinx`` version 1.3 or higher.
There's a script that checks for the Sphinx requirements. Please see
:ref:`sphinx-pre-install` for further details.
Most distributions are shipped with Sphinx, but its toolchain is fragile,
and it is not uncommon that upgrading it or some other Python packages
on your machine would cause the documentation build to break.
A way to avoid that is to use a different version than the one shipped
with your distributions. In order to do so, it is recommended to install
Sphinx inside a virtual environment, using ``virtualenv-3``
or ``virtualenv``, depending on how your distribution packaged Python 3.
.. note::
#) Sphinx versions below 1.5 don't work properly with Python's
docutils version 0.13.1 or higher. So, if you're willing to use
those versions, you should run ``pip install 'docutils==0.12'``.
#) It is recommended to use the RTD theme for html output. Depending
on the Sphinx version, it should be installed in separate,
with ``pip install sphinx_rtd_theme``.
#) Some ReST pages contain math expressions. Due to the way Sphinx work,
those expressions are written using LaTeX notation. It needs texlive
installed with amdfonts and amsmath in order to evaluate them.
In summary, if you want to install Sphinx version 1.7.9, you should do::
$ virtualenv sphinx_1.7.9
$ . sphinx_1.7.9/bin/activate
(sphinx_1.7.9) $ pip install -r Documentation/sphinx/requirements.txt
After running ``. sphinx_1.7.9/bin/activate``, the prompt will change,
in order to indicate that you're using the new environment. If you
open a new shell, you need to rerun this command to enter again at
the virtual environment before building the documentation.
Image output
------------
The kernel documentation build system contains an extension that
handles images on both GraphViz and SVG formats (see
:ref:`sphinx_kfigure`).
For it to work, you need to install both GraphViz and ImageMagick
packages. If those packages are not installed, the build system will
still build the documentation, but won't include any images at the
output.
PDF and LaTeX builds
--------------------
Such builds are currently supported only with Sphinx versions 1.4 and higher.
For PDF and LaTeX output, you'll also need ``XeLaTeX`` version 3.14159265.
Depending on the distribution, you may also need to install a series of
``texlive`` packages that provide the minimal set of functionalities
required for ``XeLaTeX`` to work.
.. _sphinx-pre-install:
Checking for Sphinx dependencies
--------------------------------
There's a script that automatically check for Sphinx dependencies. If it can
recognize your distribution, it will also give a hint about the install
command line options for your distro::
$ ./scripts/sphinx-pre-install
Checking if the needed tools for Fedora release 26 (Twenty Six) are available
Warning: better to also install "texlive-luatex85".
You should run:
sudo dnf install -y texlive-luatex85
/usr/bin/virtualenv sphinx_1.7.9
. sphinx_1.7.9/bin/activate
pip install -r Documentation/sphinx/requirements.txt
Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.
By default, it checks all the requirements for both html and PDF, including
the requirements for images, math expressions and LaTeX build, and assumes
that a virtual Python environment will be used. The ones needed for html
builds are assumed to be mandatory; the others to be optional.
It supports two optional parameters:
``--no-pdf``
Disable checks for PDF;
``--no-virtualenv``
Use OS packaging for Sphinx instead of Python virtual environment.
Sphinx Build
============
The usual way to generate the documentation is to run ``make htmldocs`` or
``make pdfdocs``. There are also other formats available, see the documentation
section of ``make help``. The generated documentation is placed in
format-specific subdirectories under ``Documentation/output``.
To generate documentation, Sphinx (``sphinx-build``) must obviously be
installed. For prettier HTML output, the Read the Docs Sphinx theme
(``sphinx_rtd_theme``) is used if available. For PDF output you'll also need
``XeLaTeX`` and ``convert(1)`` from ImageMagick (https://www.imagemagick.org).
All of these are widely available and packaged in distributions.
To pass extra options to Sphinx, you can use the ``SPHINXOPTS`` make
variable. For example, use ``make SPHINXOPTS=-v htmldocs`` to get more verbose
output.
To remove the generated documentation, run ``make cleandocs``.
Writing Documentation
=====================
Adding new documentation can be as simple as:
1. Add a new ``.rst`` file somewhere under ``Documentation``.
2. Refer to it from the Sphinx main `TOC tree`_ in ``Documentation/index.rst``.
.. _TOC tree: http://www.sphinx-doc.org/en/stable/markup/toctree.html
This is usually good enough for simple documentation (like the one you're
reading right now), but for larger documents it may be advisable to create a
subdirectory (or use an existing one). For example, the graphics subsystem
documentation is under ``Documentation/gpu``, split to several ``.rst`` files,
and has a separate ``index.rst`` (with a ``toctree`` of its own) referenced from
the main index.
See the documentation for `Sphinx`_ and `reStructuredText`_ on what you can do
with them. In particular, the Sphinx `reStructuredText Primer`_ is a good place
to get started with reStructuredText. There are also some `Sphinx specific
markup constructs`_.
.. _reStructuredText Primer: http://www.sphinx-doc.org/en/stable/rest.html
.. _Sphinx specific markup constructs: http://www.sphinx-doc.org/en/stable/markup/index.html
Specific guidelines for the kernel documentation
------------------------------------------------
Here are some specific guidelines for the kernel documentation:
* Please don't go overboard with reStructuredText markup. Keep it
simple. For the most part the documentation should be plain text with
just enough consistency in formatting that it can be converted to
other formats.
* Please keep the formatting changes minimal when converting existing
documentation to reStructuredText.
* Also update the content, not just the formatting, when converting
documentation.
* Please stick to this order of heading adornments:
1. ``=`` with overline for document title::
==============
Document title
==============
2. ``=`` for chapters::
Chapters
========
3. ``-`` for sections::
Section
-------
4. ``~`` for subsections::
Subsection
~~~~~~~~~~
Although RST doesn't mandate a specific order ("Rather than imposing a fixed
number and order of section title adornment styles, the order enforced will be
the order as encountered."), having the higher levels the same overall makes
it easier to follow the documents.
* For inserting fixed width text blocks (for code examples, use case
examples, etc.), use ``::`` for anything that doesn't really benefit
from syntax highlighting, especially short snippets. Use
``.. code-block:: <language>`` for longer code blocks that benefit
from highlighting. For a short snippet of code embedded in the text, use \`\`.
the C domain
------------
The **Sphinx C Domain** (name c) is suited for documentation of C API. E.g. a
function prototype:
.. code-block:: rst
.. c:function:: int ioctl( int fd, int request )
The C domain of the kernel-doc has some additional features. E.g. you can
*rename* the reference name of a function with a common name like ``open`` or
``ioctl``:
.. code-block:: rst
.. c:function:: int ioctl( int fd, int request )
:name: VIDIOC_LOG_STATUS
The func-name (e.g. ioctl) remains in the output but the ref-name changed from
``ioctl`` to ``VIDIOC_LOG_STATUS``. The index entry for this function is also
changed to ``VIDIOC_LOG_STATUS``.
Please note that there is no need to use ``c:func:`` to generate cross
references to function documentation. Due to some Sphinx extension magic,
the documentation build system will automatically turn a reference to
``function()`` into a cross reference if an index entry for the given
function name exists. If you see ``c:func:`` use in a kernel document,
please feel free to remove it.
list tables
-----------
We recommend the use of *list table* formats. The *list table* formats are
double-stage lists. Compared to the ASCII-art they might not be as
comfortable for
readers of the text files. Their advantage is that they are easy to
create or modify and that the diff of a modification is much more meaningful,
because it is limited to the modified content.
The ``flat-table`` is a double-stage list similar to the ``list-table`` with
some additional features:
* column-span: with the role ``cspan`` a cell can be extended through
additional columns
* row-span: with the role ``rspan`` a cell can be extended through
additional rows
* auto span rightmost cell of a table row over the missing cells on the right
side of that table-row. With Option ``:fill-cells:`` this behavior can
changed from *auto span* to *auto fill*, which automatically inserts (empty)
cells instead of spanning the last cell.
options:
* ``:header-rows:`` [int] count of header rows
* ``:stub-columns:`` [int] count of stub columns
* ``:widths:`` [[int] [int] ... ] widths of columns
* ``:fill-cells:`` instead of auto-spanning missing cells, insert missing cells
roles:
* ``:cspan:`` [int] additional columns (*morecols*)
* ``:rspan:`` [int] additional rows (*morerows*)
The example below shows how to use this markup. The first level of the staged
list is the *table-row*. In the *table-row* there is only one markup allowed,
the list of the cells in this *table-row*. Exceptions are *comments* ( ``..`` )
and *targets* (e.g. a ref to ``:ref:`last row <last row>``` / :ref:`last row
<last row>`).
.. code-block:: rst
.. flat-table:: table title
:widths: 2 1 1 3
* - head col 1
- head col 2
- head col 3
- head col 4
* - column 1
- field 1.1
- field 1.2 with autospan
* - column 2
- field 2.1
- :rspan:`1` :cspan:`1` field 2.2 - 3.3
* .. _`last row`:
- column 3
Rendered as:
.. flat-table:: table title
:widths: 2 1 1 3
* - head col 1
- head col 2
- head col 3
- head col 4
* - column 1
- field 1.1
- field 1.2 with autospan
* - column 2
- field 2.1
- :rspan:`1` :cspan:`1` field 2.2 - 3.3
* .. _`last row`:
- column 3
Cross-referencing
-----------------
Cross-referencing from one documentation page to another can be done by passing
the path to the file starting from the Documentation folder.
For example, to cross-reference to this page (the .rst extension is optional)::
See Documentation/doc-guide/sphinx.rst.
If you want to use a relative path, you need to use Sphinx's ``doc`` directive.
For example, referencing this page from the same directory would be done as::
See :doc:`sphinx`.
For information on cross-referencing to kernel-doc functions or types, see
Documentation/doc-guide/kernel-doc.rst.
.. _sphinx_kfigure:
Figures & Images
================
If you want to add an image, you should use the ``kernel-figure`` and
``kernel-image`` directives. E.g. to insert a figure with a scalable
image format use SVG (:ref:`svg_image_example`)::
.. kernel-figure:: svg_image.svg
:alt: simple SVG image
SVG image example
.. _svg_image_example:
.. kernel-figure:: svg_image.svg
:alt: simple SVG image
SVG image example
The kernel figure (and image) directive support **DOT** formatted files, see
* DOT: http://graphviz.org/pdf/dotguide.pdf
* Graphviz: http://www.graphviz.org/content/dot-language
A simple example (:ref:`hello_dot_file`)::
.. kernel-figure:: hello.dot
:alt: hello world
DOT's hello world example
.. _hello_dot_file:
.. kernel-figure:: hello.dot
:alt: hello world
DOT's hello world example
Embed *render* markups (or languages) like Graphviz's **DOT** is provided by the
``kernel-render`` directives.::
.. kernel-render:: DOT
:alt: foobar digraph
:caption: Embedded **DOT** (Graphviz) code
digraph foo {
"bar" -> "baz";
}
How this will be rendered depends on the installed tools. If Graphviz is
installed, you will see an vector image. If not the raw markup is inserted as
*literal-block* (:ref:`hello_dot_render`).
.. _hello_dot_render:
.. kernel-render:: DOT
:alt: foobar digraph
:caption: Embedded **DOT** (Graphviz) code
digraph foo {
"bar" -> "baz";
}
The *render* directive has all the options known from the *figure* directive,
plus option ``caption``. If ``caption`` has a value, a *figure* node is
inserted. If not, a *image* node is inserted. A ``caption`` is also needed, if
you want to refer it (:ref:`hello_svg_render`).
Embedded **SVG**::
.. kernel-render:: SVG
:caption: Embedded **SVG** markup
:alt: so-nw-arrow
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" ...>
...
</svg>
.. _hello_svg_render:
.. kernel-render:: SVG
:caption: Embedded **SVG** markup
:alt: so-nw-arrow
<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"
version="1.1" baseProfile="full" width="70px" height="40px" viewBox="0 0 700 400">
<line x1="180" y1="370" x2="500" y2="50" stroke="black" stroke-width="15px"/>
<polygon points="585 0 525 25 585 50" transform="rotate(135 525 25)"/>
</svg>
|