1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
|
.. SPDX-License-Identifier: GPL-2.0
==================================================
Booting the Linux/ppc kernel without Open Firmware
==================================================
Copyright (c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
IBM Corp.
Copyright (c) 2005 Becky Bruce <becky.bruce at freescale.com>,
Freescale Semiconductor, FSL SOC and 32-bit additions
Copyright (c) 2006 MontaVista Software, Inc.
Flash chip node definition
.. Table of Contents
I - Introduction
1) Entry point for arch/arm
2) Entry point for arch/powerpc
3) Entry point for arch/x86
4) Entry point for arch/mips/bmips
5) Entry point for arch/sh
II - The DT block format
1) Header
2) Device tree generalities
3) Device tree "structure" block
4) Device tree "strings" block
III - Required content of the device tree
1) Note about cells and address representation
2) Note about "compatible" properties
3) Note about "name" properties
4) Note about node and property names and character set
5) Required nodes and properties
a) The root node
b) The /cpus node
c) The /cpus/* nodes
d) the /memory node(s)
e) The /chosen node
f) the /soc<SOCname> node
IV - "dtc", the device tree compiler
V - Recommendations for a bootloader
VI - System-on-a-chip devices and nodes
1) Defining child nodes of an SOC
2) Representing devices without a current OF specification
VII - Specifying interrupt information for devices
1) interrupts property
2) interrupt-parent property
3) OpenPIC Interrupt Controllers
4) ISA Interrupt Controllers
VIII - Specifying device power management information (sleep property)
IX - Specifying dma bus information
Appendix A - Sample SOC node for MPC8540
Revision Information
====================
May 18, 2005: Rev 0.1
- Initial draft, no chapter III yet.
May 19, 2005: Rev 0.2
- Add chapter III and bits & pieces here or
clarifies the fact that a lot of things are
optional, the kernel only requires a very
small device tree, though it is encouraged
to provide an as complete one as possible.
May 24, 2005: Rev 0.3
- Precise that DT block has to be in RAM
- Misc fixes
- Define version 3 and new format version 16
for the DT block (version 16 needs kernel
patches, will be fwd separately).
String block now has a size, and full path
is replaced by unit name for more
compactness.
linux,phandle is made optional, only nodes
that are referenced by other nodes need it.
"name" property is now automatically
deduced from the unit name
June 1, 2005: Rev 0.4
- Correct confusion between OF_DT_END and
OF_DT_END_NODE in structure definition.
- Change version 16 format to always align
property data to 4 bytes. Since tokens are
already aligned, that means no specific
required alignment between property size
and property data. The old style variable
alignment would make it impossible to do
"simple" insertion of properties using
memmove (thanks Milton for
noticing). Updated kernel patch as well
- Correct a few more alignment constraints
- Add a chapter about the device-tree
compiler and the textural representation of
the tree that can be "compiled" by dtc.
November 21, 2005: Rev 0.5
- Additions/generalizations for 32-bit
- Changed to reflect the new arch/powerpc
structure
- Added chapter VI
ToDo:
- Add some definitions of interrupt tree (simple/complex)
- Add some definitions for PCI host bridges
- Add some common address format examples
- Add definitions for standard properties and "compatible"
names for cells that are not already defined by the existing
OF spec.
- Compare FSL SOC use of PCI to standard and make sure no new
node definition required.
- Add more information about node definitions for SOC devices
that currently have no standard, like the FSL CPM.
I - Introduction
================
During the development of the Linux/ppc64 kernel, and more
specifically, the addition of new platform types outside of the old
IBM pSeries/iSeries pair, it was decided to enforce some strict rules
regarding the kernel entry and bootloader <-> kernel interfaces, in
order to avoid the degeneration that had become the ppc32 kernel entry
point and the way a new platform should be added to the kernel. The
legacy iSeries platform breaks those rules as it predates this scheme,
but no new board support will be accepted in the main tree that
doesn't follow them properly. In addition, since the advent of the
arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
platforms and 32-bit platforms which move into arch/powerpc will be
required to use these rules as well.
The main requirement that will be defined in more detail below is
the presence of a device-tree whose format is defined after Open
Firmware specification. However, in order to make life easier
to embedded board vendors, the kernel doesn't require the device-tree
to represent every device in the system and only requires some nodes
and properties to be present. This will be described in detail in
section III, but, for example, the kernel does not require you to
create a node for every PCI device in the system. It is a requirement
to have a node for PCI host bridges in order to provide interrupt
routing information and memory/IO ranges, among others. It is also
recommended to define nodes for on chip devices and other buses that
don't specifically fit in an existing OF specification. This creates a
great flexibility in the way the kernel can then probe those and match
drivers to device, without having to hard code all sorts of tables. It
also makes it more flexible for board vendors to do minor hardware
upgrades without significantly impacting the kernel code or cluttering
it with special cases.
1) Entry point for arch/arm
---------------------------
There is one single entry point to the kernel, at the start
of the kernel image. That entry point supports two calling
conventions. A summary of the interface is described here. A full
description of the boot requirements is documented in
Documentation/arm/booting.rst
a) ATAGS interface. Minimal information is passed from firmware
to the kernel with a tagged list of predefined parameters.
r0 : 0
r1 : Machine type number
r2 : Physical address of tagged list in system RAM
b) Entry with a flattened device-tree block. Firmware loads the
physical address of the flattened device tree block (dtb) into r2,
r1 is not used, but it is considered good practice to use a valid
machine number as described in Documentation/arm/booting.rst.
r0 : 0
r1 : Valid machine type number. When using a device tree,
a single machine type number will often be assigned to
represent a class or family of SoCs.
r2 : physical pointer to the device-tree block
(defined in chapter II) in RAM. Device tree can be located
anywhere in system RAM, but it should be aligned on a 64 bit
boundary.
The kernel will differentiate between ATAGS and device tree booting by
reading the memory pointed to by r2 and looking for either the flattened
device tree block magic value (0xd00dfeed) or the ATAG_CORE value at
offset 0x4 from r2 (0x54410001).
2) Entry point for arch/powerpc
-------------------------------
There is one single entry point to the kernel, at the start
of the kernel image. That entry point supports two calling
conventions:
a) Boot from Open Firmware. If your firmware is compatible
with Open Firmware (IEEE 1275) or provides an OF compatible
client interface API (support for "interpret" callback of
forth words isn't required), you can enter the kernel with:
r5 : OF callback pointer as defined by IEEE 1275
bindings to powerpc. Only the 32-bit client interface
is currently supported
r3, r4 : address & length of an initrd if any or 0
The MMU is either on or off; the kernel will run the
trampoline located in arch/powerpc/kernel/prom_init.c to
extract the device-tree and other information from open
firmware and build a flattened device-tree as described
in b). prom_init() will then re-enter the kernel using
the second method. This trampoline code runs in the
context of the firmware, which is supposed to handle all
exceptions during that time.
b) Direct entry with a flattened device-tree block. This entry
point is called by a) after the OF trampoline and can also be
called directly by a bootloader that does not support the Open
Firmware client interface. It is also used by "kexec" to
implement "hot" booting of a new kernel from a previous
running one. This method is what I will describe in more
details in this document, as method a) is simply standard Open
Firmware, and thus should be implemented according to the
various standard documents defining it and its binding to the
PowerPC platform. The entry point definition then becomes:
r3 : physical pointer to the device-tree block
(defined in chapter II) in RAM
r4 : physical pointer to the kernel itself. This is
used by the assembly code to properly disable the MMU
in case you are entering the kernel with MMU enabled
and a non-1:1 mapping.
r5 : NULL (as to differentiate with method a)
Note about SMP entry: Either your firmware puts your other
CPUs in some sleep loop or spin loop in ROM where you can get
them out via a soft reset or some other means, in which case
you don't need to care, or you'll have to enter the kernel
with all CPUs. The way to do that with method b) will be
described in a later revision of this document.
Board supports (platforms) are not exclusive config options. An
arbitrary set of board supports can be built in a single kernel
image. The kernel will "know" what set of functions to use for a
given platform based on the content of the device-tree. Thus, you
should:
a) add your platform support as a _boolean_ option in
arch/powerpc/Kconfig, following the example of PPC_PSERIES,
PPC_PMAC and PPC_MAPLE. The later is probably a good
example of a board support to start from.
b) create your main platform file as
"arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
to the Makefile under the condition of your ``CONFIG_``
option. This file will define a structure of type "ppc_md"
containing the various callbacks that the generic code will
use to get to your platform specific code
A kernel image may support multiple platforms, but only if the
platforms feature the same core architecture. A single kernel build
cannot support both configurations with Book E and configurations
with classic Powerpc architectures.
3) Entry point for arch/x86
---------------------------
There is one single 32bit entry point to the kernel at code32_start,
the decompressor (the real mode entry point goes to the same 32bit
entry point once it switched into protected mode). That entry point
supports one calling convention which is documented in
Documentation/x86/boot.rst
The physical pointer to the device-tree block (defined in chapter II)
is passed via setup_data which requires at least boot protocol 2.09.
The type filed is defined as::
#define SETUP_DTB 2
This device-tree is used as an extension to the "boot page". As such it
does not parse / consider data which is already covered by the boot
page. This includes memory size, reserved ranges, command line arguments
or initrd address. It simply holds information which can not be retrieved
otherwise like interrupt routing or a list of devices behind an I2C bus.
4) Entry point for arch/mips/bmips
----------------------------------
Some bootloaders only support a single entry point, at the start of the
kernel image. Other bootloaders will jump to the ELF start address.
Both schemes are supported; CONFIG_BOOT_RAW=y and CONFIG_NO_EXCEPT_FILL=y,
so the first instruction immediately jumps to kernel_entry().
Similar to the arch/arm case (b), a DT-aware bootloader is expected to
set up the following registers:
a0 : 0
a1 : 0xffffffff
a2 : Physical pointer to the device tree block (defined in chapter
II) in RAM. The device tree can be located anywhere in the first
512MB of the physical address space (0x00000000 - 0x1fffffff),
aligned on a 64 bit boundary.
Legacy bootloaders do not use this convention, and they do not pass in a
DT block. In this case, Linux will look for a builtin DTB, selected via
CONFIG_DT_*.
This convention is defined for 32-bit systems only, as there are not
currently any 64-bit BMIPS implementations.
5) Entry point for arch/sh
--------------------------
Device-tree-compatible SH bootloaders are expected to provide the physical
address of the device tree blob in r4. Since legacy bootloaders did not
guarantee any particular initial register state, kernels built to
inter-operate with old bootloaders must either use a builtin DTB or
select a legacy board option (something other than CONFIG_SH_DEVICE_TREE)
that does not use device tree. Support for the latter is being phased out
in favor of device tree.
II - The DT block format
========================
This chapter defines the actual format of the flattened device-tree
passed to the kernel. The actual content of it and kernel requirements
are described later. You can find example of code manipulating that
format in various places, including arch/powerpc/kernel/prom_init.c
which will generate a flattened device-tree from the Open Firmware
representation, or the fs2dt utility which is part of the kexec tools
which will generate one from a filesystem representation. It is
expected that a bootloader like uboot provides a bit more support,
that will be discussed later as well.
Note: The block has to be in main memory. It has to be accessible in
both real mode and virtual mode with no mapping other than main
memory. If you are writing a simple flash bootloader, it should copy
the block to RAM before passing it to the kernel.
1) Header
---------
The kernel is passed the physical address pointing to an area of memory
that is roughly described in include/linux/of_fdt.h by the structure
boot_param_header:::
struct boot_param_header {
u32 magic; /* magic word OF_DT_HEADER */
u32 totalsize; /* total size of DT block */
u32 off_dt_struct; /* offset to structure */
u32 off_dt_strings; /* offset to strings */
u32 off_mem_rsvmap; /* offset to memory reserve map
*/
u32 version; /* format version */
u32 last_comp_version; /* last compatible version */
/* version 2 fields below */
u32 boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
u32 size_dt_strings; /* size of the strings block */
/* version 17 fields below */
u32 size_dt_struct; /* size of the DT structure block */
};
Along with the constants::
/* Definitions used by the flattened device tree */
#define OF_DT_HEADER 0xd00dfeed /* 4: version,
4: total size */
#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
*/
#define OF_DT_END_NODE 0x2 /* End node */
#define OF_DT_PROP 0x3 /* Property: name off,
size, content */
#define OF_DT_END 0x9
All values in this header are in big endian format, the various
fields in this header are defined more precisely below. All
"offset" values are in bytes from the start of the header; that is
from the physical base address of the device tree block.
- magic
This is a magic value that "marks" the beginning of the
device-tree block header. It contains the value 0xd00dfeed and is
defined by the constant OF_DT_HEADER
- totalsize
This is the total size of the DT block including the header. The
"DT" block should enclose all data structures defined in this
chapter (who are pointed to by offsets in this header). That is,
the device-tree structure, strings, and the memory reserve map.
- off_dt_struct
This is an offset from the beginning of the header to the start
of the "structure" part the device tree. (see 2) device tree)
- off_dt_strings
This is an offset from the beginning of the header to the start
of the "strings" part of the device-tree
- off_mem_rsvmap
This is an offset from the beginning of the header to the start
of the reserved memory map. This map is a list of pairs of 64-
bit integers. Each pair is a physical address and a size. The
list is terminated by an entry of size 0. This map provides the
kernel with a list of physical memory areas that are "reserved"
and thus not to be used for memory allocations, especially during
early initialization. The kernel needs to allocate memory during
boot for things like un-flattening the device-tree, allocating an
MMU hash table, etc... Those allocations must be done in such a
way to avoid overriding critical things like, on Open Firmware
capable machines, the RTAS instance, or on some pSeries, the TCE
tables used for the iommu. Typically, the reserve map should
contain **at least** this DT block itself (header,total_size). If
you are passing an initrd to the kernel, you should reserve it as
well. You do not need to reserve the kernel image itself. The map
should be 64-bit aligned.
- version
This is the version of this structure. Version 1 stops
here. Version 2 adds an additional field boot_cpuid_phys.
Version 3 adds the size of the strings block, allowing the kernel
to reallocate it easily at boot and free up the unused flattened
structure after expansion. Version 16 introduces a new more
"compact" format for the tree itself that is however not backward
compatible. Version 17 adds an additional field, size_dt_struct,
allowing it to be reallocated or moved more easily (this is
particularly useful for bootloaders which need to make
adjustments to a device tree based on probed information). You
should always generate a structure of the highest version defined
at the time of your implementation. Currently that is version 17,
unless you explicitly aim at being backward compatible.
- last_comp_version
Last compatible version. This indicates down to what version of
the DT block you are backward compatible. For example, version 2
is backward compatible with version 1 (that is, a kernel build
for version 1 will be able to boot with a version 2 format). You
should put a 1 in this field if you generate a device tree of
version 1 to 3, or 16 if you generate a tree of version 16 or 17
using the new unit name format.
- boot_cpuid_phys
This field only exist on version 2 headers. It indicate which
physical CPU ID is calling the kernel entry point. This is used,
among others, by kexec. If you are on an SMP system, this value
should match the content of the "reg" property of the CPU node in
the device-tree corresponding to the CPU calling the kernel entry
point (see further chapters for more information on the required
device-tree contents)
- size_dt_strings
This field only exists on version 3 and later headers. It
gives the size of the "strings" section of the device tree (which
starts at the offset given by off_dt_strings).
- size_dt_struct
This field only exists on version 17 and later headers. It gives
the size of the "structure" section of the device tree (which
starts at the offset given by off_dt_struct).
So the typical layout of a DT block (though the various parts don't
need to be in that order) looks like this (addresses go from top to
bottom)::
------------------------------
base -> | struct boot_param_header |
------------------------------
| (alignment gap) (*) |
------------------------------
| memory reserve map |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree structure |
| |
------------------------------
| (alignment gap) |
------------------------------
| |
| device-tree strings |
| |
-----> ------------------------------
|
|
--- (base + totalsize)
(*) The alignment gaps are not necessarily present; their presence
and size are dependent on the various alignment requirements of
the individual data blocks.
2) Device tree generalities
---------------------------
This device-tree itself is separated in two different blocks, a
structure block and a strings block. Both need to be aligned to a 4
byte boundary.
First, let's quickly describe the device-tree concept before detailing
the storage format. This chapter does _not_ describe the detail of the
required types of nodes & properties for the kernel, this is done
later in chapter III.
The device-tree layout is strongly inherited from the definition of
the Open Firmware IEEE 1275 device-tree. It's basically a tree of
nodes, each node having two or more named properties. A property can
have a value or not.
It is a tree, so each node has one and only one parent except for the
root node who has no parent.
A node has 2 names. The actual node name is generally contained in a
property of type "name" in the node property list whose value is a
zero terminated string and is mandatory for version 1 to 3 of the
format definition (as it is in Open Firmware). Version 16 makes it
optional as it can generate it from the unit name defined below.
There is also a "unit name" that is used to differentiate nodes with
the same name at the same level, it is usually made of the node
names, the "@" sign, and a "unit address", which definition is
specific to the bus type the node sits on.
The unit name doesn't exist as a property per-se but is included in
the device-tree structure. It is typically used to represent "path" in
the device-tree. More details about the actual format of these will be
below.
The kernel generic code does not make any formal use of the
unit address (though some board support code may do) so the only real
requirement here for the unit address is to ensure uniqueness of
the node unit name at a given level of the tree. Nodes with no notion
of address and no possible sibling of the same name (like /memory or
/cpus) may omit the unit address in the context of this specification,
or use the "@0" default unit address. The unit name is used to define
a node "full path", which is the concatenation of all parent node
unit names separated with "/".
The root node doesn't have a defined name, and isn't required to have
a name property either if you are using version 3 or earlier of the
format. It also has no unit address (no @ symbol followed by a unit
address). The root node unit name is thus an empty string. The full
path to the root node is "/".
Every node which actually represents an actual device (that is, a node
which isn't only a virtual "container" for more nodes, like "/cpus"
is) is also required to have a "compatible" property indicating the
specific hardware and an optional list of devices it is fully
backwards compatible with.
Finally, every node that can be referenced from a property in another
node is required to have either a "phandle" or a "linux,phandle"
property. Real Open Firmware implementations provide a unique
"phandle" value for every node that the "prom_init()" trampoline code
turns into "linux,phandle" properties. However, this is made optional
if the flattened device tree is used directly. An example of a node
referencing another node via "phandle" is when laying out the
interrupt tree which will be described in a further version of this
document.
The "phandle" property is a 32-bit value that uniquely
identifies a node. You are free to use whatever values or system of
values, internal pointers, or whatever to generate these, the only
requirement is that every node for which you provide that property has
a unique value for it.
Here is an example of a simple device-tree. In this example, an "o"
designates a node followed by the node unit name. Properties are
presented with their name followed by their content. "content"
represents an ASCII string (zero terminated) value, while <content>
represents a 32-bit value, specified in decimal or hexadecimal (the
latter prefixed 0x). The various nodes in this example will be
discussed in a later chapter. At this point, it is only meant to give
you a idea of what a device-tree looks like. I have purposefully kept
the "name" and "linux,phandle" properties which aren't necessary in
order to give you a better idea of what the tree looks like in
practice::
/ o device-tree
|- name = "device-tree"
|- model = "MyBoardName"
|- compatible = "MyBoardFamilyName"
|- #address-cells = <2>
|- #size-cells = <2>
|- linux,phandle = <0>
|
o cpus
| | - name = "cpus"
| | - linux,phandle = <1>
| | - #address-cells = <1>
| | - #size-cells = <0>
| |
| o PowerPC,970@0
| |- name = "PowerPC,970"
| |- device_type = "cpu"
| |- reg = <0>
| |- clock-frequency = <0x5f5e1000>
| |- 64-bit
| |- linux,phandle = <2>
|
o memory@0
| |- name = "memory"
| |- device_type = "memory"
| |- reg = <0x00000000 0x00000000 0x00000000 0x20000000>
| |- linux,phandle = <3>
|
o chosen
|- name = "chosen"
|- bootargs = "root=/dev/sda2"
|- linux,phandle = <4>
This tree is almost a minimal tree. It pretty much contains the
minimal set of required nodes and properties to boot a linux kernel;
that is, some basic model information at the root, the CPUs, and the
physical memory layout. It also includes misc information passed
through /chosen, like in this example, the platform type (mandatory)
and the kernel command line arguments (optional).
The /cpus/PowerPC,970@0/64-bit property is an example of a
property without a value. All other properties have a value. The
significance of the #address-cells and #size-cells properties will be
explained in chapter IV which defines precisely the required nodes and
properties and their content.
3) Device tree "structure" block
--------------------------------
The structure of the device tree is a linearized tree structure. The
"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
ends that node definition. Child nodes are simply defined before
"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
bit value. The tree has to be "finished" with a OF_DT_END token
Here's the basic structure of a single node:
* token OF_DT_BEGIN_NODE (that is 0x00000001)
* for version 1 to 3, this is the node full path as a zero
terminated string, starting with "/". For version 16 and later,
this is the node unit name only (or an empty string for the
root node)
* [align gap to next 4 bytes boundary]
* for each property:
* token OF_DT_PROP (that is 0x00000003)
* 32-bit value of property value size in bytes (or 0 if no
value)
* 32-bit value of offset in string block of property name
* property value data if any
* [align gap to next 4 bytes boundary]
* [child nodes if any]
* token OF_DT_END_NODE (that is 0x00000002)
So the node content can be summarized as a start token, a full path,
a list of properties, a list of child nodes, and an end token. Every
child node is a full node structure itself as defined above.
NOTE: The above definition requires that all property definitions for
a particular node MUST precede any subnode definitions for that node.
Although the structure would not be ambiguous if properties and
subnodes were intermingled, the kernel parser requires that the
properties come first (up until at least 2.6.22). Any tools
manipulating a flattened tree must take care to preserve this
constraint.
4) Device tree "strings" block
------------------------------
In order to save space, property names, which are generally redundant,
are stored separately in the "strings" block. This block is simply the
whole bunch of zero terminated strings for all property names
concatenated together. The device-tree property definitions in the
structure block will contain offset values from the beginning of the
strings block.
III - Required content of the device tree
=========================================
.. Warning::
All ``linux,*`` properties defined in this document apply only
to a flattened device-tree. If your platform uses a real
implementation of Open Firmware or an implementation compatible with
the Open Firmware client interface, those properties will be created
by the trampoline code in the kernel's prom_init() file. For example,
that's where you'll have to add code to detect your board model and
set the platform number. However, when using the flattened device-tree
entry point, there is no prom_init() pass, and thus you have to
provide those properties yourself.
1) Note about cells and address representation
----------------------------------------------
The general rule is documented in the various Open Firmware
documentations. If you choose to describe a bus with the device-tree
and there exist an OF bus binding, then you should follow the
specification. However, the kernel does not require every single
device or bus to be described by the device tree.
In general, the format of an address for a device is defined by the
parent bus type, based on the #address-cells and #size-cells
properties. Note that the parent's parent definitions of #address-cells
and #size-cells are not inherited so every node with children must specify
them. The kernel requires the root node to have those properties defining
addresses format for devices directly mapped on the processor bus.
Those 2 properties define 'cells' for representing an address and a
size. A "cell" is a 32-bit number. For example, if both contain 2
like the example tree given above, then an address and a size are both
composed of 2 cells, and each is a 64-bit number (cells are
concatenated and expected to be in big endian format). Another example
is the way Apple firmware defines them, with 2 cells for an address
and one cell for a size. Most 32-bit implementations should define
#address-cells and #size-cells to 1, which represents a 32-bit value.
Some 32-bit processors allow for physical addresses greater than 32
bits; these processors should define #address-cells as 2.
"reg" properties are always a tuple of the type "address size" where
the number of cells of address and size is specified by the bus
#address-cells and #size-cells. When a bus supports various address
spaces and other flags relative to a given address allocation (like
prefetchable, etc...) those flags are usually added to the top level
bits of the physical address. For example, a PCI physical address is
made of 3 cells, the bottom two containing the actual address itself
while the top cell contains address space indication, flags, and pci
bus & device numbers.
For buses that support dynamic allocation, it's the accepted practice
to then not provide the address in "reg" (keep it 0) though while
providing a flag indicating the address is dynamically allocated, and
then, to provide a separate "assigned-addresses" property that
contains the fully allocated addresses. See the PCI OF bindings for
details.
In general, a simple bus with no address space bits and no dynamic
allocation is preferred if it reflects your hardware, as the existing
kernel address parsing functions will work out of the box. If you
define a bus type with a more complex address format, including things
like address space bits, you'll have to add a bus translator to the
prom_parse.c file of the recent kernels for your bus type.
The "reg" property only defines addresses and sizes (if #size-cells is
non-0) within a given bus. In order to translate addresses upward
(that is into parent bus addresses, and possibly into CPU physical
addresses), all buses must contain a "ranges" property. If the
"ranges" property is missing at a given level, it's assumed that
translation isn't possible, i.e., the registers are not visible on the
parent bus. The format of the "ranges" property for a bus is a list
of::
bus address, parent bus address, size
"bus address" is in the format of the bus this bus node is defining,
that is, for a PCI bridge, it would be a PCI address. Thus, (bus
address, size) defines a range of addresses for child devices. "parent
bus address" is in the format of the parent bus of this bus. For
example, for a PCI host controller, that would be a CPU address. For a
PCI<->ISA bridge, that would be a PCI address. It defines the base
address in the parent bus where the beginning of that range is mapped.
For new 64-bit board support, I recommend either the 2/2 format or
Apple's 2/1 format which is slightly more compact since sizes usually
fit in a single 32-bit word. New 32-bit board support should use a
1/1 format, unless the processor supports physical addresses greater
than 32-bits, in which case a 2/1 format is recommended.
Alternatively, the "ranges" property may be empty, indicating that the
registers are visible on the parent bus using an identity mapping
translation. In other words, the parent bus address space is the same
as the child bus address space.
2) Note about "compatible" properties
-------------------------------------
These properties are optional, but recommended in devices and the root
node. The format of a "compatible" property is a list of concatenated
zero terminated strings. They allow a device to express its
compatibility with a family of similar devices, in some cases,
allowing a single driver to match against several devices regardless
of their actual names.
3) Note about "name" properties
-------------------------------
While earlier users of Open Firmware like OldWorld macintoshes tended
to use the actual device name for the "name" property, it's nowadays
considered a good practice to use a name that is closer to the device
class (often equal to device_type). For example, nowadays, Ethernet
controllers are named "ethernet", an additional "model" property
defining precisely the chip type/model, and "compatible" property
defining the family in case a single driver can driver more than one
of these chips. However, the kernel doesn't generally put any
restriction on the "name" property; it is simply considered good
practice to follow the standard and its evolutions as closely as
possible.
Note also that the new format version 16 makes the "name" property
optional. If it's absent for a node, then the node's unit name is then
used to reconstruct the name. That is, the part of the unit name
before the "@" sign is used (or the entire unit name if no "@" sign
is present).
4) Note about node and property names and character set
-------------------------------------------------------
While Open Firmware provides more flexible usage of 8859-1, this
specification enforces more strict rules. Nodes and properties should
be comprised only of ASCII characters 'a' to 'z', '0' to
'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
allow uppercase characters 'A' to 'Z' (property names should be
lowercase. The fact that vendors like Apple don't respect this rule is
irrelevant here). Additionally, node and property names should always
begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
names).
The maximum number of characters for both nodes and property names
is 31. In the case of node names, this is only the leftmost part of
a unit name (the pure "name" property), it doesn't include the unit
address which can extend beyond that limit.
5) Required nodes and properties
--------------------------------
These are all that are currently required. However, it is strongly
recommended that you expose PCI host bridges as documented in the
PCI binding to Open Firmware, and your interrupt tree as documented
in OF interrupt tree specification.
a) The root node
The root node requires some properties to be present:
- model : this is your board name/model
- #address-cells : address representation for "root" devices
- #size-cells: the size representation for "root" devices
- compatible : the board "family" generally finds its way here,
for example, if you have 2 board models with a similar layout,
that typically get driven by the same platform code in the
kernel, you would specify the exact board model in the
compatible property followed by an entry that represents the SoC
model.
The root node is also generally where you add additional properties
specific to your board like the serial number if any, that sort of
thing. It is recommended that if you add any "custom" property whose
name may clash with standard defined ones, you prefix them with your
vendor name and a comma.
Additional properties for the root node:
- serial-number : a string representing the device's serial number
b) The /cpus node
This node is the parent of all individual CPU nodes. It doesn't
have any specific requirements, though it's generally good practice
to have at least::
#address-cells = <00000001>
#size-cells = <00000000>
This defines that the "address" for a CPU is a single cell, and has
no meaningful size. This is not necessary but the kernel will assume
that format when reading the "reg" properties of a CPU node, see
below
c) The ``/cpus/*`` nodes
So under /cpus, you are supposed to create a node for every CPU on
the machine. There is no specific restriction on the name of the
CPU, though it's common to call it <architecture>,<core>. For
example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
However, the Generic Names convention suggests that it would be
better to simply use 'cpu' for each cpu node and use the compatible
property to identify the specific cpu core.
Required properties:
- device_type : has to be "cpu"
- reg : This is the physical CPU number, it's a single 32-bit cell
and is also used as-is as the unit number for constructing the
unit name in the full path. For example, with 2 CPUs, you would
have the full path::
/cpus/PowerPC,970FX@0
/cpus/PowerPC,970FX@1
(unit addresses do not require leading zeroes)
- d-cache-block-size : one cell, L1 data cache block size in bytes [#]_
- i-cache-block-size : one cell, L1 instruction cache block size in
bytes
- d-cache-size : one cell, size of L1 data cache in bytes
- i-cache-size : one cell, size of L1 instruction cache in bytes
.. [#] The cache "block" size is the size on which the cache management
instructions operate. Historically, this document used the cache
"line" size here which is incorrect. The kernel will prefer the cache
block size and will fallback to cache line size for backward
compatibility.
Recommended properties:
- timebase-frequency : a cell indicating the frequency of the
timebase in Hz. This is not directly used by the generic code,
but you are welcome to copy/paste the pSeries code for setting
the kernel timebase/decrementer calibration based on this
value.
- clock-frequency : a cell indicating the CPU core clock frequency
in Hz. A new property will be defined for 64-bit values, but if
your frequency is < 4Ghz, one cell is enough. Here as well as
for the above, the common code doesn't use that property, but
you are welcome to re-use the pSeries or Maple one. A future
kernel version might provide a common function for this.
- d-cache-line-size : one cell, L1 data cache line size in bytes
if different from the block size
- i-cache-line-size : one cell, L1 instruction cache line size in
bytes if different from the block size
You are welcome to add any property you find relevant to your board,
like some information about the mechanism used to soft-reset the
CPUs. For example, Apple puts the GPIO number for CPU soft reset
lines in there as a "soft-reset" property since they start secondary
CPUs by soft-resetting them.
d) the /memory node(s)
To define the physical memory layout of your board, you should
create one or more memory node(s). You can either create a single
node with all memory ranges in its reg property, or you can create
several nodes, as you wish. The unit address (@ part) used for the
full path is the address of the first range of memory defined by a
given node. If you use a single memory node, this will typically be
@0.
Required properties:
- device_type : has to be "memory"
- reg : This property contains all the physical memory ranges of
your board. It's a list of addresses/sizes concatenated
together, with the number of cells of each defined by the
#address-cells and #size-cells of the root node. For example,
with both of these properties being 2 like in the example given
earlier, a 970 based machine with 6Gb of RAM could typically
have a "reg" property here that looks like::
00000000 00000000 00000000 80000000
00000001 00000000 00000001 00000000
That is a range starting at 0 of 0x80000000 bytes and a range
starting at 0x100000000 and of 0x100000000 bytes. You can see
that there is no memory covering the IO hole between 2Gb and
4Gb. Some vendors prefer splitting those ranges into smaller
segments, but the kernel doesn't care.
Additional properties:
- hotpluggable : The presence of this property provides an explicit
hint to the operating system that this memory may potentially be
removed later. The kernel can take this into consideration when
doing nonmovable allocations and when laying out memory zones.
e) The /chosen node
This node is a bit "special". Normally, that's where Open Firmware
puts some variable environment information, like the arguments, or
the default input/output devices.
This specification makes a few of these mandatory, but also defines
some linux-specific properties that would be normally constructed by
the prom_init() trampoline when booting with an OF client interface,
but that you have to provide yourself when using the flattened format.
Recommended properties:
- bootargs : This zero-terminated string is passed as the kernel
command line
- linux,stdout-path : This is the full path to your standard
console device if any. Typically, if you have serial devices on
your board, you may want to put the full path to the one set as
the default console in the firmware here, for the kernel to pick
it up as its own default console.
Note that u-boot creates and fills in the chosen node for platforms
that use it.
(Note: a practice that is now obsolete was to include a property
under /chosen called interrupt-controller which had a phandle value
that pointed to the main interrupt controller)
f) the /soc<SOCname> node
This node is used to represent a system-on-a-chip (SoC) and must be
present if the processor is a SoC. The top-level soc node contains
information that is global to all devices on the SoC. The node name
should contain a unit address for the SoC, which is the base address
of the memory-mapped register set for the SoC. The name of an SoC
node should start with "soc", and the remainder of the name should
represent the part number for the soc. For example, the MPC8540's
soc node would be called "soc8540".
Required properties:
- ranges : Should be defined as specified in 1) to describe the
translation of SoC addresses for memory mapped SoC registers.
- bus-frequency: Contains the bus frequency for the SoC node.
Typically, the value of this field is filled in by the boot
loader.
- compatible : Exact model of the SoC
Recommended properties:
- reg : This property defines the address and size of the
memory-mapped registers that are used for the SOC node itself.
It does not include the child device registers - these will be
defined inside each child node. The address specified in the
"reg" property should match the unit address of the SOC node.
- #address-cells : Address representation for "soc" devices. The
format of this field may vary depending on whether or not the
device registers are memory mapped. For memory mapped
registers, this field represents the number of cells needed to
represent the address of the registers. For SOCs that do not
use MMIO, a special address format should be defined that
contains enough cells to represent the required information.
See 1) above for more details on defining #address-cells.
- #size-cells : Size representation for "soc" devices
- #interrupt-cells : Defines the width of cells used to represent
interrupts. Typically this value is <2>, which includes a
32-bit number that represents the interrupt number, and a
32-bit number that represents the interrupt sense and level.
This field is only needed if the SOC contains an interrupt
controller.
The SOC node may contain child nodes for each SOC device that the
platform uses. Nodes should not be created for devices which exist
on the SOC but are not used by a particular platform. See chapter VI
for more information on how to specify devices that are part of a SOC.
Example SOC node for the MPC8540::
soc8540@e0000000 {
#address-cells = <1>;
#size-cells = <1>;
#interrupt-cells = <2>;
device_type = "soc";
ranges = <0x00000000 0xe0000000 0x00100000>
reg = <0xe0000000 0x00003000>;
bus-frequency = <0>;
}
IV - "dtc", the device tree compiler
====================================
dtc source code can be found at
<http://git.jdl.com/gitweb/?p=dtc.git>
.. Warning::
This version is still in early development stage; the
resulting device-tree "blobs" have not yet been validated with the
kernel. The current generated block lacks a useful reserve map (it will
be fixed to generate an empty one, it's up to the bootloader to fill
it up) among others. The error handling needs work, bugs are lurking,
etc...
dtc basically takes a device-tree in a given format and outputs a
device-tree in another format. The currently supported formats are:
Input formats
-------------
- "dtb": "blob" format, that is a flattened device-tree block
with
header all in a binary blob.
- "dts": "source" format. This is a text file containing a
"source" for a device-tree. The format is defined later in this
chapter.
- "fs" format. This is a representation equivalent to the
output of /proc/device-tree, that is nodes are directories and
properties are files
Output formats
--------------
- "dtb": "blob" format
- "dts": "source" format
- "asm": assembly language file. This is a file that can be
sourced by gas to generate a device-tree "blob". That file can
then simply be added to your Makefile. Additionally, the
assembly file exports some symbols that can be used.
The syntax of the dtc tool is::
dtc [-I <input-format>] [-O <output-format>]
[-o output-filename] [-V output_version] input_filename
The "output_version" defines what version of the "blob" format will be
generated. Supported versions are 1,2,3 and 16. The default is
currently version 3 but that may change in the future to version 16.
Additionally, dtc performs various sanity checks on the tree, like the
uniqueness of linux, phandle properties, validity of strings, etc...
The format of the .dts "source" file is "C" like, supports C and C++
style comments::
/ {
}
The above is the "device-tree" definition. It's the only statement
supported currently at the toplevel.
::
/ {
property1 = "string_value"; /* define a property containing a 0
* terminated string
*/
property2 = <0x1234abcd>; /* define a property containing a
* numerical 32-bit value (hexadecimal)
*/
property3 = <0x12345678 0x12345678 0xdeadbeef>;
/* define a property containing 3
* numerical 32-bit values (cells) in
* hexadecimal
*/
property4 = [0x0a 0x0b 0x0c 0x0d 0xde 0xea 0xad 0xbe 0xef];
/* define a property whose content is
* an arbitrary array of bytes
*/
childnode@address { /* define a child node named "childnode"
* whose unit name is "childnode at
* address"
*/
childprop = "hello\n"; /* define a property "childprop" of
* childnode (in this case, a string)
*/
};
};
Nodes can contain other nodes etc... thus defining the hierarchical
structure of the tree.
Strings support common escape sequences from C: "\n", "\t", "\r",
"\(octal value)", "\x(hex value)".
It is also suggested that you pipe your source file through cpp (gcc
preprocessor) so you can use #include's, #define for constants, etc...
Finally, various options are planned but not yet implemented, like
automatic generation of phandles, labels (exported to the asm file so
you can point to a property content and change it easily from whatever
you link the device-tree with), label or path instead of numeric value
in some cells to "point" to a node (replaced by a phandle at compile
time), export of reserve map address to the asm file, ability to
specify reserve map content at compile time, etc...
We may provide a .h include file with common definitions of that
proves useful for some properties (like building PCI properties or
interrupt maps) though it may be better to add a notion of struct
definitions to the compiler...
V - Recommendations for a bootloader
====================================
Here are some various ideas/recommendations that have been proposed
while all this has been defined and implemented.
- The bootloader may want to be able to use the device-tree itself
and may want to manipulate it (to add/edit some properties,
like physical memory size or kernel arguments). At this point, 2
choices can be made. Either the bootloader works directly on the
flattened format, or the bootloader has its own internal tree
representation with pointers (similar to the kernel one) and
re-flattens the tree when booting the kernel. The former is a bit
more difficult to edit/modify, the later requires probably a bit
more code to handle the tree structure. Note that the structure
format has been designed so it's relatively easy to "insert"
properties or nodes or delete them by just memmoving things
around. It contains no internal offsets or pointers for this
purpose.
- An example of code for iterating nodes & retrieving properties
directly from the flattened tree format can be found in the kernel
file drivers/of/fdt.c. Look at the of_scan_flat_dt() function,
its usage in early_init_devtree(), and the corresponding various
early_init_dt_scan_*() callbacks. That code can be re-used in a
GPL bootloader, and as the author of that code, I would be happy
to discuss possible free licensing to any vendor who wishes to
integrate all or part of this code into a non-GPL bootloader.
(reference needed; who is 'I' here? ---gcl Jan 31, 2011)
VI - System-on-a-chip devices and nodes
=======================================
Many companies are now starting to develop system-on-a-chip
processors, where the processor core (CPU) and many peripheral devices
exist on a single piece of silicon. For these SOCs, an SOC node
should be used that defines child nodes for the devices that make
up the SOC. While platforms are not required to use this model in
order to boot the kernel, it is highly encouraged that all SOC
implementations define as complete a flat-device-tree as possible to
describe the devices on the SOC. This will allow for the
genericization of much of the kernel code.
1) Defining child nodes of an SOC
---------------------------------
Each device that is part of an SOC may have its own node entry inside
the SOC node. For each device that is included in the SOC, the unit
address property represents the address offset for this device's
memory-mapped registers in the parent's address space. The parent's
address space is defined by the "ranges" property in the top-level soc
node. The "reg" property for each node that exists directly under the
SOC node should contain the address mapping from the child address space
to the parent SOC address space and the size of the device's
memory-mapped register file.
For many devices that may exist inside an SOC, there are predefined
specifications for the format of the device tree node. All SOC child
nodes should follow these specifications, except where noted in this
document.
See appendix A for an example partial SOC node definition for the
MPC8540.
2) Representing devices without a current OF specification
----------------------------------------------------------
Currently, there are many devices on SoCs that do not have a standard
representation defined as part of the Open Firmware specifications,
mainly because the boards that contain these SoCs are not currently
booted using Open Firmware. Binding documentation for new devices
should be added to the Documentation/devicetree/bindings directory.
That directory will expand as device tree support is added to more and
more SoCs.
VII - Specifying interrupt information for devices
===================================================
The device tree represents the buses and devices of a hardware
system in a form similar to the physical bus topology of the
hardware.
In addition, a logical 'interrupt tree' exists which represents the
hierarchy and routing of interrupts in the hardware.
The interrupt tree model is fully described in the
document "Open Firmware Recommended Practice: Interrupt
Mapping Version 0.9". The document is available at:
<http://www.devicetree.org/open-firmware/practice/>
1) interrupts property
----------------------
Devices that generate interrupts to a single interrupt controller
should use the conventional OF representation described in the
OF interrupt mapping documentation.
Each device which generates interrupts must have an 'interrupt'
property. The interrupt property value is an arbitrary number of
of 'interrupt specifier' values which describe the interrupt or
interrupts for the device.
The encoding of an interrupt specifier is determined by the
interrupt domain in which the device is located in the
interrupt tree. The root of an interrupt domain specifies in
its #interrupt-cells property the number of 32-bit cells
required to encode an interrupt specifier. See the OF interrupt
mapping documentation for a detailed description of domains.
For example, the binding for the OpenPIC interrupt controller
specifies an #interrupt-cells value of 2 to encode the interrupt
number and level/sense information. All interrupt children in an
OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
property.
The PCI bus binding specifies a #interrupt-cells value of 1 to encode
which interrupt pin (INTA,INTB,INTC,INTD) is used.
2) interrupt-parent property
----------------------------
The interrupt-parent property is specified to define an explicit
link between a device node and its interrupt parent in
the interrupt tree. The value of interrupt-parent is the
phandle of the parent node.
If the interrupt-parent property is not defined for a node, its
interrupt parent is assumed to be an ancestor in the node's
*device tree* hierarchy.
3) OpenPIC Interrupt Controllers
--------------------------------
OpenPIC interrupt controllers require 2 cells to encode
interrupt information. The first cell defines the interrupt
number. The second cell defines the sense and level
information.
Sense and level information should be encoded as follows:
== ========================================
0 low to high edge sensitive type enabled
1 active low level sensitive type enabled
2 active high level sensitive type enabled
3 high to low edge sensitive type enabled
== ========================================
4) ISA Interrupt Controllers
----------------------------
ISA PIC interrupt controllers require 2 cells to encode
interrupt information. The first cell defines the interrupt
number. The second cell defines the sense and level
information.
ISA PIC interrupt controllers should adhere to the ISA PIC
encodings listed below:
== ========================================
0 active low level sensitive type enabled
1 active high level sensitive type enabled
2 high to low edge sensitive type enabled
3 low to high edge sensitive type enabled
== ========================================
VIII - Specifying Device Power Management Information (sleep property)
======================================================================
Devices on SOCs often have mechanisms for placing devices into low-power
states that are decoupled from the devices' own register blocks. Sometimes,
this information is more complicated than a cell-index property can
reasonably describe. Thus, each device controlled in such a manner
may contain a "sleep" property which describes these connections.
The sleep property consists of one or more sleep resources, each of
which consists of a phandle to a sleep controller, followed by a
controller-specific sleep specifier of zero or more cells.
The semantics of what type of low power modes are possible are defined
by the sleep controller. Some examples of the types of low power modes
that may be supported are:
- Dynamic: The device may be disabled or enabled at any time.
- System Suspend: The device may request to be disabled or remain
awake during system suspend, but will not be disabled until then.
- Permanent: The device is disabled permanently (until the next hard
reset).
Some devices may share a clock domain with each other, such that they should
only be suspended when none of the devices are in use. Where reasonable,
such nodes should be placed on a virtual bus, where the bus has the sleep
property. If the clock domain is shared among devices that cannot be
reasonably grouped in this manner, then create a virtual sleep controller
(similar to an interrupt nexus, except that defining a standardized
sleep-map should wait until its necessity is demonstrated).
IX - Specifying dma bus information
===================================
Some devices may have DMA memory range shifted relatively to the beginning of
RAM, or even placed outside of kernel RAM. For example, the Keystone 2 SoC
worked in LPAE mode with 4G memory has:
- RAM range: [0x8 0000 0000, 0x8 FFFF FFFF]
- DMA range: [ 0x8000 0000, 0xFFFF FFFF]
and DMA range is aliased into first 2G of RAM in HW.
In such cases, DMA addresses translation should be performed between CPU phys
and DMA addresses. The "dma-ranges" property is intended to be used
for describing the configuration of such system in DT.
In addition, each DMA master device on the DMA bus may or may not support
coherent DMA operations. The "dma-coherent" property is intended to be used
for identifying devices supported coherent DMA operations in DT.
* DMA Bus master
Optional property:
- dma-ranges: <prop-encoded-array> encoded as arbitrary number of triplets of
(child-bus-address, parent-bus-address, length). Each triplet specified
describes a contiguous DMA address range.
The dma-ranges property is used to describe the direct memory access (DMA)
structure of a memory-mapped bus whose device tree parent can be accessed
from DMA operations originating from the bus. It provides a means of
defining a mapping or translation between the physical address space of
the bus and the physical address space of the parent of the bus.
(for more information see the Devicetree Specification)
* DMA Bus child
Optional property:
- dma-ranges: <empty> value. if present - It means that DMA addresses
translation has to be enabled for this device.
- dma-coherent: Present if dma operations are coherent
Example::
soc {
compatible = "ti,keystone","simple-bus";
ranges = <0x0 0x0 0x0 0xc0000000>;
dma-ranges = <0x80000000 0x8 0x00000000 0x80000000>;
[...]
usb: usb@2680000 {
compatible = "ti,keystone-dwc3";
[...]
dma-coherent;
};
};
Appendix A - Sample SOC node for MPC8540
========================================
::
soc@e0000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,mpc8540-ccsr", "simple-bus";
device_type = "soc";
ranges = <0x00000000 0xe0000000 0x00100000>
bus-frequency = <0>;
interrupt-parent = <&pic>;
ethernet@24000 {
#address-cells = <1>;
#size-cells = <1>;
device_type = "network";
model = "TSEC";
compatible = "gianfar", "simple-bus";
reg = <0x24000 0x1000>;
local-mac-address = [ 0x00 0xE0 0x0C 0x00 0x73 0x00 ];
interrupts = <0x29 2 0x30 2 0x34 2>;
phy-handle = <&phy0>;
sleep = <&pmc 0x00000080>;
ranges;
mdio@24520 {
reg = <0x24520 0x20>;
compatible = "fsl,gianfar-mdio";
phy0: ethernet-phy@0 {
interrupts = <5 1>;
reg = <0>;
};
phy1: ethernet-phy@1 {
interrupts = <5 1>;
reg = <1>;
};
phy3: ethernet-phy@3 {
interrupts = <7 1>;
reg = <3>;
};
};
};
ethernet@25000 {
device_type = "network";
model = "TSEC";
compatible = "gianfar";
reg = <0x25000 0x1000>;
local-mac-address = [ 0x00 0xE0 0x0C 0x00 0x73 0x01 ];
interrupts = <0x13 2 0x14 2 0x18 2>;
phy-handle = <&phy1>;
sleep = <&pmc 0x00000040>;
};
ethernet@26000 {
device_type = "network";
model = "FEC";
compatible = "gianfar";
reg = <0x26000 0x1000>;
local-mac-address = [ 0x00 0xE0 0x0C 0x00 0x73 0x02 ];
interrupts = <0x41 2>;
phy-handle = <&phy3>;
sleep = <&pmc 0x00000020>;
};
serial@4500 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,mpc8540-duart", "simple-bus";
sleep = <&pmc 0x00000002>;
ranges;
serial@4500 {
device_type = "serial";
compatible = "ns16550";
reg = <0x4500 0x100>;
clock-frequency = <0>;
interrupts = <0x42 2>;
};
serial@4600 {
device_type = "serial";
compatible = "ns16550";
reg = <0x4600 0x100>;
clock-frequency = <0>;
interrupts = <0x42 2>;
};
};
pic: pic@40000 {
interrupt-controller;
#address-cells = <0>;
#interrupt-cells = <2>;
reg = <0x40000 0x40000>;
compatible = "chrp,open-pic";
device_type = "open-pic";
};
i2c@3000 {
interrupts = <0x43 2>;
reg = <0x3000 0x100>;
compatible = "fsl-i2c";
dfsrr;
sleep = <&pmc 0x00000004>;
};
pmc: power@e0070 {
compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc";
reg = <0xe0070 0x20>;
};
};
|