summaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings/cpu/cpu-topology.txt
blob: 9bd530a35d1460e04b2db66a2dc480e55bf1a99f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
===========================================
CPU topology binding description
===========================================

===========================================
1 - Introduction
===========================================

In a SMP system, the hierarchy of CPUs is defined through three entities that
are used to describe the layout of physical CPUs in the system:

- socket
- cluster
- core
- thread

The bottom hierarchy level sits at core or thread level depending on whether
symmetric multi-threading (SMT) is supported or not.

For instance in a system where CPUs support SMT, "cpu" nodes represent all
threads existing in the system and map to the hierarchy level "thread" above.
In systems where SMT is not supported "cpu" nodes represent all cores present
in the system and map to the hierarchy level "core" above.

CPU topology bindings allow one to associate cpu nodes with hierarchical groups
corresponding to the system hierarchy; syntactically they are defined as device
tree nodes.

Currently, only ARM/RISC-V intend to use this cpu topology binding but it may be
used for any other architecture as well.

The cpu nodes, as per bindings defined in [4], represent the devices that
correspond to physical CPUs and are to be mapped to the hierarchy levels.

A topology description containing phandles to cpu nodes that are not compliant
with bindings standardized in [4] is therefore considered invalid.

===========================================
2 - cpu-map node
===========================================

The ARM/RISC-V CPU topology is defined within the cpu-map node, which is a direct
child of the cpus node and provides a container where the actual topology
nodes are listed.

- cpu-map node

	Usage: Optional - On SMP systems provide CPUs topology to the OS.
			  Uniprocessor systems do not require a topology
			  description and therefore should not define a
			  cpu-map node.

	Description: The cpu-map node is just a container node where its
		     subnodes describe the CPU topology.

	Node name must be "cpu-map".

	The cpu-map node's parent node must be the cpus node.

	The cpu-map node's child nodes can be:

	- one or more cluster nodes or
	- one or more socket nodes in a multi-socket system

	Any other configuration is considered invalid.

The cpu-map node can only contain 4 types of child nodes:

- socket node
- cluster node
- core node
- thread node

whose bindings are described in paragraph 3.

The nodes describing the CPU topology (socket/cluster/core/thread) can
only be defined within the cpu-map node and every core/thread in the
system must be defined within the topology.  Any other configuration is
invalid and therefore must be ignored.

===========================================
2.1 - cpu-map child nodes naming convention
===========================================

cpu-map child nodes must follow a naming convention where the node name
must be "socketN", "clusterN", "coreN", "threadN" depending on the node type
(ie socket/cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes
which are siblings within a single common parent node must be given a unique and
sequential N value, starting from 0).
cpu-map child nodes which do not share a common parent node can have the same
name (ie same number N as other cpu-map child nodes at different device tree
levels) since name uniqueness will be guaranteed by the device tree hierarchy.

===========================================
3 - socket/cluster/core/thread node bindings
===========================================

Bindings for socket/cluster/cpu/thread nodes are defined as follows:

- socket node

	 Description: must be declared within a cpu-map node, one node
		      per physical socket in the system. A system can
		      contain single or multiple physical socket.
		      The association of sockets and NUMA nodes is beyond
		      the scope of this bindings, please refer [2] for
		      NUMA bindings.

	This node is optional for a single socket system.

	The socket node name must be "socketN" as described in 2.1 above.
	A socket node can not be a leaf node.

	A socket node's child nodes must be one or more cluster nodes.

	Any other configuration is considered invalid.

- cluster node

	 Description: must be declared within a cpu-map node, one node
		      per cluster. A system can contain several layers of
		      clustering within a single physical socket and cluster
		      nodes can be contained in parent cluster nodes.

	The cluster node name must be "clusterN" as described in 2.1 above.
	A cluster node can not be a leaf node.

	A cluster node's child nodes must be:

	- one or more cluster nodes; or
	- one or more core nodes

	Any other configuration is considered invalid.

- core node

	Description: must be declared in a cluster node, one node per core in
		     the cluster. If the system does not support SMT, core
		     nodes are leaf nodes, otherwise they become containers of
		     thread nodes.

	The core node name must be "coreN" as described in 2.1 above.

	A core node must be a leaf node if SMT is not supported.

	Properties for core nodes that are leaf nodes:

	- cpu
		Usage: required
		Value type: <phandle>
		Definition: a phandle to the cpu node that corresponds to the
			    core node.

	If a core node is not a leaf node (CPUs supporting SMT) a core node's
	child nodes can be:

	- one or more thread nodes

	Any other configuration is considered invalid.

- thread node

	Description: must be declared in a core node, one node per thread
		     in the core if the system supports SMT. Thread nodes are
		     always leaf nodes in the device tree.

	The thread node name must be "threadN" as described in 2.1 above.

	A thread node must be a leaf node.

	A thread node must contain the following property:

	- cpu
		Usage: required
		Value type: <phandle>
		Definition: a phandle to the cpu node that corresponds to
			    the thread node.

===========================================
4 - Example dts
===========================================

Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters in a single
physical socket):

cpus {
	#size-cells = <0>;
	#address-cells = <2>;

	cpu-map {
		socket0 {
			cluster0 {
				cluster0 {
					core0 {
						thread0 {
							cpu = <&CPU0>;
						};
						thread1 {
							cpu = <&CPU1>;
						};
					};

					core1 {
						thread0 {
							cpu = <&CPU2>;
						};
						thread1 {
							cpu = <&CPU3>;
						};
					};
				};

				cluster1 {
					core0 {
						thread0 {
							cpu = <&CPU4>;
						};
						thread1 {
							cpu = <&CPU5>;
						};
					};

					core1 {
						thread0 {
							cpu = <&CPU6>;
						};
						thread1 {
							cpu = <&CPU7>;
						};
					};
				};
			};

			cluster1 {
				cluster0 {
					core0 {
						thread0 {
							cpu = <&CPU8>;
						};
						thread1 {
							cpu = <&CPU9>;
						};
					};
					core1 {
						thread0 {
							cpu = <&CPU10>;
						};
						thread1 {
							cpu = <&CPU11>;
						};
					};
				};

				cluster1 {
					core0 {
						thread0 {
							cpu = <&CPU12>;
						};
						thread1 {
							cpu = <&CPU13>;
						};
					};
					core1 {
						thread0 {
							cpu = <&CPU14>;
						};
						thread1 {
							cpu = <&CPU15>;
						};
					};
				};
			};
		};
	};

	CPU0: cpu@0 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x0>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU1: cpu@1 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x1>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU2: cpu@100 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x100>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU3: cpu@101 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x101>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU4: cpu@10000 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x10000>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU5: cpu@10001 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x10001>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU6: cpu@10100 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x10100>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU7: cpu@10101 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x0 0x10101>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU8: cpu@100000000 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x0>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU9: cpu@100000001 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x1>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU10: cpu@100000100 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x100>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU11: cpu@100000101 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x101>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU12: cpu@100010000 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x10000>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU13: cpu@100010001 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x10001>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU14: cpu@100010100 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x10100>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};

	CPU15: cpu@100010101 {
		device_type = "cpu";
		compatible = "arm,cortex-a57";
		reg = <0x1 0x10101>;
		enable-method = "spin-table";
		cpu-release-addr = <0 0x20000000>;
	};
};

Example 2 (ARM 32-bit, dual-cluster, 8-cpu system, no SMT):

cpus {
	#size-cells = <0>;
	#address-cells = <1>;

	cpu-map {
		cluster0 {
			core0 {
				cpu = <&CPU0>;
			};
			core1 {
				cpu = <&CPU1>;
			};
			core2 {
				cpu = <&CPU2>;
			};
			core3 {
				cpu = <&CPU3>;
			};
		};

		cluster1 {
			core0 {
				cpu = <&CPU4>;
			};
			core1 {
				cpu = <&CPU5>;
			};
			core2 {
				cpu = <&CPU6>;
			};
			core3 {
				cpu = <&CPU7>;
			};
		};
	};

	CPU0: cpu@0 {
		device_type = "cpu";
		compatible = "arm,cortex-a15";
		reg = <0x0>;
	};

	CPU1: cpu@1 {
		device_type = "cpu";
		compatible = "arm,cortex-a15";
		reg = <0x1>;
	};

	CPU2: cpu@2 {
		device_type = "cpu";
		compatible = "arm,cortex-a15";
		reg = <0x2>;
	};

	CPU3: cpu@3 {
		device_type = "cpu";
		compatible = "arm,cortex-a15";
		reg = <0x3>;
	};

	CPU4: cpu@100 {
		device_type = "cpu";
		compatible = "arm,cortex-a7";
		reg = <0x100>;
	};

	CPU5: cpu@101 {
		device_type = "cpu";
		compatible = "arm,cortex-a7";
		reg = <0x101>;
	};

	CPU6: cpu@102 {
		device_type = "cpu";
		compatible = "arm,cortex-a7";
		reg = <0x102>;
	};

	CPU7: cpu@103 {
		device_type = "cpu";
		compatible = "arm,cortex-a7";
		reg = <0x103>;
	};
};

Example 3: HiFive Unleashed (RISC-V 64 bit, 4 core system)

{
	#address-cells = <2>;
	#size-cells = <2>;
	compatible = "sifive,fu540g", "sifive,fu500";
	model = "sifive,hifive-unleashed-a00";

	...
	cpus {
		#address-cells = <1>;
		#size-cells = <0>;
		cpu-map {
			socket0 {
				cluster0 {
					core0 {
						cpu = <&CPU1>;
					};
					core1 {
						cpu = <&CPU2>;
					};
					core2 {
						cpu0 = <&CPU2>;
					};
					core3 {
						cpu0 = <&CPU3>;
					};
				};
			};
		};

		CPU1: cpu@1 {
			device_type = "cpu";
			compatible = "sifive,rocket0", "riscv";
			reg = <0x1>;
		}

		CPU2: cpu@2 {
			device_type = "cpu";
			compatible = "sifive,rocket0", "riscv";
			reg = <0x2>;
		}
		CPU3: cpu@3 {
			device_type = "cpu";
			compatible = "sifive,rocket0", "riscv";
			reg = <0x3>;
		}
		CPU4: cpu@4 {
			device_type = "cpu";
			compatible = "sifive,rocket0", "riscv";
			reg = <0x4>;
		}
	}
};
===============================================================================
[1] ARM Linux kernel documentation
    Documentation/devicetree/bindings/arm/cpus.yaml
[2] Devicetree NUMA binding description
    Documentation/devicetree/bindings/numa.txt
[3] RISC-V Linux kernel documentation
    Documentation/devicetree/bindings/riscv/cpus.yaml
[4] https://www.devicetree.org/specifications/