summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/bug-hunting.rst
blob: 818b3e09267fa26330898b8db4e9dc03d2762720 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Bug hunting
+++++++++++

Last updated: 28 October 2016

Introduction
============

Always try the latest kernel from kernel.org and build from source. If you are
not confident in doing that please report the bug to your distribution vendor
instead of to a kernel developer.

Finding bugs is not always easy. Have a go though. If you can't find it don't
give up. Report as much as you have found to the relevant maintainer. See
MAINTAINERS for who that is for the subsystem you have worked on.

Before you submit a bug report read
:ref:`Documentation/admin-guide/reporting-bugs.rst <reportingbugs>`.

Devices not appearing
=====================

Often this is caused by udev/systemd. Check that first before blaming it
on the kernel.

Finding patch that caused a bug
===============================

Using the provided tools with ``git`` makes finding bugs easy provided the bug
is reproducible.

Steps to do it:

- build the Kernel from its git source
- start bisect with [#f1]_::

	$ git bisect start

- mark the broken changeset with::

	$ git bisect bad [commit]

- mark a changeset where the code is known to work with::

	$ git bisect good [commit]

- rebuild the Kernel and test
- interact with git bisect by using either::

	$ git bisect good

  or::

	$ git bisect bad

  depending if the bug happened on the changeset you're testing
- After some interactions, git bisect will give you the changeset that
  likely caused the bug.

- For example, if you know that the current version is bad, and version
  4.8 is good, you could do::

           $ git bisect start
           $ git bisect bad                 # Current version is bad
           $ git bisect good v4.8


.. [#f1] You can, optionally, provide both good and bad arguments at git
	 start::

		git bisect start [BAD] [GOOD]

For further references, please read:

- The man page for ``git-bisect``
- `Fighting regressions with git bisect <https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html>`_
- `Fully automated bisecting with "git bisect run" <https://lwn.net/Articles/317154>`_
- `Using Git bisect to figure out when brokenness was introduced <http://webchick.net/node/99>`_

Fixing the bug
==============

Nobody is going to tell you how to fix bugs. Seriously. You need to work it
out. But below are some hints on how to use the tools.

objdump
-------

To debug a kernel, use objdump and look for the hex offset from the crash
output to find the valid line of code/assembler. Without debug symbols, you
will see the assembler code for the routine shown, but if your kernel has
debug symbols the C code will also be available. (Debug symbols can be enabled
in the kernel hacking menu of the menu configuration.) For example::

    $ objdump -r -S -l --disassemble net/dccp/ipv4.o

.. note::

   You need to be at the top level of the kernel tree for this to pick up
   your C files.

If you don't have access to the code you can also debug on some crash dumps
e.g. crash dump output as shown by Dave Miller::

     EIP is at 	+0x14/0x4c0
      ...
     Code: 44 24 04 e8 6f 05 00 00 e9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
     00 00 55 57  56 53 81 ec bc 00 00 00 8b ac 24 d0 00 00 00 8b 5d 08
     <8b> 83 3c 01 00 00 89 44  24 14 8b 45 28 85 c0 89 44 24 18 0f 85

     Put the bytes into a "foo.s" file like this:

            .text
            .globl foo
     foo:
            .byte  .... /* bytes from Code: part of OOPS dump */

     Compile it with "gcc -c -o foo.o foo.s" then look at the output of
     "objdump --disassemble foo.o".

     Output:

     ip_queue_xmit:
         push       %ebp
         push       %edi
         push       %esi
         push       %ebx
         sub        $0xbc, %esp
         mov        0xd0(%esp), %ebp        ! %ebp = arg0 (skb)
         mov        0x8(%ebp), %ebx         ! %ebx = skb->sk
         mov        0x13c(%ebx), %eax       ! %eax = inet_sk(sk)->opt

gdb
---

In addition, you can use GDB to figure out the exact file and line
number of the OOPS from the ``vmlinux`` file.

The usage of gdb requires a kernel compiled with ``CONFIG_DEBUG_INFO``.
This can be set by running::

  $ ./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO

On a kernel compiled with ``CONFIG_DEBUG_INFO``, you can simply copy the
EIP value from the OOPS::

 EIP:    0060:[<c021e50e>]    Not tainted VLI

And use GDB to translate that to human-readable form::

  $ gdb vmlinux
  (gdb) l *0xc021e50e

If you don't have ``CONFIG_DEBUG_INFO`` enabled, you use the function
offset from the OOPS::

 EIP is at vt_ioctl+0xda8/0x1482

And recompile the kernel with ``CONFIG_DEBUG_INFO`` enabled::

  $ make vmlinux
  $ gdb vmlinux
  (gdb) l *vt_ioctl+0xda8
  0x1888 is in vt_ioctl (drivers/tty/vt/vt_ioctl.c:293).
  288	{
  289		struct vc_data *vc = NULL;
  290		int ret = 0;
  291
  292		console_lock();
  293		if (VT_BUSY(vc_num))
  294			ret = -EBUSY;
  295		else if (vc_num)
  296			vc = vc_deallocate(vc_num);
  297		console_unlock();

or, if you want to be more verbose::

  (gdb) p vt_ioctl
  $1 = {int (struct tty_struct *, unsigned int, unsigned long)} 0xae0 <vt_ioctl>
  (gdb) l *0xae0+0xda8

You could, instead, use the object file::

  $ make drivers/tty/
  $ gdb drivers/tty/vt/vt_ioctl.o
  (gdb) l *vt_ioctl+0xda8

If you have a call trace, such as::

     Call Trace:
      [<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
      [<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
      [<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
      ...

this shows the problem likely in the :jbd: module. You can load that module
in gdb and list the relevant code::

  $ gdb fs/jbd/jbd.ko
  (gdb) l *log_wait_commit+0xa3

Another very useful option of the Kernel Hacking section in menuconfig is
Debug memory allocations. This will help you see whether data has been
initialised and not set before use etc. To see the values that get assigned
with this look at ``mm/slab.c`` and search for ``POISON_INUSE``. When using
this an Oops will often show the poisoned data instead of zero which is the
default.

Once you have worked out a fix please submit it upstream. After all open
source is about sharing what you do and don't you want to be recognised for
your genius?

Please do read
ref:`Documentation/process/submitting-patches.rst <submittingpatches>` though
to help your code get accepted.