/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "vgic.h" static bool group0_trap; static bool group1_trap; static bool common_trap; static bool gicv4_enable; void vgic_v3_set_npie(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; cpuif->vgic_hcr |= ICH_HCR_NPIE; } void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; cpuif->vgic_hcr |= ICH_HCR_UIE; } static bool lr_signals_eoi_mi(u64 lr_val) { return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && !(lr_val & ICH_LR_HW); } void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; int lr; unsigned long flags; cpuif->vgic_hcr &= ~(ICH_HCR_UIE | ICH_HCR_NPIE); for (lr = 0; lr < vgic_cpu->used_lrs; lr++) { u64 val = cpuif->vgic_lr[lr]; u32 intid; struct vgic_irq *irq; if (model == KVM_DEV_TYPE_ARM_VGIC_V3) intid = val & ICH_LR_VIRTUAL_ID_MASK; else intid = val & GICH_LR_VIRTUALID; /* Notify fds when the guest EOI'ed a level-triggered IRQ */ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) kvm_notify_acked_irq(vcpu->kvm, 0, intid - VGIC_NR_PRIVATE_IRQS); irq = vgic_get_irq(vcpu->kvm, vcpu, intid); if (!irq) /* An LPI could have been unmapped. */ continue; spin_lock_irqsave(&irq->irq_lock, flags); /* Always preserve the active bit */ irq->active = !!(val & ICH_LR_ACTIVE_BIT); /* Edge is the only case where we preserve the pending bit */ if (irq->config == VGIC_CONFIG_EDGE && (val & ICH_LR_PENDING_BIT)) { irq->pending_latch = true; if (vgic_irq_is_sgi(intid) && model == KVM_DEV_TYPE_ARM_VGIC_V2) { u32 cpuid = val & GICH_LR_PHYSID_CPUID; cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; irq->source |= (1 << cpuid); } } /* * Clear soft pending state when level irqs have been acked. */ if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) irq->pending_latch = false; /* * Level-triggered mapped IRQs are special because we only * observe rising edges as input to the VGIC. * * If the guest never acked the interrupt we have to sample * the physical line and set the line level, because the * device state could have changed or we simply need to * process the still pending interrupt later. * * If this causes us to lower the level, we have to also clear * the physical active state, since we will otherwise never be * told when the interrupt becomes asserted again. */ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) { irq->line_level = vgic_get_phys_line_level(irq); if (!irq->line_level) vgic_irq_set_phys_active(irq, false); } spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); } vgic_cpu->used_lrs = 0; } /* Requires the irq to be locked already */ void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) { u32 model = vcpu->kvm->arch.vgic.vgic_model; u64 val = irq->intid; bool allow_pending = true; if (irq->active) val |= ICH_LR_ACTIVE_BIT; if (irq->hw) { val |= ICH_LR_HW; val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; /* * Never set pending+active on a HW interrupt, as the * pending state is kept at the physical distributor * level. */ if (irq->active) allow_pending = false; } else { if (irq->config == VGIC_CONFIG_LEVEL) { val |= ICH_LR_EOI; /* * Software resampling doesn't work very well * if we allow P+A, so let's not do that. */ if (irq->active) allow_pending = false; } } if (allow_pending && irq_is_pending(irq)) { val |= ICH_LR_PENDING_BIT; if (irq->config == VGIC_CONFIG_EDGE) irq->pending_latch = false; if (vgic_irq_is_sgi(irq->intid) && model == KVM_DEV_TYPE_ARM_VGIC_V2) { u32 src = ffs(irq->source); BUG_ON(!src); val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; irq->source &= ~(1 << (src - 1)); if (irq->source) irq->pending_latch = true; } } /* * Level-triggered mapped IRQs are special because we only observe * rising edges as input to the VGIC. We therefore lower the line * level here, so that we can take new virtual IRQs. See * vgic_v3_fold_lr_state for more info. */ if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) irq->line_level = false; /* * We currently only support Group1 interrupts, which is a * known defect. This needs to be addressed at some point. */ if (model == KVM_DEV_TYPE_ARM_VGIC_V3) val |= ICH_LR_GROUP; val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; } void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) { vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; } void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; u32 vmcr; if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & ICH_VMCR_ACK_CTL_MASK; vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & ICH_VMCR_FIQ_EN_MASK; } else { /* * When emulating GICv3 on GICv3 with SRE=1 on the * VFIQEn bit is RES1 and the VAckCtl bit is RES0. */ vmcr = ICH_VMCR_FIQ_EN_MASK; } vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; cpu_if->vgic_vmcr = vmcr; } void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; u32 model = vcpu->kvm->arch.vgic.vgic_model; u32 vmcr; vmcr = cpu_if->vgic_vmcr; if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> ICH_VMCR_ACK_CTL_SHIFT; vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> ICH_VMCR_FIQ_EN_SHIFT; } else { /* * When emulating GICv3 on GICv3 with SRE=1 on the * VFIQEn bit is RES1 and the VAckCtl bit is RES0. */ vmcrp->fiqen = 1; vmcrp->ackctl = 0; } vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; } #define INITIAL_PENDBASER_VALUE \ (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) void vgic_v3_enable(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ vgic_v3->vgic_vmcr = 0; /* * If we are emulating a GICv3, we do it in an non-GICv2-compatible * way, so we force SRE to 1 to demonstrate this to the guest. * Also, we don't support any form of IRQ/FIQ bypass. * This goes with the spec allowing the value to be RAO/WI. */ if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE); vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; } else { vgic_v3->vgic_sre = 0; } vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_ID_BITS_MASK) >> ICH_VTR_ID_BITS_SHIFT; vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_PRI_BITS_MASK) >> ICH_VTR_PRI_BITS_SHIFT) + 1; /* Get the show on the road... */ vgic_v3->vgic_hcr = ICH_HCR_EN; if (group0_trap) vgic_v3->vgic_hcr |= ICH_HCR_TALL0; if (group1_trap) vgic_v3->vgic_hcr |= ICH_HCR_TALL1; if (common_trap) vgic_v3->vgic_hcr |= ICH_HCR_TC; } int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) { struct kvm_vcpu *vcpu; int byte_offset, bit_nr; gpa_t pendbase, ptr; bool status; u8 val; int ret; unsigned long flags; retry: vcpu = irq->target_vcpu; if (!vcpu) return 0; pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); byte_offset = irq->intid / BITS_PER_BYTE; bit_nr = irq->intid % BITS_PER_BYTE; ptr = pendbase + byte_offset; ret = kvm_read_guest(kvm, ptr, &val, 1); if (ret) return ret; status = val & (1 << bit_nr); spin_lock_irqsave(&irq->irq_lock, flags); if (irq->target_vcpu != vcpu) { spin_unlock_irqrestore(&irq->irq_lock, flags); goto retry; } irq->pending_latch = status; vgic_queue_irq_unlock(vcpu->kvm, irq, flags); if (status) { /* clear consumed data */ val &= ~(1 << bit_nr); ret = kvm_write_guest(kvm, ptr, &val, 1); if (ret) return ret; } return 0; } /** * vgic_its_save_pending_tables - Save the pending tables into guest RAM * kvm lock and all vcpu lock must be held */ int vgic_v3_save_pending_tables(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; int last_byte_offset = -1; struct vgic_irq *irq; int ret; u8 val; list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { int byte_offset, bit_nr; struct kvm_vcpu *vcpu; gpa_t pendbase, ptr; bool stored; vcpu = irq->target_vcpu; if (!vcpu) continue; pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); byte_offset = irq->intid / BITS_PER_BYTE; bit_nr = irq->intid % BITS_PER_BYTE; ptr = pendbase + byte_offset; if (byte_offset != last_byte_offset) { ret = kvm_read_guest(kvm, ptr, &val, 1); if (ret) return ret; last_byte_offset = byte_offset; } stored = val & (1U << bit_nr); if (stored == irq->pending_latch) continue; if (irq->pending_latch) val |= 1 << bit_nr; else val &= ~(1 << bit_nr); ret = kvm_write_guest(kvm, ptr, &val, 1); if (ret) return ret; } return 0; } /* * Check for overlapping regions and for regions crossing the end of memory * for base addresses which have already been set. */ bool vgic_v3_check_base(struct kvm *kvm) { struct vgic_dist *d = &kvm->arch.vgic; gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE; redist_size *= atomic_read(&kvm->online_vcpus); if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) return false; if (!IS_VGIC_ADDR_UNDEF(d->vgic_redist_base) && d->vgic_redist_base + redist_size < d->vgic_redist_base) return false; /* Both base addresses must be set to check if they overlap */ if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) || IS_VGIC_ADDR_UNDEF(d->vgic_redist_base)) return true; if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base) return true; if (d->vgic_redist_base + redist_size <= d->vgic_dist_base) return true; return false; } int vgic_v3_map_resources(struct kvm *kvm) { int ret = 0; struct vgic_dist *dist = &kvm->arch.vgic; if (vgic_ready(kvm)) goto out; if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { kvm_err("Need to set vgic distributor addresses first\n"); ret = -ENXIO; goto out; } if (!vgic_v3_check_base(kvm)) { kvm_err("VGIC redist and dist frames overlap\n"); ret = -EINVAL; goto out; } /* * For a VGICv3 we require the userland to explicitly initialize * the VGIC before we need to use it. */ if (!vgic_initialized(kvm)) { ret = -EBUSY; goto out; } ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); if (ret) { kvm_err("Unable to register VGICv3 dist MMIO regions\n"); goto out; } dist->ready = true; out: return ret; } DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); static int __init early_group0_trap_cfg(char *buf) { return strtobool(buf, &group0_trap); } early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); static int __init early_group1_trap_cfg(char *buf) { return strtobool(buf, &group1_trap); } early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); static int __init early_common_trap_cfg(char *buf) { return strtobool(buf, &common_trap); } early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); static int __init early_gicv4_enable(char *buf) { return strtobool(buf, &gicv4_enable); } early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); /** * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT * @node: pointer to the DT node * * Returns 0 if a GICv3 has been found, returns an error code otherwise */ int vgic_v3_probe(const struct gic_kvm_info *info) { u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2); int ret; /* * The ListRegs field is 5 bits, but there is a architectural * maximum of 16 list registers. Just ignore bit 4... */ kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; kvm_vgic_global_state.can_emulate_gicv2 = false; kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; /* GICv4 support? */ if (info->has_v4) { kvm_vgic_global_state.has_gicv4 = gicv4_enable; kvm_info("GICv4 support %sabled\n", gicv4_enable ? "en" : "dis"); } if (!info->vcpu.start) { kvm_info("GICv3: no GICV resource entry\n"); kvm_vgic_global_state.vcpu_base = 0; } else if (!PAGE_ALIGNED(info->vcpu.start)) { pr_warn("GICV physical address 0x%llx not page aligned\n", (unsigned long long)info->vcpu.start); kvm_vgic_global_state.vcpu_base = 0; } else if (!PAGE_ALIGNED(resource_size(&info->vcpu))) { pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n", (unsigned long long)resource_size(&info->vcpu), PAGE_SIZE); kvm_vgic_global_state.vcpu_base = 0; } else { kvm_vgic_global_state.vcpu_base = info->vcpu.start; kvm_vgic_global_state.can_emulate_gicv2 = true; ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); if (ret) { kvm_err("Cannot register GICv2 KVM device.\n"); return ret; } kvm_info("vgic-v2@%llx\n", info->vcpu.start); } ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); if (ret) { kvm_err("Cannot register GICv3 KVM device.\n"); kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); return ret; } if (kvm_vgic_global_state.vcpu_base == 0) kvm_info("disabling GICv2 emulation\n"); #ifdef CONFIG_ARM64 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { group0_trap = true; group1_trap = true; } #endif if (group0_trap || group1_trap || common_trap) { kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", group0_trap ? "G0" : "", group1_trap ? "G1" : "", common_trap ? "C" : ""); static_branch_enable(&vgic_v3_cpuif_trap); } kvm_vgic_global_state.vctrl_base = NULL; kvm_vgic_global_state.type = VGIC_V3; kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; return 0; } void vgic_v3_load(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; /* * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen * is dependent on ICC_SRE_EL1.SRE, and we have to perform the * VMCR_EL2 save/restore in the world switch. */ if (likely(cpu_if->vgic_sre)) kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); kvm_call_hyp(__vgic_v3_restore_aprs, vcpu); if (has_vhe()) __vgic_v3_activate_traps(vcpu); } void vgic_v3_put(struct kvm_vcpu *vcpu) { struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; if (likely(cpu_if->vgic_sre)) cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr); kvm_call_hyp(__vgic_v3_save_aprs, vcpu); if (has_vhe()) __vgic_v3_deactivate_traps(vcpu); }