// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2017 Facebook */ #define _GNU_SOURCE #include "test_progs.h" #include "testing_helpers.h" #include "cgroup_helpers.h" #include #include #include #include #include #include /* get_nprocs */ #include #include #include #include #include #include "json_writer.h" #include "network_helpers.h" #ifdef __GLIBC__ #include /* backtrace */ #endif /* Default backtrace funcs if missing at link */ __weak int backtrace(void **buffer, int size) { return 0; } __weak void backtrace_symbols_fd(void *const *buffer, int size, int fd) { dprintf(fd, "\n"); } int env_verbosity = 0; static bool verbose(void) { return env.verbosity > VERBOSE_NONE; } static void stdio_hijack_init(char **log_buf, size_t *log_cnt) { #ifdef __GLIBC__ if (verbose() && env.worker_id == -1) { /* nothing to do, output to stdout by default */ return; } fflush(stdout); fflush(stderr); stdout = open_memstream(log_buf, log_cnt); if (!stdout) { stdout = env.stdout_saved; perror("open_memstream"); return; } if (env.subtest_state) env.subtest_state->stdout_saved = stdout; else env.test_state->stdout_saved = stdout; stderr = stdout; #endif } static void stdio_hijack(char **log_buf, size_t *log_cnt) { #ifdef __GLIBC__ if (verbose() && env.worker_id == -1) { /* nothing to do, output to stdout by default */ return; } env.stdout_saved = stdout; env.stderr_saved = stderr; stdio_hijack_init(log_buf, log_cnt); #endif } static void stdio_restore_cleanup(void) { #ifdef __GLIBC__ if (verbose() && env.worker_id == -1) { /* nothing to do, output to stdout by default */ return; } fflush(stdout); if (env.subtest_state) { fclose(env.subtest_state->stdout_saved); env.subtest_state->stdout_saved = NULL; stdout = env.test_state->stdout_saved; stderr = env.test_state->stdout_saved; } else { fclose(env.test_state->stdout_saved); env.test_state->stdout_saved = NULL; } #endif } static void stdio_restore(void) { #ifdef __GLIBC__ if (verbose() && env.worker_id == -1) { /* nothing to do, output to stdout by default */ return; } if (stdout == env.stdout_saved) return; stdio_restore_cleanup(); stdout = env.stdout_saved; stderr = env.stderr_saved; #endif } /* Adapted from perf/util/string.c */ static bool glob_match(const char *str, const char *pat) { while (*str && *pat && *pat != '*') { if (*str != *pat) return false; str++; pat++; } /* Check wild card */ if (*pat == '*') { while (*pat == '*') pat++; if (!*pat) /* Tail wild card matches all */ return true; while (*str) if (glob_match(str++, pat)) return true; } return !*str && !*pat; } #define EXIT_NO_TEST 2 #define EXIT_ERR_SETUP_INFRA 3 /* defined in test_progs.h */ struct test_env env = {}; struct prog_test_def { const char *test_name; int test_num; void (*run_test)(void); void (*run_serial_test)(void); bool should_run; bool need_cgroup_cleanup; bool should_tmon; }; /* Override C runtime library's usleep() implementation to ensure nanosleep() * is always called. Usleep is frequently used in selftests as a way to * trigger kprobe and tracepoints. */ int usleep(useconds_t usec) { struct timespec ts = { .tv_sec = usec / 1000000, .tv_nsec = (usec % 1000000) * 1000, }; return syscall(__NR_nanosleep, &ts, NULL); } static bool should_run(struct test_selector *sel, int num, const char *name) { int i; for (i = 0; i < sel->blacklist.cnt; i++) { if (glob_match(name, sel->blacklist.tests[i].name) && !sel->blacklist.tests[i].subtest_cnt) return false; } for (i = 0; i < sel->whitelist.cnt; i++) { if (glob_match(name, sel->whitelist.tests[i].name)) return true; } if (!sel->whitelist.cnt && !sel->num_set) return true; return num < sel->num_set_len && sel->num_set[num]; } static bool match_subtest(struct test_filter_set *filter, const char *test_name, const char *subtest_name) { int i, j; for (i = 0; i < filter->cnt; i++) { if (glob_match(test_name, filter->tests[i].name)) { if (!filter->tests[i].subtest_cnt) return true; for (j = 0; j < filter->tests[i].subtest_cnt; j++) { if (glob_match(subtest_name, filter->tests[i].subtests[j])) return true; } } } return false; } static bool should_run_subtest(struct test_selector *sel, struct test_selector *subtest_sel, int subtest_num, const char *test_name, const char *subtest_name) { if (match_subtest(&sel->blacklist, test_name, subtest_name)) return false; if (match_subtest(&sel->whitelist, test_name, subtest_name)) return true; if (!sel->whitelist.cnt && !subtest_sel->num_set) return true; return subtest_num < subtest_sel->num_set_len && subtest_sel->num_set[subtest_num]; } static bool should_tmon(struct test_selector *sel, const char *name) { int i; for (i = 0; i < sel->whitelist.cnt; i++) { if (glob_match(name, sel->whitelist.tests[i].name) && !sel->whitelist.tests[i].subtest_cnt) return true; } return false; } static char *test_result(bool failed, bool skipped) { return failed ? "FAIL" : (skipped ? "SKIP" : "OK"); } #define TEST_NUM_WIDTH 7 static void print_test_result(const struct prog_test_def *test, const struct test_state *test_state) { int skipped_cnt = test_state->skip_cnt; int subtests_cnt = test_state->subtest_num; fprintf(env.stdout_saved, "#%-*d %s:", TEST_NUM_WIDTH, test->test_num, test->test_name); if (test_state->error_cnt) fprintf(env.stdout_saved, "FAIL"); else if (!skipped_cnt) fprintf(env.stdout_saved, "OK"); else if (skipped_cnt == subtests_cnt || !subtests_cnt) fprintf(env.stdout_saved, "SKIP"); else fprintf(env.stdout_saved, "OK (SKIP: %d/%d)", skipped_cnt, subtests_cnt); fprintf(env.stdout_saved, "\n"); } static void print_test_log(char *log_buf, size_t log_cnt) { log_buf[log_cnt] = '\0'; fprintf(env.stdout_saved, "%s", log_buf); if (log_buf[log_cnt - 1] != '\n') fprintf(env.stdout_saved, "\n"); } static void print_subtest_name(int test_num, int subtest_num, const char *test_name, char *subtest_name, char *result) { char test_num_str[32]; snprintf(test_num_str, sizeof(test_num_str), "%d/%d", test_num, subtest_num); fprintf(env.stdout_saved, "#%-*s %s/%s", TEST_NUM_WIDTH, test_num_str, test_name, subtest_name); if (result) fprintf(env.stdout_saved, ":%s", result); fprintf(env.stdout_saved, "\n"); } static void jsonw_write_log_message(json_writer_t *w, char *log_buf, size_t log_cnt) { /* open_memstream (from stdio_hijack_init) ensures that log_bug is terminated by a * null byte. Yet in parallel mode, log_buf will be NULL if there is no message. */ if (log_cnt) { jsonw_string_field(w, "message", log_buf); } else { jsonw_string_field(w, "message", ""); } } static void dump_test_log(const struct prog_test_def *test, const struct test_state *test_state, bool skip_ok_subtests, bool par_exec_result, json_writer_t *w) { bool test_failed = test_state->error_cnt > 0; bool force_log = test_state->force_log; bool print_test = verbose() || force_log || test_failed; int i; struct subtest_state *subtest_state; bool subtest_failed; bool subtest_filtered; bool print_subtest; /* we do not print anything in the worker thread */ if (env.worker_id != -1) return; /* there is nothing to print when verbose log is used and execution * is not in parallel mode */ if (verbose() && !par_exec_result) return; if (test_state->log_cnt && print_test) print_test_log(test_state->log_buf, test_state->log_cnt); if (w && print_test) { jsonw_start_object(w); jsonw_string_field(w, "name", test->test_name); jsonw_uint_field(w, "number", test->test_num); jsonw_write_log_message(w, test_state->log_buf, test_state->log_cnt); jsonw_bool_field(w, "failed", test_failed); jsonw_name(w, "subtests"); jsonw_start_array(w); } for (i = 0; i < test_state->subtest_num; i++) { subtest_state = &test_state->subtest_states[i]; subtest_failed = subtest_state->error_cnt; subtest_filtered = subtest_state->filtered; print_subtest = verbose() || force_log || subtest_failed; if ((skip_ok_subtests && !subtest_failed) || subtest_filtered) continue; if (subtest_state->log_cnt && print_subtest) { print_test_log(subtest_state->log_buf, subtest_state->log_cnt); } print_subtest_name(test->test_num, i + 1, test->test_name, subtest_state->name, test_result(subtest_state->error_cnt, subtest_state->skipped)); if (w && print_subtest) { jsonw_start_object(w); jsonw_string_field(w, "name", subtest_state->name); jsonw_uint_field(w, "number", i+1); jsonw_write_log_message(w, subtest_state->log_buf, subtest_state->log_cnt); jsonw_bool_field(w, "failed", subtest_failed); jsonw_end_object(w); } } if (w && print_test) { jsonw_end_array(w); jsonw_end_object(w); } print_test_result(test, test_state); } static void stdio_restore(void); /* A bunch of tests set custom affinity per-thread and/or per-process. Reset * it after each test/sub-test. */ static void reset_affinity(void) { cpu_set_t cpuset; int i, err; CPU_ZERO(&cpuset); for (i = 0; i < env.nr_cpus; i++) CPU_SET(i, &cpuset); err = sched_setaffinity(0, sizeof(cpuset), &cpuset); if (err < 0) { stdio_restore(); fprintf(stderr, "Failed to reset process affinity: %d!\n", err); exit(EXIT_ERR_SETUP_INFRA); } err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset); if (err < 0) { stdio_restore(); fprintf(stderr, "Failed to reset thread affinity: %d!\n", err); exit(EXIT_ERR_SETUP_INFRA); } } static void save_netns(void) { env.saved_netns_fd = open("/proc/self/ns/net", O_RDONLY); if (env.saved_netns_fd == -1) { perror("open(/proc/self/ns/net)"); exit(EXIT_ERR_SETUP_INFRA); } } static void restore_netns(void) { if (setns(env.saved_netns_fd, CLONE_NEWNET) == -1) { stdio_restore(); perror("setns(CLONE_NEWNS)"); exit(EXIT_ERR_SETUP_INFRA); } } void test__end_subtest(void) { struct prog_test_def *test = env.test; struct test_state *test_state = env.test_state; struct subtest_state *subtest_state = env.subtest_state; if (subtest_state->error_cnt) { test_state->error_cnt++; } else { if (!subtest_state->skipped) test_state->sub_succ_cnt++; else test_state->skip_cnt++; } if (verbose() && !env.workers) print_subtest_name(test->test_num, test_state->subtest_num, test->test_name, subtest_state->name, test_result(subtest_state->error_cnt, subtest_state->skipped)); stdio_restore_cleanup(); env.subtest_state = NULL; } bool test__start_subtest(const char *subtest_name) { struct prog_test_def *test = env.test; struct test_state *state = env.test_state; struct subtest_state *subtest_state; size_t sub_state_size = sizeof(*subtest_state); if (env.subtest_state) test__end_subtest(); state->subtest_num++; state->subtest_states = realloc(state->subtest_states, state->subtest_num * sub_state_size); if (!state->subtest_states) { fprintf(stderr, "Not enough memory to allocate subtest result\n"); return false; } subtest_state = &state->subtest_states[state->subtest_num - 1]; memset(subtest_state, 0, sub_state_size); if (!subtest_name || !subtest_name[0]) { fprintf(env.stderr_saved, "Subtest #%d didn't provide sub-test name!\n", state->subtest_num); return false; } subtest_state->name = strdup(subtest_name); if (!subtest_state->name) { fprintf(env.stderr_saved, "Subtest #%d: failed to copy subtest name!\n", state->subtest_num); return false; } if (!should_run_subtest(&env.test_selector, &env.subtest_selector, state->subtest_num, test->test_name, subtest_name)) { subtest_state->filtered = true; return false; } subtest_state->should_tmon = match_subtest(&env.tmon_selector.whitelist, test->test_name, subtest_name); env.subtest_state = subtest_state; stdio_hijack_init(&subtest_state->log_buf, &subtest_state->log_cnt); return true; } void test__force_log(void) { env.test_state->force_log = true; } void test__skip(void) { if (env.subtest_state) env.subtest_state->skipped = true; else env.test_state->skip_cnt++; } void test__fail(void) { if (env.subtest_state) env.subtest_state->error_cnt++; else env.test_state->error_cnt++; } int test__join_cgroup(const char *path) { int fd; if (!env.test->need_cgroup_cleanup) { if (setup_cgroup_environment()) { fprintf(stderr, "#%d %s: Failed to setup cgroup environment\n", env.test->test_num, env.test->test_name); return -1; } env.test->need_cgroup_cleanup = true; } fd = create_and_get_cgroup(path); if (fd < 0) { fprintf(stderr, "#%d %s: Failed to create cgroup '%s' (errno=%d)\n", env.test->test_num, env.test->test_name, path, errno); return fd; } if (join_cgroup(path)) { fprintf(stderr, "#%d %s: Failed to join cgroup '%s' (errno=%d)\n", env.test->test_num, env.test->test_name, path, errno); return -1; } return fd; } int bpf_find_map(const char *test, struct bpf_object *obj, const char *name) { struct bpf_map *map; map = bpf_object__find_map_by_name(obj, name); if (!map) { fprintf(stdout, "%s:FAIL:map '%s' not found\n", test, name); test__fail(); return -1; } return bpf_map__fd(map); } int compare_map_keys(int map1_fd, int map2_fd) { __u32 key, next_key; char val_buf[PERF_MAX_STACK_DEPTH * sizeof(struct bpf_stack_build_id)]; int err; err = bpf_map_get_next_key(map1_fd, NULL, &key); if (err) return err; err = bpf_map_lookup_elem(map2_fd, &key, val_buf); if (err) return err; while (bpf_map_get_next_key(map1_fd, &key, &next_key) == 0) { err = bpf_map_lookup_elem(map2_fd, &next_key, val_buf); if (err) return err; key = next_key; } if (errno != ENOENT) return -1; return 0; } int compare_stack_ips(int smap_fd, int amap_fd, int stack_trace_len) { __u32 key, next_key, *cur_key_p, *next_key_p; char *val_buf1, *val_buf2; int i, err = 0; val_buf1 = malloc(stack_trace_len); val_buf2 = malloc(stack_trace_len); cur_key_p = NULL; next_key_p = &key; while (bpf_map_get_next_key(smap_fd, cur_key_p, next_key_p) == 0) { err = bpf_map_lookup_elem(smap_fd, next_key_p, val_buf1); if (err) goto out; err = bpf_map_lookup_elem(amap_fd, next_key_p, val_buf2); if (err) goto out; for (i = 0; i < stack_trace_len; i++) { if (val_buf1[i] != val_buf2[i]) { err = -1; goto out; } } key = *next_key_p; cur_key_p = &key; next_key_p = &next_key; } if (errno != ENOENT) err = -1; out: free(val_buf1); free(val_buf2); return err; } struct netns_obj { char *nsname; struct tmonitor_ctx *tmon; struct nstoken *nstoken; }; /* Create a new network namespace with the given name. * * Create a new network namespace and set the network namespace of the * current process to the new network namespace if the argument "open" is * true. This function should be paired with netns_free() to release the * resource and delete the network namespace. * * It also implements the functionality of the option "-m" by starting * traffic monitor on the background to capture the packets in this network * namespace if the current test or subtest matching the pattern. * * nsname: the name of the network namespace to create. * open: open the network namespace if true. * * Return: the network namespace object on success, NULL on failure. */ struct netns_obj *netns_new(const char *nsname, bool open) { struct netns_obj *netns_obj = malloc(sizeof(*netns_obj)); const char *test_name, *subtest_name; int r; if (!netns_obj) return NULL; memset(netns_obj, 0, sizeof(*netns_obj)); netns_obj->nsname = strdup(nsname); if (!netns_obj->nsname) goto fail; /* Create the network namespace */ r = make_netns(nsname); if (r) goto fail; /* Start traffic monitor */ if (env.test->should_tmon || (env.subtest_state && env.subtest_state->should_tmon)) { test_name = env.test->test_name; subtest_name = env.subtest_state ? env.subtest_state->name : NULL; netns_obj->tmon = traffic_monitor_start(nsname, test_name, subtest_name); if (!netns_obj->tmon) { fprintf(stderr, "Failed to start traffic monitor for %s\n", nsname); goto fail; } } else { netns_obj->tmon = NULL; } if (open) { netns_obj->nstoken = open_netns(nsname); if (!netns_obj->nstoken) goto fail; } return netns_obj; fail: traffic_monitor_stop(netns_obj->tmon); remove_netns(nsname); free(netns_obj->nsname); free(netns_obj); return NULL; } /* Delete the network namespace. * * This function should be paired with netns_new() to delete the namespace * created by netns_new(). */ void netns_free(struct netns_obj *netns_obj) { if (!netns_obj) return; traffic_monitor_stop(netns_obj->tmon); close_netns(netns_obj->nstoken); remove_netns(netns_obj->nsname); free(netns_obj->nsname); free(netns_obj); } /* extern declarations for test funcs */ #define DEFINE_TEST(name) \ extern void test_##name(void) __weak; \ extern void serial_test_##name(void) __weak; #include #undef DEFINE_TEST static struct prog_test_def prog_test_defs[] = { #define DEFINE_TEST(name) { \ .test_name = #name, \ .run_test = &test_##name, \ .run_serial_test = &serial_test_##name, \ }, #include #undef DEFINE_TEST }; static const int prog_test_cnt = ARRAY_SIZE(prog_test_defs); static struct test_state test_states[ARRAY_SIZE(prog_test_defs)]; const char *argp_program_version = "test_progs 0.1"; const char *argp_program_bug_address = ""; static const char argp_program_doc[] = "BPF selftests test runner\v" "Options accepting the NAMES parameter take either a comma-separated list\n" "of test names, or a filename prefixed with @. The file contains one name\n" "(or wildcard pattern) per line, and comments beginning with # are ignored.\n" "\n" "These options can be passed repeatedly to read multiple files.\n"; enum ARG_KEYS { ARG_TEST_NUM = 'n', ARG_TEST_NAME = 't', ARG_TEST_NAME_BLACKLIST = 'b', ARG_VERIFIER_STATS = 's', ARG_VERBOSE = 'v', ARG_GET_TEST_CNT = 'c', ARG_LIST_TEST_NAMES = 'l', ARG_TEST_NAME_GLOB_ALLOWLIST = 'a', ARG_TEST_NAME_GLOB_DENYLIST = 'd', ARG_NUM_WORKERS = 'j', ARG_DEBUG = -1, ARG_JSON_SUMMARY = 'J', ARG_TRAFFIC_MONITOR = 'm', }; static const struct argp_option opts[] = { { "num", ARG_TEST_NUM, "NUM", 0, "Run test number NUM only " }, { "name", ARG_TEST_NAME, "NAMES", 0, "Run tests with names containing any string from NAMES list" }, { "name-blacklist", ARG_TEST_NAME_BLACKLIST, "NAMES", 0, "Don't run tests with names containing any string from NAMES list" }, { "verifier-stats", ARG_VERIFIER_STATS, NULL, 0, "Output verifier statistics", }, { "verbose", ARG_VERBOSE, "LEVEL", OPTION_ARG_OPTIONAL, "Verbose output (use -vv or -vvv for progressively verbose output)" }, { "count", ARG_GET_TEST_CNT, NULL, 0, "Get number of selected top-level tests " }, { "list", ARG_LIST_TEST_NAMES, NULL, 0, "List test names that would run (without running them) " }, { "allow", ARG_TEST_NAME_GLOB_ALLOWLIST, "NAMES", 0, "Run tests with name matching the pattern (supports '*' wildcard)." }, { "deny", ARG_TEST_NAME_GLOB_DENYLIST, "NAMES", 0, "Don't run tests with name matching the pattern (supports '*' wildcard)." }, { "workers", ARG_NUM_WORKERS, "WORKERS", OPTION_ARG_OPTIONAL, "Number of workers to run in parallel, default to number of cpus." }, { "debug", ARG_DEBUG, NULL, 0, "print extra debug information for test_progs." }, { "json-summary", ARG_JSON_SUMMARY, "FILE", 0, "Write report in json format to this file."}, #ifdef TRAFFIC_MONITOR { "traffic-monitor", ARG_TRAFFIC_MONITOR, "NAMES", 0, "Monitor network traffic of tests with name matching the pattern (supports '*' wildcard)." }, #endif {}, }; static FILE *libbpf_capture_stream; static struct { char *buf; size_t buf_sz; } libbpf_output_capture; /* Creates a global memstream capturing INFO and WARN level output * passed to libbpf_print_fn. * Returns 0 on success, negative value on failure. * On failure the description is printed using PRINT_FAIL and * current test case is marked as fail. */ int start_libbpf_log_capture(void) { if (libbpf_capture_stream) { PRINT_FAIL("%s: libbpf_capture_stream != NULL\n", __func__); return -EINVAL; } libbpf_capture_stream = open_memstream(&libbpf_output_capture.buf, &libbpf_output_capture.buf_sz); if (!libbpf_capture_stream) { PRINT_FAIL("%s: open_memstream failed errno=%d\n", __func__, errno); return -EINVAL; } return 0; } /* Destroys global memstream created by start_libbpf_log_capture(). * Returns a pointer to captured data which has to be freed. * Returned buffer is null terminated. */ char *stop_libbpf_log_capture(void) { char *buf; if (!libbpf_capture_stream) return NULL; fputc(0, libbpf_capture_stream); fclose(libbpf_capture_stream); libbpf_capture_stream = NULL; /* get 'buf' after fclose(), see open_memstream() documentation */ buf = libbpf_output_capture.buf; memset(&libbpf_output_capture, 0, sizeof(libbpf_output_capture)); return buf; } static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) { if (libbpf_capture_stream && level != LIBBPF_DEBUG) { va_list args2; va_copy(args2, args); vfprintf(libbpf_capture_stream, format, args2); } if (env.verbosity < VERBOSE_VERY && level == LIBBPF_DEBUG) return 0; vfprintf(stdout, format, args); return 0; } static void free_test_filter_set(const struct test_filter_set *set) { int i, j; if (!set) return; for (i = 0; i < set->cnt; i++) { free((void *)set->tests[i].name); for (j = 0; j < set->tests[i].subtest_cnt; j++) free((void *)set->tests[i].subtests[j]); free((void *)set->tests[i].subtests); } free((void *)set->tests); } static void free_test_selector(struct test_selector *test_selector) { free_test_filter_set(&test_selector->blacklist); free_test_filter_set(&test_selector->whitelist); free(test_selector->num_set); } extern int extra_prog_load_log_flags; static error_t parse_arg(int key, char *arg, struct argp_state *state) { struct test_env *env = state->input; int err = 0; switch (key) { case ARG_TEST_NUM: { char *subtest_str = strchr(arg, '/'); if (subtest_str) { *subtest_str = '\0'; if (parse_num_list(subtest_str + 1, &env->subtest_selector.num_set, &env->subtest_selector.num_set_len)) { fprintf(stderr, "Failed to parse subtest numbers.\n"); return -EINVAL; } } if (parse_num_list(arg, &env->test_selector.num_set, &env->test_selector.num_set_len)) { fprintf(stderr, "Failed to parse test numbers.\n"); return -EINVAL; } break; } case ARG_TEST_NAME_GLOB_ALLOWLIST: case ARG_TEST_NAME: { if (arg[0] == '@') err = parse_test_list_file(arg + 1, &env->test_selector.whitelist, key == ARG_TEST_NAME_GLOB_ALLOWLIST); else err = parse_test_list(arg, &env->test_selector.whitelist, key == ARG_TEST_NAME_GLOB_ALLOWLIST); break; } case ARG_TEST_NAME_GLOB_DENYLIST: case ARG_TEST_NAME_BLACKLIST: { if (arg[0] == '@') err = parse_test_list_file(arg + 1, &env->test_selector.blacklist, key == ARG_TEST_NAME_GLOB_DENYLIST); else err = parse_test_list(arg, &env->test_selector.blacklist, key == ARG_TEST_NAME_GLOB_DENYLIST); break; } case ARG_VERIFIER_STATS: env->verifier_stats = true; break; case ARG_VERBOSE: env->verbosity = VERBOSE_NORMAL; if (arg) { if (strcmp(arg, "v") == 0) { env->verbosity = VERBOSE_VERY; extra_prog_load_log_flags = 1; } else if (strcmp(arg, "vv") == 0) { env->verbosity = VERBOSE_SUPER; extra_prog_load_log_flags = 2; } else { fprintf(stderr, "Unrecognized verbosity setting ('%s'), only -v and -vv are supported\n", arg); return -EINVAL; } } env_verbosity = env->verbosity; if (verbose()) { if (setenv("SELFTESTS_VERBOSE", "1", 1) == -1) { fprintf(stderr, "Unable to setenv SELFTESTS_VERBOSE=1 (errno=%d)", errno); return -EINVAL; } } break; case ARG_GET_TEST_CNT: env->get_test_cnt = true; break; case ARG_LIST_TEST_NAMES: env->list_test_names = true; break; case ARG_NUM_WORKERS: if (arg) { env->workers = atoi(arg); if (!env->workers) { fprintf(stderr, "Invalid number of worker: %s.", arg); return -EINVAL; } } else { env->workers = get_nprocs(); } break; case ARG_DEBUG: env->debug = true; break; case ARG_JSON_SUMMARY: env->json = fopen(arg, "w"); if (env->json == NULL) { perror("Failed to open json summary file"); return -errno; } break; case ARGP_KEY_ARG: argp_usage(state); break; case ARGP_KEY_END: break; #ifdef TRAFFIC_MONITOR case ARG_TRAFFIC_MONITOR: if (arg[0] == '@') err = parse_test_list_file(arg + 1, &env->tmon_selector.whitelist, true); else err = parse_test_list(arg, &env->tmon_selector.whitelist, true); break; #endif default: return ARGP_ERR_UNKNOWN; } return err; } /* * Determine if test_progs is running as a "flavored" test runner and switch * into corresponding sub-directory to load correct BPF objects. * * This is done by looking at executable name. If it contains "-flavor" * suffix, then we are running as a flavored test runner. */ int cd_flavor_subdir(const char *exec_name) { /* General form of argv[0] passed here is: * some/path/to/test_progs[-flavor], where -flavor part is optional. * First cut out "test_progs[-flavor]" part, then extract "flavor" * part, if it's there. */ const char *flavor = strrchr(exec_name, '/'); if (!flavor) flavor = exec_name; else flavor++; flavor = strrchr(flavor, '-'); if (!flavor) return 0; flavor++; if (verbose()) fprintf(stdout, "Switching to flavor '%s' subdirectory...\n", flavor); return chdir(flavor); } int trigger_module_test_read(int read_sz) { int fd, err; fd = open(BPF_TESTMOD_TEST_FILE, O_RDONLY); err = -errno; if (!ASSERT_GE(fd, 0, "testmod_file_open")) return err; read(fd, NULL, read_sz); close(fd); return 0; } int trigger_module_test_write(int write_sz) { int fd, err; char *buf = malloc(write_sz); if (!buf) return -ENOMEM; memset(buf, 'a', write_sz); buf[write_sz-1] = '\0'; fd = open(BPF_TESTMOD_TEST_FILE, O_WRONLY); err = -errno; if (!ASSERT_GE(fd, 0, "testmod_file_open")) { free(buf); return err; } write(fd, buf, write_sz); close(fd); free(buf); return 0; } int write_sysctl(const char *sysctl, const char *value) { int fd, err, len; fd = open(sysctl, O_WRONLY); if (!ASSERT_NEQ(fd, -1, "open sysctl")) return -1; len = strlen(value); err = write(fd, value, len); close(fd); if (!ASSERT_EQ(err, len, "write sysctl")) return -1; return 0; } int get_bpf_max_tramp_links_from(struct btf *btf) { const struct btf_enum *e; const struct btf_type *t; __u32 i, type_cnt; const char *name; __u16 j, vlen; for (i = 1, type_cnt = btf__type_cnt(btf); i < type_cnt; i++) { t = btf__type_by_id(btf, i); if (!t || !btf_is_enum(t) || t->name_off) continue; e = btf_enum(t); for (j = 0, vlen = btf_vlen(t); j < vlen; j++, e++) { name = btf__str_by_offset(btf, e->name_off); if (name && !strcmp(name, "BPF_MAX_TRAMP_LINKS")) return e->val; } } return -1; } int get_bpf_max_tramp_links(void) { struct btf *vmlinux_btf; int ret; vmlinux_btf = btf__load_vmlinux_btf(); if (!ASSERT_OK_PTR(vmlinux_btf, "vmlinux btf")) return -1; ret = get_bpf_max_tramp_links_from(vmlinux_btf); btf__free(vmlinux_btf); return ret; } #define MAX_BACKTRACE_SZ 128 void crash_handler(int signum) { void *bt[MAX_BACKTRACE_SZ]; size_t sz; sz = backtrace(bt, ARRAY_SIZE(bt)); if (env.stdout_saved) stdio_restore(); if (env.test) { env.test_state->error_cnt++; dump_test_log(env.test, env.test_state, true, false, NULL); } if (env.worker_id != -1) fprintf(stderr, "[%d]: ", env.worker_id); fprintf(stderr, "Caught signal #%d!\nStack trace:\n", signum); backtrace_symbols_fd(bt, sz, STDERR_FILENO); } static void sigint_handler(int signum) { int i; for (i = 0; i < env.workers; i++) if (env.worker_socks[i] > 0) close(env.worker_socks[i]); } static int current_test_idx; static pthread_mutex_t current_test_lock; static pthread_mutex_t stdout_output_lock; static inline const char *str_msg(const struct msg *msg, char *buf) { switch (msg->type) { case MSG_DO_TEST: sprintf(buf, "MSG_DO_TEST %d", msg->do_test.num); break; case MSG_TEST_DONE: sprintf(buf, "MSG_TEST_DONE %d (log: %d)", msg->test_done.num, msg->test_done.have_log); break; case MSG_SUBTEST_DONE: sprintf(buf, "MSG_SUBTEST_DONE %d (log: %d)", msg->subtest_done.num, msg->subtest_done.have_log); break; case MSG_TEST_LOG: sprintf(buf, "MSG_TEST_LOG (cnt: %zu, last: %d)", strlen(msg->test_log.log_buf), msg->test_log.is_last); break; case MSG_EXIT: sprintf(buf, "MSG_EXIT"); break; default: sprintf(buf, "UNKNOWN"); break; } return buf; } static int send_message(int sock, const struct msg *msg) { char buf[256]; if (env.debug) fprintf(stderr, "Sending msg: %s\n", str_msg(msg, buf)); return send(sock, msg, sizeof(*msg), 0); } static int recv_message(int sock, struct msg *msg) { int ret; char buf[256]; memset(msg, 0, sizeof(*msg)); ret = recv(sock, msg, sizeof(*msg), 0); if (ret >= 0) { if (env.debug) fprintf(stderr, "Received msg: %s\n", str_msg(msg, buf)); } return ret; } static void run_one_test(int test_num) { struct prog_test_def *test = &prog_test_defs[test_num]; struct test_state *state = &test_states[test_num]; env.test = test; env.test_state = state; stdio_hijack(&state->log_buf, &state->log_cnt); if (test->run_test) test->run_test(); else if (test->run_serial_test) test->run_serial_test(); /* ensure last sub-test is finalized properly */ if (env.subtest_state) test__end_subtest(); state->tested = true; if (verbose() && env.worker_id == -1) print_test_result(test, state); reset_affinity(); restore_netns(); if (test->need_cgroup_cleanup) cleanup_cgroup_environment(); stdio_restore(); free(stop_libbpf_log_capture()); dump_test_log(test, state, false, false, NULL); } struct dispatch_data { int worker_id; int sock_fd; }; static int read_prog_test_msg(int sock_fd, struct msg *msg, enum msg_type type) { if (recv_message(sock_fd, msg) < 0) return 1; if (msg->type != type) { printf("%s: unexpected message type %d. expected %d\n", __func__, msg->type, type); return 1; } return 0; } static int dispatch_thread_read_log(int sock_fd, char **log_buf, size_t *log_cnt) { FILE *log_fp = NULL; int result = 0; log_fp = open_memstream(log_buf, log_cnt); if (!log_fp) return 1; while (true) { struct msg msg; if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_LOG)) { result = 1; goto out; } fprintf(log_fp, "%s", msg.test_log.log_buf); if (msg.test_log.is_last) break; } out: fclose(log_fp); log_fp = NULL; return result; } static int dispatch_thread_send_subtests(int sock_fd, struct test_state *state) { struct msg msg; struct subtest_state *subtest_state; int subtest_num = state->subtest_num; state->subtest_states = malloc(subtest_num * sizeof(*subtest_state)); for (int i = 0; i < subtest_num; i++) { subtest_state = &state->subtest_states[i]; memset(subtest_state, 0, sizeof(*subtest_state)); if (read_prog_test_msg(sock_fd, &msg, MSG_SUBTEST_DONE)) return 1; subtest_state->name = strdup(msg.subtest_done.name); subtest_state->error_cnt = msg.subtest_done.error_cnt; subtest_state->skipped = msg.subtest_done.skipped; subtest_state->filtered = msg.subtest_done.filtered; /* collect all logs */ if (msg.subtest_done.have_log) if (dispatch_thread_read_log(sock_fd, &subtest_state->log_buf, &subtest_state->log_cnt)) return 1; } return 0; } static void *dispatch_thread(void *ctx) { struct dispatch_data *data = ctx; int sock_fd; sock_fd = data->sock_fd; while (true) { int test_to_run = -1; struct prog_test_def *test; struct test_state *state; /* grab a test */ { pthread_mutex_lock(¤t_test_lock); if (current_test_idx >= prog_test_cnt) { pthread_mutex_unlock(¤t_test_lock); goto done; } test = &prog_test_defs[current_test_idx]; test_to_run = current_test_idx; current_test_idx++; pthread_mutex_unlock(¤t_test_lock); } if (!test->should_run || test->run_serial_test) continue; /* run test through worker */ { struct msg msg_do_test; memset(&msg_do_test, 0, sizeof(msg_do_test)); msg_do_test.type = MSG_DO_TEST; msg_do_test.do_test.num = test_to_run; if (send_message(sock_fd, &msg_do_test) < 0) { perror("Fail to send command"); goto done; } env.worker_current_test[data->worker_id] = test_to_run; } /* wait for test done */ do { struct msg msg; if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_DONE)) goto error; if (test_to_run != msg.test_done.num) goto error; state = &test_states[test_to_run]; state->tested = true; state->error_cnt = msg.test_done.error_cnt; state->skip_cnt = msg.test_done.skip_cnt; state->sub_succ_cnt = msg.test_done.sub_succ_cnt; state->subtest_num = msg.test_done.subtest_num; /* collect all logs */ if (msg.test_done.have_log) { if (dispatch_thread_read_log(sock_fd, &state->log_buf, &state->log_cnt)) goto error; } /* collect all subtests and subtest logs */ if (!state->subtest_num) break; if (dispatch_thread_send_subtests(sock_fd, state)) goto error; } while (false); pthread_mutex_lock(&stdout_output_lock); dump_test_log(test, state, false, true, NULL); pthread_mutex_unlock(&stdout_output_lock); } /* while (true) */ error: if (env.debug) fprintf(stderr, "[%d]: Protocol/IO error: %s.\n", data->worker_id, strerror(errno)); done: { struct msg msg_exit; msg_exit.type = MSG_EXIT; if (send_message(sock_fd, &msg_exit) < 0) { if (env.debug) fprintf(stderr, "[%d]: send_message msg_exit: %s.\n", data->worker_id, strerror(errno)); } } return NULL; } static void calculate_summary_and_print_errors(struct test_env *env) { int i; int succ_cnt = 0, fail_cnt = 0, sub_succ_cnt = 0, skip_cnt = 0; json_writer_t *w = NULL; for (i = 0; i < prog_test_cnt; i++) { struct test_state *state = &test_states[i]; if (!state->tested) continue; sub_succ_cnt += state->sub_succ_cnt; skip_cnt += state->skip_cnt; if (state->error_cnt) fail_cnt++; else succ_cnt++; } if (env->json) { w = jsonw_new(env->json); if (!w) fprintf(env->stderr_saved, "Failed to create new JSON stream."); } if (w) { jsonw_start_object(w); jsonw_uint_field(w, "success", succ_cnt); jsonw_uint_field(w, "success_subtest", sub_succ_cnt); jsonw_uint_field(w, "skipped", skip_cnt); jsonw_uint_field(w, "failed", fail_cnt); jsonw_name(w, "results"); jsonw_start_array(w); } /* * We only print error logs summary when there are failed tests and * verbose mode is not enabled. Otherwise, results may be inconsistent. * */ if (!verbose() && fail_cnt) { printf("\nAll error logs:\n"); /* print error logs again */ for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; struct test_state *state = &test_states[i]; if (!state->tested || !state->error_cnt) continue; dump_test_log(test, state, true, true, w); } } if (w) { jsonw_end_array(w); jsonw_end_object(w); jsonw_destroy(&w); } if (env->json) fclose(env->json); printf("Summary: %d/%d PASSED, %d SKIPPED, %d FAILED\n", succ_cnt, sub_succ_cnt, skip_cnt, fail_cnt); env->succ_cnt = succ_cnt; env->sub_succ_cnt = sub_succ_cnt; env->fail_cnt = fail_cnt; env->skip_cnt = skip_cnt; } static void server_main(void) { pthread_t *dispatcher_threads; struct dispatch_data *data; struct sigaction sigact_int = { .sa_handler = sigint_handler, .sa_flags = SA_RESETHAND, }; int i; sigaction(SIGINT, &sigact_int, NULL); dispatcher_threads = calloc(sizeof(pthread_t), env.workers); data = calloc(sizeof(struct dispatch_data), env.workers); env.worker_current_test = calloc(sizeof(int), env.workers); for (i = 0; i < env.workers; i++) { int rc; data[i].worker_id = i; data[i].sock_fd = env.worker_socks[i]; rc = pthread_create(&dispatcher_threads[i], NULL, dispatch_thread, &data[i]); if (rc < 0) { perror("Failed to launch dispatcher thread"); exit(EXIT_ERR_SETUP_INFRA); } } /* wait for all dispatcher to finish */ for (i = 0; i < env.workers; i++) { while (true) { int ret = pthread_tryjoin_np(dispatcher_threads[i], NULL); if (!ret) { break; } else if (ret == EBUSY) { if (env.debug) fprintf(stderr, "Still waiting for thread %d (test %d).\n", i, env.worker_current_test[i] + 1); usleep(1000 * 1000); continue; } else { fprintf(stderr, "Unexpected error joining dispatcher thread: %d", ret); break; } } } free(dispatcher_threads); free(env.worker_current_test); free(data); /* run serial tests */ save_netns(); for (int i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; if (!test->should_run || !test->run_serial_test) continue; run_one_test(i); } /* generate summary */ fflush(stderr); fflush(stdout); calculate_summary_and_print_errors(&env); /* reap all workers */ for (i = 0; i < env.workers; i++) { int wstatus, pid; pid = waitpid(env.worker_pids[i], &wstatus, 0); if (pid != env.worker_pids[i]) perror("Unable to reap worker"); } } static void worker_main_send_log(int sock, char *log_buf, size_t log_cnt) { char *src; size_t slen; src = log_buf; slen = log_cnt; while (slen) { struct msg msg_log; char *dest; size_t len; memset(&msg_log, 0, sizeof(msg_log)); msg_log.type = MSG_TEST_LOG; dest = msg_log.test_log.log_buf; len = slen >= MAX_LOG_TRUNK_SIZE ? MAX_LOG_TRUNK_SIZE : slen; memcpy(dest, src, len); src += len; slen -= len; if (!slen) msg_log.test_log.is_last = true; assert(send_message(sock, &msg_log) >= 0); } } static void free_subtest_state(struct subtest_state *state) { if (state->log_buf) { free(state->log_buf); state->log_buf = NULL; state->log_cnt = 0; } free(state->name); state->name = NULL; } static int worker_main_send_subtests(int sock, struct test_state *state) { int i, result = 0; struct msg msg; struct subtest_state *subtest_state; memset(&msg, 0, sizeof(msg)); msg.type = MSG_SUBTEST_DONE; for (i = 0; i < state->subtest_num; i++) { subtest_state = &state->subtest_states[i]; msg.subtest_done.num = i; strncpy(msg.subtest_done.name, subtest_state->name, MAX_SUBTEST_NAME); msg.subtest_done.error_cnt = subtest_state->error_cnt; msg.subtest_done.skipped = subtest_state->skipped; msg.subtest_done.filtered = subtest_state->filtered; msg.subtest_done.have_log = false; if (verbose() || state->force_log || subtest_state->error_cnt) { if (subtest_state->log_cnt) msg.subtest_done.have_log = true; } if (send_message(sock, &msg) < 0) { perror("Fail to send message done"); result = 1; goto out; } /* send logs */ if (msg.subtest_done.have_log) worker_main_send_log(sock, subtest_state->log_buf, subtest_state->log_cnt); free_subtest_state(subtest_state); free(subtest_state->name); } out: for (; i < state->subtest_num; i++) free_subtest_state(&state->subtest_states[i]); free(state->subtest_states); return result; } static int worker_main(int sock) { save_netns(); while (true) { /* receive command */ struct msg msg; if (recv_message(sock, &msg) < 0) goto out; switch (msg.type) { case MSG_EXIT: if (env.debug) fprintf(stderr, "[%d]: worker exit.\n", env.worker_id); goto out; case MSG_DO_TEST: { int test_to_run = msg.do_test.num; struct prog_test_def *test = &prog_test_defs[test_to_run]; struct test_state *state = &test_states[test_to_run]; struct msg msg; if (env.debug) fprintf(stderr, "[%d]: #%d:%s running.\n", env.worker_id, test_to_run + 1, test->test_name); run_one_test(test_to_run); memset(&msg, 0, sizeof(msg)); msg.type = MSG_TEST_DONE; msg.test_done.num = test_to_run; msg.test_done.error_cnt = state->error_cnt; msg.test_done.skip_cnt = state->skip_cnt; msg.test_done.sub_succ_cnt = state->sub_succ_cnt; msg.test_done.subtest_num = state->subtest_num; msg.test_done.have_log = false; if (verbose() || state->force_log || state->error_cnt) { if (state->log_cnt) msg.test_done.have_log = true; } if (send_message(sock, &msg) < 0) { perror("Fail to send message done"); goto out; } /* send logs */ if (msg.test_done.have_log) worker_main_send_log(sock, state->log_buf, state->log_cnt); if (state->log_buf) { free(state->log_buf); state->log_buf = NULL; state->log_cnt = 0; } if (state->subtest_num) if (worker_main_send_subtests(sock, state)) goto out; if (env.debug) fprintf(stderr, "[%d]: #%d:%s done.\n", env.worker_id, test_to_run + 1, test->test_name); break; } /* case MSG_DO_TEST */ default: if (env.debug) fprintf(stderr, "[%d]: unknown message.\n", env.worker_id); return -1; } } out: return 0; } static void free_test_states(void) { int i, j; for (i = 0; i < ARRAY_SIZE(prog_test_defs); i++) { struct test_state *test_state = &test_states[i]; for (j = 0; j < test_state->subtest_num; j++) free_subtest_state(&test_state->subtest_states[j]); free(test_state->subtest_states); free(test_state->log_buf); test_state->subtest_states = NULL; test_state->log_buf = NULL; } } int main(int argc, char **argv) { static const struct argp argp = { .options = opts, .parser = parse_arg, .doc = argp_program_doc, }; struct sigaction sigact = { .sa_handler = crash_handler, .sa_flags = SA_RESETHAND, }; int err, i; sigaction(SIGSEGV, &sigact, NULL); err = argp_parse(&argp, argc, argv, 0, NULL, &env); if (err) return err; err = cd_flavor_subdir(argv[0]); if (err) return err; /* Use libbpf 1.0 API mode */ libbpf_set_strict_mode(LIBBPF_STRICT_ALL); libbpf_set_print(libbpf_print_fn); srand(time(NULL)); env.jit_enabled = is_jit_enabled(); env.nr_cpus = libbpf_num_possible_cpus(); if (env.nr_cpus < 0) { fprintf(stderr, "Failed to get number of CPUs: %d!\n", env.nr_cpus); return -1; } env.stdout_saved = stdout; env.stderr_saved = stderr; env.has_testmod = true; if (!env.list_test_names) { /* ensure previous instance of the module is unloaded */ unload_bpf_testmod(verbose()); if (load_bpf_testmod(verbose())) { fprintf(env.stderr_saved, "WARNING! Selftests relying on bpf_testmod.ko will be skipped.\n"); env.has_testmod = false; } } /* initializing tests */ for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; test->test_num = i + 1; test->should_run = should_run(&env.test_selector, test->test_num, test->test_name); if ((test->run_test == NULL && test->run_serial_test == NULL) || (test->run_test != NULL && test->run_serial_test != NULL)) { fprintf(stderr, "Test %d:%s must have either test_%s() or serial_test_%sl() defined.\n", test->test_num, test->test_name, test->test_name, test->test_name); exit(EXIT_ERR_SETUP_INFRA); } if (test->should_run) test->should_tmon = should_tmon(&env.tmon_selector, test->test_name); } /* ignore workers if we are just listing */ if (env.get_test_cnt || env.list_test_names) env.workers = 0; /* launch workers if requested */ env.worker_id = -1; /* main process */ if (env.workers) { env.worker_pids = calloc(sizeof(pid_t), env.workers); env.worker_socks = calloc(sizeof(int), env.workers); if (env.debug) fprintf(stdout, "Launching %d workers.\n", env.workers); for (i = 0; i < env.workers; i++) { int sv[2]; pid_t pid; if (socketpair(AF_UNIX, SOCK_SEQPACKET | SOCK_CLOEXEC, 0, sv) < 0) { perror("Fail to create worker socket"); return -1; } pid = fork(); if (pid < 0) { perror("Failed to fork worker"); return -1; } else if (pid != 0) { /* main process */ close(sv[1]); env.worker_pids[i] = pid; env.worker_socks[i] = sv[0]; } else { /* inside each worker process */ close(sv[0]); env.worker_id = i; return worker_main(sv[1]); } } if (env.worker_id == -1) { server_main(); goto out; } } /* The rest of the main process */ /* on single mode */ save_netns(); for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; if (!test->should_run) continue; if (env.get_test_cnt) { env.succ_cnt++; continue; } if (env.list_test_names) { fprintf(env.stdout_saved, "%s\n", test->test_name); env.succ_cnt++; continue; } run_one_test(i); } if (env.get_test_cnt) { printf("%d\n", env.succ_cnt); goto out; } if (env.list_test_names) goto out; calculate_summary_and_print_errors(&env); close(env.saved_netns_fd); out: if (!env.list_test_names && env.has_testmod) unload_bpf_testmod(verbose()); free_test_selector(&env.test_selector); free_test_selector(&env.subtest_selector); free_test_selector(&env.tmon_selector); free_test_states(); if (env.succ_cnt + env.fail_cnt + env.skip_cnt == 0) return EXIT_NO_TEST; return env.fail_cnt ? EXIT_FAILURE : EXIT_SUCCESS; }