// SPDX-License-Identifier: GPL-2.0 #include #include #include #include "stat.h" #include "evlist.h" #include "evsel.h" #include "thread_map.h" #include void update_stats(struct stats *stats, u64 val) { double delta; stats->n++; delta = val - stats->mean; stats->mean += delta / stats->n; stats->M2 += delta*(val - stats->mean); if (val > stats->max) stats->max = val; if (val < stats->min) stats->min = val; } double avg_stats(struct stats *stats) { return stats->mean; } /* * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance * * (\Sum n_i^2) - ((\Sum n_i)^2)/n * s^2 = ------------------------------- * n - 1 * * http://en.wikipedia.org/wiki/Stddev * * The std dev of the mean is related to the std dev by: * * s * s_mean = ------- * sqrt(n) * */ double stddev_stats(struct stats *stats) { double variance, variance_mean; if (stats->n < 2) return 0.0; variance = stats->M2 / (stats->n - 1); variance_mean = variance / stats->n; return sqrt(variance_mean); } double rel_stddev_stats(double stddev, double avg) { double pct = 0.0; if (avg) pct = 100.0 * stddev/avg; return pct; } bool __perf_evsel_stat__is(struct evsel *evsel, enum perf_stat_evsel_id id) { struct perf_stat_evsel *ps = evsel->stats; return ps->id == id; } #define ID(id, name) [PERF_STAT_EVSEL_ID__##id] = #name static const char *id_str[PERF_STAT_EVSEL_ID__MAX] = { ID(NONE, x), ID(CYCLES_IN_TX, cpu/cycles-t/), ID(TRANSACTION_START, cpu/tx-start/), ID(ELISION_START, cpu/el-start/), ID(CYCLES_IN_TX_CP, cpu/cycles-ct/), ID(TOPDOWN_TOTAL_SLOTS, topdown-total-slots), ID(TOPDOWN_SLOTS_ISSUED, topdown-slots-issued), ID(TOPDOWN_SLOTS_RETIRED, topdown-slots-retired), ID(TOPDOWN_FETCH_BUBBLES, topdown-fetch-bubbles), ID(TOPDOWN_RECOVERY_BUBBLES, topdown-recovery-bubbles), ID(SMI_NUM, msr/smi/), ID(APERF, msr/aperf/), }; #undef ID static void perf_stat_evsel_id_init(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; int i; /* ps->id is 0 hence PERF_STAT_EVSEL_ID__NONE by default */ for (i = 0; i < PERF_STAT_EVSEL_ID__MAX; i++) { if (!strcmp(perf_evsel__name(evsel), id_str[i])) { ps->id = i; break; } } } static void perf_evsel__reset_stat_priv(struct evsel *evsel) { int i; struct perf_stat_evsel *ps = evsel->stats; for (i = 0; i < 3; i++) init_stats(&ps->res_stats[i]); perf_stat_evsel_id_init(evsel); } static int perf_evsel__alloc_stat_priv(struct evsel *evsel) { evsel->stats = zalloc(sizeof(struct perf_stat_evsel)); if (evsel->stats == NULL) return -ENOMEM; perf_evsel__reset_stat_priv(evsel); return 0; } static void perf_evsel__free_stat_priv(struct evsel *evsel) { struct perf_stat_evsel *ps = evsel->stats; if (ps) zfree(&ps->group_data); zfree(&evsel->stats); } static int perf_evsel__alloc_prev_raw_counts(struct evsel *evsel, int ncpus, int nthreads) { struct perf_counts *counts; counts = perf_counts__new(ncpus, nthreads); if (counts) evsel->prev_raw_counts = counts; return counts ? 0 : -ENOMEM; } static void perf_evsel__free_prev_raw_counts(struct evsel *evsel) { perf_counts__delete(evsel->prev_raw_counts); evsel->prev_raw_counts = NULL; } static int perf_evsel__alloc_stats(struct evsel *evsel, bool alloc_raw) { int ncpus = perf_evsel__nr_cpus(evsel); int nthreads = thread_map__nr(evsel->threads); if (perf_evsel__alloc_stat_priv(evsel) < 0 || perf_evsel__alloc_counts(evsel, ncpus, nthreads) < 0 || (alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel, ncpus, nthreads) < 0)) return -ENOMEM; return 0; } int perf_evlist__alloc_stats(struct evlist *evlist, bool alloc_raw) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (perf_evsel__alloc_stats(evsel, alloc_raw)) goto out_free; } return 0; out_free: perf_evlist__free_stats(evlist); return -1; } void perf_evlist__free_stats(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { perf_evsel__free_stat_priv(evsel); perf_evsel__free_counts(evsel); perf_evsel__free_prev_raw_counts(evsel); } } void perf_evlist__reset_stats(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { perf_evsel__reset_stat_priv(evsel); perf_evsel__reset_counts(evsel); } } static void zero_per_pkg(struct evsel *counter) { if (counter->per_pkg_mask) memset(counter->per_pkg_mask, 0, MAX_NR_CPUS); } static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals, int cpu, bool *skip) { unsigned long *mask = counter->per_pkg_mask; struct perf_cpu_map *cpus = evsel__cpus(counter); int s; *skip = false; if (!counter->per_pkg) return 0; if (cpu_map__empty(cpus)) return 0; if (!mask) { mask = zalloc(MAX_NR_CPUS); if (!mask) return -ENOMEM; counter->per_pkg_mask = mask; } /* * we do not consider an event that has not run as a good * instance to mark a package as used (skip=1). Otherwise * we may run into a situation where the first CPU in a package * is not running anything, yet the second is, and this function * would mark the package as used after the first CPU and would * not read the values from the second CPU. */ if (!(vals->run && vals->ena)) return 0; s = cpu_map__get_socket(cpus, cpu, NULL); if (s < 0) return -1; *skip = test_and_set_bit(s, mask) == 1; return 0; } static int process_counter_values(struct perf_stat_config *config, struct evsel *evsel, int cpu, int thread, struct perf_counts_values *count) { struct perf_counts_values *aggr = &evsel->counts->aggr; static struct perf_counts_values zero; bool skip = false; if (check_per_pkg(evsel, count, cpu, &skip)) { pr_err("failed to read per-pkg counter\n"); return -1; } if (skip) count = &zero; switch (config->aggr_mode) { case AGGR_THREAD: case AGGR_CORE: case AGGR_DIE: case AGGR_SOCKET: case AGGR_NONE: if (!evsel->snapshot) perf_evsel__compute_deltas(evsel, cpu, thread, count); perf_counts_values__scale(count, config->scale, NULL); if ((config->aggr_mode == AGGR_NONE) && (!evsel->percore)) { perf_stat__update_shadow_stats(evsel, count->val, cpu, &rt_stat); } if (config->aggr_mode == AGGR_THREAD) { if (config->stats) perf_stat__update_shadow_stats(evsel, count->val, 0, &config->stats[thread]); else perf_stat__update_shadow_stats(evsel, count->val, 0, &rt_stat); } break; case AGGR_GLOBAL: aggr->val += count->val; aggr->ena += count->ena; aggr->run += count->run; case AGGR_UNSET: default: break; } return 0; } static int process_counter_maps(struct perf_stat_config *config, struct evsel *counter) { int nthreads = thread_map__nr(counter->threads); int ncpus = perf_evsel__nr_cpus(counter); int cpu, thread; if (counter->system_wide) nthreads = 1; for (thread = 0; thread < nthreads; thread++) { for (cpu = 0; cpu < ncpus; cpu++) { if (process_counter_values(config, counter, cpu, thread, perf_counts(counter->counts, cpu, thread))) return -1; } } return 0; } int perf_stat_process_counter(struct perf_stat_config *config, struct evsel *counter) { struct perf_counts_values *aggr = &counter->counts->aggr; struct perf_stat_evsel *ps = counter->stats; u64 *count = counter->counts->aggr.values; int i, ret; aggr->val = aggr->ena = aggr->run = 0; /* * We calculate counter's data every interval, * and the display code shows ps->res_stats * avg value. We need to zero the stats for * interval mode, otherwise overall avg running * averages will be shown for each interval. */ if (config->interval) init_stats(ps->res_stats); if (counter->per_pkg) zero_per_pkg(counter); ret = process_counter_maps(config, counter); if (ret) return ret; if (config->aggr_mode != AGGR_GLOBAL) return 0; if (!counter->snapshot) perf_evsel__compute_deltas(counter, -1, -1, aggr); perf_counts_values__scale(aggr, config->scale, &counter->counts->scaled); for (i = 0; i < 3; i++) update_stats(&ps->res_stats[i], count[i]); if (verbose > 0) { fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", perf_evsel__name(counter), count[0], count[1], count[2]); } /* * Save the full runtime - to allow normalization during printout: */ perf_stat__update_shadow_stats(counter, *count, 0, &rt_stat); return 0; } int perf_event__process_stat_event(struct perf_session *session, union perf_event *event) { struct perf_counts_values count; struct stat_event *st = &event->stat; struct evsel *counter; count.val = st->val; count.ena = st->ena; count.run = st->run; counter = perf_evlist__id2evsel(session->evlist, st->id); if (!counter) { pr_err("Failed to resolve counter for stat event.\n"); return -EINVAL; } *perf_counts(counter->counts, st->cpu, st->thread) = count; counter->supported = true; return 0; } size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp) { struct stat_event *st = (struct stat_event *) event; size_t ret; ret = fprintf(fp, "\n... id %" PRIu64 ", cpu %d, thread %d\n", st->id, st->cpu, st->thread); ret += fprintf(fp, "... value %" PRIu64 ", enabled %" PRIu64 ", running %" PRIu64 "\n", st->val, st->ena, st->run); return ret; } size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp) { struct stat_round_event *rd = (struct stat_round_event *)event; size_t ret; ret = fprintf(fp, "\n... time %" PRIu64 ", type %s\n", rd->time, rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL"); return ret; } size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp) { struct perf_stat_config sc; size_t ret; perf_event__read_stat_config(&sc, &event->stat_config); ret = fprintf(fp, "\n"); ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode); ret += fprintf(fp, "... scale %d\n", sc.scale); ret += fprintf(fp, "... interval %u\n", sc.interval); return ret; } int create_perf_stat_counter(struct evsel *evsel, struct perf_stat_config *config, struct target *target) { struct perf_event_attr *attr = &evsel->core.attr; struct evsel *leader = evsel->leader; attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; /* * The event is part of non trivial group, let's enable * the group read (for leader) and ID retrieval for all * members. */ if (leader->nr_members > 1) attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; attr->inherit = !config->no_inherit; /* * Some events get initialized with sample_(period/type) set, * like tracepoints. Clear it up for counting. */ attr->sample_period = 0; if (config->identifier) attr->sample_type = PERF_SAMPLE_IDENTIFIER; /* * Disabling all counters initially, they will be enabled * either manually by us or by kernel via enable_on_exec * set later. */ if (perf_evsel__is_group_leader(evsel)) { attr->disabled = 1; /* * In case of initial_delay we enable tracee * events manually. */ if (target__none(target) && !config->initial_delay) attr->enable_on_exec = 1; } if (target__has_cpu(target) && !target__has_per_thread(target)) return perf_evsel__open_per_cpu(evsel, evsel__cpus(evsel)); return perf_evsel__open_per_thread(evsel, evsel->threads); } int perf_stat_synthesize_config(struct perf_stat_config *config, struct perf_tool *tool, struct evlist *evlist, perf_event__handler_t process, bool attrs) { int err; if (attrs) { err = perf_event__synthesize_attrs(tool, evlist, process); if (err < 0) { pr_err("Couldn't synthesize attrs.\n"); return err; } } err = perf_event__synthesize_extra_attr(tool, evlist, process, attrs); err = perf_event__synthesize_thread_map2(tool, evlist->threads, process, NULL); if (err < 0) { pr_err("Couldn't synthesize thread map.\n"); return err; } err = perf_event__synthesize_cpu_map(tool, evlist->cpus, process, NULL); if (err < 0) { pr_err("Couldn't synthesize thread map.\n"); return err; } err = perf_event__synthesize_stat_config(tool, config, process, NULL); if (err < 0) { pr_err("Couldn't synthesize config.\n"); return err; } return 0; }