// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 StarFive Technology Co., Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i2svad.h" /* vad control function*/ static void vad_start(struct vad_params *vad) { regmap_update_bits(vad->vad_map, VAD_MEM_SW, VAD_MEM_SW_MASK, VAD_MEM_SW_TO_VAD); regmap_update_bits(vad->vad_map, VAD_SW, VAD_SW_MASK, VAD_SW_VAD_XMEM_ENABLE|VAD_SW_ADC_ENABLE); regmap_update_bits(vad->vad_map, VAD_SPINT_EN, VAD_SPINT_EN_MASK, VAD_SPINT_EN_ENABLE); regmap_update_bits(vad->vad_map, VAD_SLINT_EN, VAD_SLINT_EN_MASK, VAD_SLINT_EN_ENABLE); } static void vad_stop(struct vad_params *vad) { regmap_update_bits(vad->vad_map, VAD_SPINT_EN, VAD_SPINT_EN_MASK, VAD_SLINT_EN_DISABLE); regmap_update_bits(vad->vad_map, VAD_SLINT_EN, VAD_SLINT_EN_MASK, VAD_SLINT_EN_DISABLE); regmap_update_bits(vad->vad_map, VAD_SW, VAD_SW_MASK, VAD_SW_VAD_XMEM_DISABLE|VAD_SW_ADC_DISABLE); regmap_update_bits(vad->vad_map, VAD_MEM_SW, VAD_MEM_SW_MASK, VAD_MEM_SW_TO_AXI); } static void vad_status(struct vad_params *vad) { u32 sp_value,sp_en; u32 sl_value,sl_en; regmap_read(vad->vad_map, VAD_SPINT,&sp_value); regmap_read(vad->vad_map, VAD_SPINT_EN,&sp_en); if (sp_value&sp_en){ regmap_update_bits(vad->vad_map, VAD_SPINT_CLR, VAD_SPINT_CLR_MASK, VAD_SPINT_CLR_VAD_SPINT); vad->vstatus = VAD_STATUS_SPINT; vad_stop(vad); vad_start(vad); } regmap_read(vad->vad_map, VAD_SLINT,&sl_value); regmap_read(vad->vad_map, VAD_SLINT_EN,&sl_en); if (sl_value&sl_en){ regmap_update_bits(vad->vad_map, VAD_SLINT_CLR, VAD_SLINT_CLR_MASK, VAD_SLINT_CLR_VAD_SLINT); vad->vstatus = VAD_STATUS_SLINT; } } static int vad_trigger(struct vad_params *vad,int cmd) { int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if(vad->vswitch) { vad_start(vad); } break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: vad_stop(vad); break; default: ret = -EINVAL; break; } return ret; } static void vad_init(struct vad_params *vad) { /* left_margin */ regmap_update_bits(vad->vad_map, VAD_LEFT_MARGIN, VAD_LEFT_MARGIN_MASK, 0x0); /* right_margin */ regmap_update_bits(vad->vad_map, VAD_RIGHT_MARGIN, VAD_RIGHT_MARGIN_MASK, 0x0); /*low-energy transition range threshold ——NL*/ regmap_update_bits(vad->vad_map, VAD_N_LOW_CONT_FRAMES, VAD_N_LOW_CONT_FRAMES_MASK, 0x3); /* low-energy transition range */ regmap_update_bits(vad->vad_map, VAD_N_LOW_SEEK_FRAMES, VAD_N_LOW_SEEK_FRAMES_MASK, 0x8); /* high-energy transition range threshold——NH */ regmap_update_bits(vad->vad_map, VAD_N_HIGH_CONT_FRAMES, VAD_N_HIGH_CONT_FRAMES_MASK, 0x5); /* high-energy transition range */ regmap_update_bits(vad->vad_map, VAD_N_HIGH_SEEK_FRAMES, VAD_N_HIGH_SEEK_FRAMES_MASK, 0x1E); /*low-energy voice range threshold——NVL*/ regmap_update_bits(vad->vad_map, VAD_N_SPEECH_LOW_HIGH_FRAMES, VAD_N_SPEECH_LOW_HIGH_FRAMES_MASK, 0x2); /*low-energy voice range*/ regmap_update_bits(vad->vad_map, VAD_N_SPEECH_LOW_SEEK_FRAMES, VAD_N_SPEECH_LOW_SEEK_FRAMES_MASK, 0x12); /*mean silence frame range*/ regmap_update_bits(vad->vad_map, VAD_MEAN_SIL_FRAMES, VAD_MEAN_SIL_FRAMES_MASK, 0xA); /*low-energy threshold scaling factor,12bit(0~0xFFF)*/ regmap_update_bits(vad->vad_map, VAD_N_ALPHA, VAD_N_ALPHA_MASK, 0x1A); /*high-energy threshold scaling factor,12bit(0~0xFFF)*/ regmap_update_bits(vad->vad_map, VAD_N_BETA, VAD_N_BETA_MASK, 0x34); regmap_update_bits(vad->vad_map, VAD_LEFT_WD, VAD_LEFT_WD_MASK, VAD_LEFT_WD_BIT_15_0); regmap_update_bits(vad->vad_map, VAD_RIGHT_WD, VAD_RIGHT_WD_MASK, VAD_RIGHT_WD_BIT_15_0); regmap_update_bits(vad->vad_map, VAD_LR_SEL, VAD_LR_SEL_MASK, VAD_LR_SEL_L); regmap_update_bits(vad->vad_map, VAD_STOP_DELAY, VAD_STOP_DELAY_MASK, VAD_STOP_DELAY_0_SAMPLE); regmap_update_bits(vad->vad_map, VAD_ADDR_START, VAD_ADDR_START_MASK, 0x0); regmap_update_bits(vad->vad_map, VAD_ADDR_WRAP, VAD_ADDR_WRAP_MASK, 0x2000); regmap_update_bits(vad->vad_map, VAD_MEM_SW, VAD_MEM_SW_MASK, VAD_MEM_SW_TO_AXI); regmap_update_bits(vad->vad_map, VAD_SPINT_CLR, VAD_SPINT_CLR_MASK, VAD_SPINT_CLR_VAD_SPINT); regmap_update_bits(vad->vad_map, VAD_SLINT_CLR, VAD_SLINT_CLR_MASK, VAD_SLINT_CLR_VAD_SLINT); } static int vad_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int vad_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct i2svad_dev *dev = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = dev->vad.vswitch; return 0; } static int vad_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct i2svad_dev *dev = snd_soc_component_get_drvdata(component); int val; val = ucontrol->value.integer.value[0]; if (val && !dev->vad.vswitch) { dev->vad.vswitch = true; } else if (!val && dev->vad.vswitch) { dev->vad.vswitch = false; vad_stop(&(dev->vad)); } return 0; } static int vad_status_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 2; return 0; } static int vad_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct i2svad_dev *dev = snd_soc_component_get_drvdata(component); ucontrol->value.integer.value[0] = dev->vad.vstatus; dev->vad.vstatus = VAD_STATUS_NORMAL; return 0; } #define SOC_VAD_SWITCH_DECL(xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = vad_switch_info, .get = vad_switch_get, \ .put = vad_switch_put, } #define SOC_VAD_STATUS_DECL(xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = vad_status_info, .get = vad_status_get, } static const struct snd_kcontrol_new vad_snd_controls[] = { SOC_VAD_SWITCH_DECL("vad switch"), SOC_VAD_STATUS_DECL("vad status"), }; static int vad_probe(struct snd_soc_component *component) { struct i2svad_dev *priv = snd_soc_component_get_drvdata(component); snd_soc_component_init_regmap(component, priv->vad.vad_map); snd_soc_add_component_controls(component, vad_snd_controls, ARRAY_SIZE(vad_snd_controls)); return 0; } /* i2s control function*/ static inline void i2s_write_reg(void __iomem *io_base, int reg, u32 val) { writel(val, io_base + reg); } static inline u32 i2s_read_reg(void __iomem *io_base, int reg) { return readl(io_base + reg); } static inline void i2s_disable_channels(struct i2svad_dev *dev, u32 stream) { u32 i = 0; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { for (i = 0; i < ALL_CHANNEL_NUM; i++) i2s_write_reg(dev->i2s_base, TER(i), 0); } else { for (i = 0; i < ALL_CHANNEL_NUM; i++) i2s_write_reg(dev->i2s_base, RER(i), 0); } } static inline void i2s_clear_irqs(struct i2svad_dev *dev, u32 stream) { u32 i = 0; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { for (i = 0; i < ALL_CHANNEL_NUM; i++) i2s_read_reg(dev->i2s_base, TOR(i)); } else { for (i = 0; i < ALL_CHANNEL_NUM; i++) i2s_read_reg(dev->i2s_base, ROR(i)); } } static inline void i2s_disable_irqs(struct i2svad_dev *dev, u32 stream, int chan_nr) { u32 i, irq; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { for (i = 0; i < (chan_nr / 2); i++) { irq = i2s_read_reg(dev->i2s_base, IMR(i)); i2s_write_reg(dev->i2s_base, IMR(i), irq | 0x30); } } else { for (i = 0; i < (chan_nr / 2); i++) { irq = i2s_read_reg(dev->i2s_base, IMR(i)); i2s_write_reg(dev->i2s_base, IMR(i), irq | 0x03); } } } static inline void i2s_enable_irqs(struct i2svad_dev *dev, u32 stream, int chan_nr) { u32 i, irq; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { for (i = 0; i < (chan_nr / 2); i++) { irq = i2s_read_reg(dev->i2s_base, IMR(i)); i2s_write_reg(dev->i2s_base, IMR(i), irq & ~0x30); } } else { for (i = 0; i < (chan_nr / 2); i++) { irq = i2s_read_reg(dev->i2s_base, IMR(i)); i2s_write_reg(dev->i2s_base, IMR(i), irq & ~0x03); } } } static irqreturn_t i2s_irq_handler(int irq, void *dev_id) { struct i2svad_dev *dev = dev_id; bool irq_valid = false; u32 isr[4]; int i; for (i = 0; i < ALL_CHANNEL_NUM; i++) isr[i] = i2s_read_reg(dev->i2s_base, ISR(i)); i2s_clear_irqs(dev, SNDRV_PCM_STREAM_PLAYBACK); i2s_clear_irqs(dev, SNDRV_PCM_STREAM_CAPTURE); for (i = 0; i < 4; i++) { /* * Check if TX fifo is empty. If empty fill FIFO with samples * NOTE: Only two channels supported */ if ((isr[i] & ISR_TXFE) && (i == 0) && dev->use_pio) { i2svad_pcm_push_tx(dev); irq_valid = true; } /* * Data available. Retrieve samples from FIFO * NOTE: Only two channels supported */ if ((isr[i] & ISR_RXDA) && (i == 0) && dev->use_pio) { i2svad_pcm_pop_rx(dev); irq_valid = true; } /* Error Handling: TX */ if (isr[i] & ISR_TXFO) { //dev_err(dev->dev, "TX overrun (ch_id=%d)\n", i); irq_valid = true; } /* Error Handling: TX */ if (isr[i] & ISR_RXFO) { //dev_err(dev->dev, "RX overrun (ch_id=%d)\n", i); irq_valid = true; } } vad_status(&(dev->vad)); if (irq_valid) return IRQ_HANDLED; else return IRQ_NONE; } static void i2s_start(struct i2svad_dev *dev, struct snd_pcm_substream *substream) { struct i2s_clk_config_data *config = &dev->config; i2s_write_reg(dev->i2s_base, IER, 1); i2s_enable_irqs(dev, substream->stream, config->chan_nr); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) i2s_write_reg(dev->i2s_base, ITER, 1); else i2s_write_reg(dev->i2s_base, IRER, 1); i2s_write_reg(dev->i2s_base, CER, 1); } static void i2s_stop(struct i2svad_dev *dev, struct snd_pcm_substream *substream) { i2s_clear_irqs(dev, substream->stream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) i2s_write_reg(dev->i2s_base, ITER, 0); else i2s_write_reg(dev->i2s_base, IRER, 0); i2s_disable_irqs(dev, substream->stream, 8); if (!dev->active) { i2s_write_reg(dev->i2s_base, CER, 0); i2s_write_reg(dev->i2s_base, IER, 0); } } static int dw_i2s_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct i2svad_dev *dev = snd_soc_dai_get_drvdata(cpu_dai); union dw_i2s_snd_dma_data *dma_data = NULL; if (!(dev->capability & DWC_I2S_RECORD) && (substream->stream == SNDRV_PCM_STREAM_CAPTURE)) return -EINVAL; if (!(dev->capability & DWC_I2S_PLAY) && (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)) return -EINVAL; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) dma_data = &dev->play_dma_data; else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) dma_data = &dev->capture_dma_data; snd_soc_dai_set_dma_data(cpu_dai, substream, (void *)dma_data); return 0; } static void dw_i2s_config(struct i2svad_dev *dev, int stream) { u32 ch_reg; struct i2s_clk_config_data *config = &dev->config; i2s_disable_channels(dev, stream); for (ch_reg = 0; ch_reg < (config->chan_nr / 2); ch_reg++) { if (stream == SNDRV_PCM_STREAM_PLAYBACK) { i2s_write_reg(dev->i2s_base, TCR(ch_reg), dev->xfer_resolution); i2s_write_reg(dev->i2s_base, TFCR(ch_reg), dev->fifo_th - 1); i2s_write_reg(dev->i2s_base, TER(ch_reg), 1); } else { i2s_write_reg(dev->i2s_base, RCR(ch_reg), dev->xfer_resolution); i2s_write_reg(dev->i2s_base, RFCR(ch_reg), dev->fifo_th - 1); i2s_write_reg(dev->i2s_base, RER(ch_reg), 1); } } } static int dw_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct i2svad_dev *dev = snd_soc_dai_get_drvdata(dai); struct i2s_clk_config_data *config = &dev->config; int ret; switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: config->data_width = 16; dev->ccr = 0x00; dev->xfer_resolution = 0x02; break; case SNDRV_PCM_FORMAT_S24_LE: config->data_width = 24; dev->ccr = 0x08; dev->xfer_resolution = 0x04; break; case SNDRV_PCM_FORMAT_S32_LE: config->data_width = 32; dev->ccr = 0x10; dev->xfer_resolution = 0x05; break; default: dev_err(dev->dev, "designware-i2s: unsupported PCM fmt"); return -EINVAL; } config->chan_nr = params_channels(params); switch (config->chan_nr) { case EIGHT_CHANNEL_SUPPORT: case SIX_CHANNEL_SUPPORT: case FOUR_CHANNEL_SUPPORT: case TWO_CHANNEL_SUPPORT: break; default: dev_err(dev->dev, "channel not supported\n"); return -EINVAL; } dw_i2s_config(dev, substream->stream); i2s_write_reg(dev->i2s_base, CCR, dev->ccr); config->sample_rate = params_rate(params); if (dev->capability & DW_I2S_MASTER) { if (dev->i2s_clk_cfg) { ret = dev->i2s_clk_cfg(config); if (ret < 0) { dev_err(dev->dev, "runtime audio clk config fail\n"); return ret; } } else { u32 bitclk = config->sample_rate * config->data_width * 2; ret = clk_set_rate(dev->clk, bitclk); if (ret) { dev_err(dev->dev, "Can't set I2S clock rate: %d\n", ret); return ret; } } } return 0; } static void dw_i2s_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { snd_soc_dai_set_dma_data(dai, substream, NULL); } static int dw_i2s_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct i2svad_dev *dev = snd_soc_dai_get_drvdata(dai); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) i2s_write_reg(dev->i2s_base, TXFFR, 1); else i2s_write_reg(dev->i2s_base, RXFFR, 1); return 0; } static int dw_i2s_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct i2svad_dev *dev = snd_soc_dai_get_drvdata(dai); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: dev->active++; i2s_start(dev, substream); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: dev->active--; i2s_stop(dev, substream); break; default: ret = -EINVAL; break; } if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { vad_trigger(&(dev->vad),cmd); } return ret; } static int dw_i2s_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct i2svad_dev *dev = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: if (dev->capability & DW_I2S_SLAVE) ret = 0; else ret = -EINVAL; break; case SND_SOC_DAIFMT_CBS_CFS: if (dev->capability & DW_I2S_MASTER) ret = 0; else ret = -EINVAL; break; case SND_SOC_DAIFMT_CBM_CFS: case SND_SOC_DAIFMT_CBS_CFM: ret = -EINVAL; break; default: dev_dbg(dev->dev, "dwc : Invalid master/slave format\n"); ret = -EINVAL; break; } return ret; } static const struct snd_soc_dai_ops dw_i2s_dai_ops = { .startup = dw_i2s_startup, .shutdown = dw_i2s_shutdown, .hw_params = dw_i2s_hw_params, .prepare = dw_i2s_prepare, .trigger = dw_i2s_trigger, .set_fmt = dw_i2s_set_fmt, }; #ifdef CONFIG_PM static int dw_i2s_runtime_suspend(struct device *dev) { struct i2svad_dev *dw_dev = dev_get_drvdata(dev); if (dw_dev->capability & DW_I2S_MASTER) clk_disable(dw_dev->clk); return 0; } static int dw_i2s_runtime_resume(struct device *dev) { struct i2svad_dev *dw_dev = dev_get_drvdata(dev); if (dw_dev->capability & DW_I2S_MASTER) clk_enable(dw_dev->clk); return 0; } static int dw_i2s_suspend(struct snd_soc_component *component) { struct i2svad_dev *dev = snd_soc_component_get_drvdata(component); if (dev->capability & DW_I2S_MASTER) clk_disable(dev->clk); return 0; } static int dw_i2s_resume(struct snd_soc_component *component) { struct i2svad_dev *dev = snd_soc_component_get_drvdata(component); struct snd_soc_dai *dai; int stream; if (dev->capability & DW_I2S_MASTER) clk_enable(dev->clk); for_each_component_dais(component, dai) { for_each_pcm_streams(stream) if (snd_soc_dai_stream_active(dai, stream)) dw_i2s_config(dev, stream); } return 0; } #else #define dw_i2s_suspend NULL #define dw_i2s_resume NULL #endif static int dw_i2svad_probe(struct snd_soc_component *component) { vad_probe(component); return 0; } static const struct snd_soc_component_driver dw_i2s_component = { .name = "dw-i2s", .probe = dw_i2svad_probe, .suspend = dw_i2s_suspend, .resume = dw_i2s_resume, }; /* * The following tables allow a direct lookup of various parameters * defined in the I2S block's configuration in terms of sound system * parameters. Each table is sized to the number of entries possible * according to the number of configuration bits describing an I2S * block parameter. */ /* Maximum bit resolution of a channel - not uniformly spaced */ static const u32 fifo_width[COMP_MAX_WORDSIZE] = { 12, 16, 20, 24, 32, 0, 0, 0 }; /* Width of (DMA) bus */ static const u32 bus_widths[COMP_MAX_DATA_WIDTH] = { DMA_SLAVE_BUSWIDTH_1_BYTE, DMA_SLAVE_BUSWIDTH_2_BYTES, DMA_SLAVE_BUSWIDTH_4_BYTES, DMA_SLAVE_BUSWIDTH_UNDEFINED }; /* PCM format to support channel resolution */ static const u32 formats[COMP_MAX_WORDSIZE] = { SNDRV_PCM_FMTBIT_S16_LE, SNDRV_PCM_FMTBIT_S16_LE, SNDRV_PCM_FMTBIT_S24_LE, SNDRV_PCM_FMTBIT_S24_LE, SNDRV_PCM_FMTBIT_S32_LE, 0, 0, 0 }; static const struct regmap_config sf_i2s_regmap_cfg = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x1000, }; static int dw_configure_dai(struct i2svad_dev *dev, struct snd_soc_dai_driver *dw_i2s_dai, unsigned int rates) { /* * Read component parameter registers to extract * the I2S block's configuration. */ u32 comp1 = i2s_read_reg(dev->i2s_base, dev->i2s_reg_comp1); u32 comp2 = i2s_read_reg(dev->i2s_base, dev->i2s_reg_comp2); u32 fifo_depth = 1 << (1 + COMP1_FIFO_DEPTH_GLOBAL(comp1)); u32 idx; if (dev->capability & DWC_I2S_RECORD && dev->quirks & DW_I2S_QUIRK_COMP_PARAM1) comp1 = comp1 & ~BIT(5); if (dev->capability & DWC_I2S_PLAY && dev->quirks & DW_I2S_QUIRK_COMP_PARAM1) comp1 = comp1 & ~BIT(6); if (COMP1_TX_ENABLED(comp1)) { dev_dbg(dev->dev, " designware: play supported\n"); idx = COMP1_TX_WORDSIZE_0(comp1); if (WARN_ON(idx >= ARRAY_SIZE(formats))) return -EINVAL; if (dev->quirks & DW_I2S_QUIRK_16BIT_IDX_OVERRIDE) idx = 1; dw_i2s_dai->playback.channels_min = MIN_CHANNEL_NUM; dw_i2s_dai->playback.channels_max = 1 << (COMP1_TX_CHANNELS(comp1) + 1); //dw_i2s_dai->playback.formats = formats[idx]; dw_i2s_dai->playback.formats = SNDRV_PCM_FMTBIT_S16_LE; dw_i2s_dai->playback.rates = rates; } if (COMP1_RX_ENABLED(comp1)) { dev_dbg(dev->dev, "designware: record supported\n"); idx = COMP2_RX_WORDSIZE_0(comp2); if (WARN_ON(idx >= ARRAY_SIZE(formats))) return -EINVAL; if (dev->quirks & DW_I2S_QUIRK_16BIT_IDX_OVERRIDE) idx = 1; dw_i2s_dai->capture.channels_min = MIN_CHANNEL_NUM; dw_i2s_dai->capture.channels_max = 1 << (COMP1_RX_CHANNELS(comp1) + 1); //dw_i2s_dai->capture.formats = formats[idx]; dw_i2s_dai->capture.formats = SNDRV_PCM_FMTBIT_S16_LE; dw_i2s_dai->capture.rates = rates; } if (COMP1_MODE_EN(comp1)) { dev_dbg(dev->dev, "designware: i2s master mode supported\n"); dev->capability |= DW_I2S_MASTER; } else { dev_dbg(dev->dev, "designware: i2s slave mode supported\n"); dev->capability |= DW_I2S_SLAVE; } dev->fifo_th = fifo_depth / 2; return 0; } static int dw_configure_dai_by_pd(struct i2svad_dev *dev, struct snd_soc_dai_driver *dw_i2s_dai, struct resource *res, const struct i2s_platform_data *pdata) { u32 comp1 = i2s_read_reg(dev->i2s_base, dev->i2s_reg_comp1); u32 idx = COMP1_APB_DATA_WIDTH(comp1); int ret; if (WARN_ON(idx >= ARRAY_SIZE(bus_widths))) return -EINVAL; ret = dw_configure_dai(dev, dw_i2s_dai, pdata->snd_rates); if (ret < 0) return ret; if (dev->quirks & DW_I2S_QUIRK_16BIT_IDX_OVERRIDE) idx = 1; /* Set DMA slaves info */ dev->play_dma_data.pd.data = pdata->play_dma_data; dev->capture_dma_data.pd.data = pdata->capture_dma_data; dev->play_dma_data.pd.addr = res->start + I2S_TXDMA; dev->capture_dma_data.pd.addr = res->start + I2S_RXDMA; dev->play_dma_data.pd.max_burst = 16; dev->capture_dma_data.pd.max_burst = 16; dev->play_dma_data.pd.addr_width = bus_widths[idx]; dev->capture_dma_data.pd.addr_width = bus_widths[idx]; dev->play_dma_data.pd.filter = pdata->filter; dev->capture_dma_data.pd.filter = pdata->filter; return 0; } static int dw_configure_dai_by_dt(struct i2svad_dev *dev, struct snd_soc_dai_driver *dw_i2s_dai, struct resource *res) { u32 comp1 = i2s_read_reg(dev->i2s_base, I2S_COMP_PARAM_1); u32 comp2 = i2s_read_reg(dev->i2s_base, I2S_COMP_PARAM_2); u32 fifo_depth = 1 << (1 + COMP1_FIFO_DEPTH_GLOBAL(comp1)); u32 idx = COMP1_APB_DATA_WIDTH(comp1); u32 idx2; int ret; if (WARN_ON(idx >= ARRAY_SIZE(bus_widths))) return -EINVAL; ret = dw_configure_dai(dev, dw_i2s_dai, SNDRV_PCM_RATE_8000_192000); if (ret < 0) return ret; if (COMP1_TX_ENABLED(comp1)) { idx2 = COMP1_TX_WORDSIZE_0(comp1); dev->capability |= DWC_I2S_PLAY; dev->play_dma_data.dt.addr = res->start + I2S_TXDMA; dev->play_dma_data.dt.addr_width = bus_widths[idx]; dev->play_dma_data.dt.fifo_size = fifo_depth * (fifo_width[idx2]) >> 8; dev->play_dma_data.dt.maxburst = 16; } if (COMP1_RX_ENABLED(comp1)) { idx2 = COMP2_RX_WORDSIZE_0(comp2); dev->capability |= DWC_I2S_RECORD; dev->capture_dma_data.dt.addr = res->start + I2S_RXDMA; dev->capture_dma_data.dt.addr_width = bus_widths[idx]; dev->capture_dma_data.dt.fifo_size = fifo_depth * (fifo_width[idx2] >> 8); dev->capture_dma_data.dt.maxburst = 16; } return 0; } static int dw_i2s_probe(struct platform_device *pdev) { const struct i2s_platform_data *pdata = pdev->dev.platform_data; struct i2svad_dev *dev; struct resource *res; int ret, irq; struct snd_soc_dai_driver *dw_i2s_dai; const char *clk_id; dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dw_i2s_dai = devm_kzalloc(&pdev->dev, sizeof(*dw_i2s_dai), GFP_KERNEL); if (!dw_i2s_dai) return -ENOMEM; dw_i2s_dai->ops = &dw_i2s_dai_ops; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dev->i2s_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(dev->i2s_base)) return PTR_ERR(dev->i2s_base); dev->vad.vad_base = dev->i2s_base; dev->vad.vad_map = devm_regmap_init_mmio(&pdev->dev, dev->i2s_base, &sf_i2s_regmap_cfg); if (IS_ERR(dev->vad.vad_map)) { dev_err(&pdev->dev, "failed to init regmap: %ld\n", PTR_ERR(dev->vad.vad_map)); return PTR_ERR(dev->vad.vad_map); } dev->dev = &pdev->dev; dev->clk_apb_i2svad = devm_clk_get(&pdev->dev, "i2svad_apb"); if (IS_ERR(dev->clk_apb_i2svad)) return dev_err_probe(&pdev->dev, PTR_ERR(dev->clk_apb_i2svad), "failed to get apb clock\n"); dev->rst_apb_i2svad = devm_reset_control_get_exclusive(&pdev->dev, "apb_i2svad"); if (IS_ERR(dev->rst_apb_i2svad)) return dev_err_probe(&pdev->dev, PTR_ERR(dev->rst_apb_i2svad), "failed to get apb reset\n"); dev->rst_i2svad_srst = devm_reset_control_get_exclusive(&pdev->dev, "i2svad_srst"); if (IS_ERR(dev->rst_i2svad_srst)) return dev_err_probe(&pdev->dev, PTR_ERR(dev->rst_i2svad_srst), "failed to get source reset\n"); ret = clk_prepare_enable(dev->clk_apb_i2svad); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to enable apb clock\n"); ret = reset_control_deassert(dev->rst_apb_i2svad); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to deassert apb reset\n"); ret = reset_control_deassert(dev->rst_i2svad_srst); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to deassert source reset\n"); irq = platform_get_irq(pdev, 0); if (irq >= 0) { ret = devm_request_irq(&pdev->dev, irq, i2s_irq_handler, 0, pdev->name, dev); if (ret < 0) { dev_err(&pdev->dev, "failed to request irq\n"); return ret; } } dev->i2s_reg_comp1 = I2S_COMP_PARAM_1; dev->i2s_reg_comp2 = I2S_COMP_PARAM_2; if (pdata) { dev->capability = pdata->cap; clk_id = NULL; dev->quirks = pdata->quirks; if (dev->quirks & DW_I2S_QUIRK_COMP_REG_OFFSET) { dev->i2s_reg_comp1 = pdata->i2s_reg_comp1; dev->i2s_reg_comp2 = pdata->i2s_reg_comp2; } ret = dw_configure_dai_by_pd(dev, dw_i2s_dai, res, pdata); } else { clk_id = "i2sclk"; ret = dw_configure_dai_by_dt(dev, dw_i2s_dai, res); } if (ret < 0) return ret; if (dev->capability & DW_I2S_MASTER) { if (pdata) { dev->i2s_clk_cfg = pdata->i2s_clk_cfg; if (!dev->i2s_clk_cfg) { dev_err(&pdev->dev, "no clock configure method\n"); return -ENODEV; } } dev->clk = devm_clk_get(&pdev->dev, clk_id); if (IS_ERR(dev->clk)) return PTR_ERR(dev->clk); ret = clk_prepare_enable(dev->clk); if (ret < 0) return ret; } dev_set_drvdata(&pdev->dev, dev); ret = devm_snd_soc_register_component(&pdev->dev, &dw_i2s_component, dw_i2s_dai, 1); if (ret != 0) { dev_err(&pdev->dev, "not able to register dai\n"); goto err_clk_disable; } if (!pdata) { if (irq >= 0) { ret = i2svad_pcm_register(pdev); dev->use_pio = true; } else { ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0); dev->use_pio = false; } if (ret) { dev_err(&pdev->dev, "could not register pcm: %d\n", ret); goto err_clk_disable; } } vad_init(&(dev->vad)); pm_runtime_enable(&pdev->dev); return 0; err_clk_disable: if (dev->capability & DW_I2S_MASTER) clk_disable_unprepare(dev->clk); return ret; } static void dw_i2s_remove(struct platform_device *pdev) { struct i2svad_dev *dev = dev_get_drvdata(&pdev->dev); if (dev->capability & DW_I2S_MASTER) clk_disable_unprepare(dev->clk); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_OF static const struct of_device_id dw_i2s_of_match[] = { { .compatible = "starfive,sf-i2svad", }, {}, }; MODULE_DEVICE_TABLE(of, dw_i2s_of_match); #endif static const struct dev_pm_ops dwc_pm_ops = { SET_RUNTIME_PM_OPS(dw_i2s_runtime_suspend, dw_i2s_runtime_resume, NULL) }; static struct platform_driver dw_i2s_driver = { .probe = dw_i2s_probe, .remove = dw_i2s_remove, .driver = { .name = "sf-i2svad", .of_match_table = of_match_ptr(dw_i2s_of_match), .pm = &dwc_pm_ops, }, }; module_platform_driver(dw_i2s_driver); MODULE_AUTHOR("jenny zhang "); MODULE_DESCRIPTION("starfive I2SVAD SoC Interface"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sf-i2svad");