// SPDX-License-Identifier: GPL-2.0-only /* * cs53l30.c -- CS53l30 ALSA Soc Audio driver * * Copyright 2015 Cirrus Logic, Inc. * * Authors: Paul Handrigan , * Tim Howe */ #include #include #include #include #include #include #include #include #include #include "cs53l30.h" #include "cirrus_legacy.h" #define CS53L30_NUM_SUPPLIES 2 static const char *const cs53l30_supply_names[CS53L30_NUM_SUPPLIES] = { "VA", "VP", }; struct cs53l30_private { struct regulator_bulk_data supplies[CS53L30_NUM_SUPPLIES]; struct regmap *regmap; struct gpio_desc *reset_gpio; struct gpio_desc *mute_gpio; struct clk *mclk; bool use_sdout2; u32 mclk_rate; }; static const struct reg_default cs53l30_reg_defaults[] = { { CS53L30_PWRCTL, CS53L30_PWRCTL_DEFAULT }, { CS53L30_MCLKCTL, CS53L30_MCLKCTL_DEFAULT }, { CS53L30_INT_SR_CTL, CS53L30_INT_SR_CTL_DEFAULT }, { CS53L30_MICBIAS_CTL, CS53L30_MICBIAS_CTL_DEFAULT }, { CS53L30_ASPCFG_CTL, CS53L30_ASPCFG_CTL_DEFAULT }, { CS53L30_ASP_CTL1, CS53L30_ASP_CTL1_DEFAULT }, { CS53L30_ASP_TDMTX_CTL1, CS53L30_ASP_TDMTX_CTLx_DEFAULT }, { CS53L30_ASP_TDMTX_CTL2, CS53L30_ASP_TDMTX_CTLx_DEFAULT }, { CS53L30_ASP_TDMTX_CTL3, CS53L30_ASP_TDMTX_CTLx_DEFAULT }, { CS53L30_ASP_TDMTX_CTL4, CS53L30_ASP_TDMTX_CTLx_DEFAULT }, { CS53L30_ASP_TDMTX_EN1, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_TDMTX_EN2, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_TDMTX_EN3, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_TDMTX_EN4, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_TDMTX_EN5, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_TDMTX_EN6, CS53L30_ASP_TDMTX_ENx_DEFAULT }, { CS53L30_ASP_CTL2, CS53L30_ASP_CTL2_DEFAULT }, { CS53L30_SFT_RAMP, CS53L30_SFT_RMP_DEFAULT }, { CS53L30_LRCK_CTL1, CS53L30_LRCK_CTLx_DEFAULT }, { CS53L30_LRCK_CTL2, CS53L30_LRCK_CTLx_DEFAULT }, { CS53L30_MUTEP_CTL1, CS53L30_MUTEP_CTL1_DEFAULT }, { CS53L30_MUTEP_CTL2, CS53L30_MUTEP_CTL2_DEFAULT }, { CS53L30_INBIAS_CTL1, CS53L30_INBIAS_CTL1_DEFAULT }, { CS53L30_INBIAS_CTL2, CS53L30_INBIAS_CTL2_DEFAULT }, { CS53L30_DMIC1_STR_CTL, CS53L30_DMIC1_STR_CTL_DEFAULT }, { CS53L30_DMIC2_STR_CTL, CS53L30_DMIC2_STR_CTL_DEFAULT }, { CS53L30_ADCDMIC1_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT }, { CS53L30_ADCDMIC1_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT }, { CS53L30_ADC1_CTL3, CS53L30_ADCx_CTL3_DEFAULT }, { CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT }, { CS53L30_ADC1A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT }, { CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT }, { CS53L30_ADC1A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT }, { CS53L30_ADC1B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT }, { CS53L30_ADCDMIC2_CTL1, CS53L30_ADCDMICx_CTL1_DEFAULT }, { CS53L30_ADCDMIC2_CTL2, CS53L30_ADCDMIC1_CTL2_DEFAULT }, { CS53L30_ADC2_CTL3, CS53L30_ADCx_CTL3_DEFAULT }, { CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_CTL_DEFAULT }, { CS53L30_ADC2A_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT }, { CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_AFE_CTL_DEFAULT }, { CS53L30_ADC2A_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT }, { CS53L30_ADC2B_DIG_VOL, CS53L30_ADCxy_DIG_VOL_DEFAULT }, { CS53L30_INT_MASK, CS53L30_DEVICE_INT_MASK }, }; static bool cs53l30_volatile_register(struct device *dev, unsigned int reg) { if (reg == CS53L30_IS) return true; else return false; } static bool cs53l30_writeable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS53L30_DEVID_AB: case CS53L30_DEVID_CD: case CS53L30_DEVID_E: case CS53L30_REVID: case CS53L30_IS: return false; default: return true; } } static bool cs53l30_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS53L30_DEVID_AB: case CS53L30_DEVID_CD: case CS53L30_DEVID_E: case CS53L30_REVID: case CS53L30_PWRCTL: case CS53L30_MCLKCTL: case CS53L30_INT_SR_CTL: case CS53L30_MICBIAS_CTL: case CS53L30_ASPCFG_CTL: case CS53L30_ASP_CTL1: case CS53L30_ASP_TDMTX_CTL1: case CS53L30_ASP_TDMTX_CTL2: case CS53L30_ASP_TDMTX_CTL3: case CS53L30_ASP_TDMTX_CTL4: case CS53L30_ASP_TDMTX_EN1: case CS53L30_ASP_TDMTX_EN2: case CS53L30_ASP_TDMTX_EN3: case CS53L30_ASP_TDMTX_EN4: case CS53L30_ASP_TDMTX_EN5: case CS53L30_ASP_TDMTX_EN6: case CS53L30_ASP_CTL2: case CS53L30_SFT_RAMP: case CS53L30_LRCK_CTL1: case CS53L30_LRCK_CTL2: case CS53L30_MUTEP_CTL1: case CS53L30_MUTEP_CTL2: case CS53L30_INBIAS_CTL1: case CS53L30_INBIAS_CTL2: case CS53L30_DMIC1_STR_CTL: case CS53L30_DMIC2_STR_CTL: case CS53L30_ADCDMIC1_CTL1: case CS53L30_ADCDMIC1_CTL2: case CS53L30_ADC1_CTL3: case CS53L30_ADC1_NG_CTL: case CS53L30_ADC1A_AFE_CTL: case CS53L30_ADC1B_AFE_CTL: case CS53L30_ADC1A_DIG_VOL: case CS53L30_ADC1B_DIG_VOL: case CS53L30_ADCDMIC2_CTL1: case CS53L30_ADCDMIC2_CTL2: case CS53L30_ADC2_CTL3: case CS53L30_ADC2_NG_CTL: case CS53L30_ADC2A_AFE_CTL: case CS53L30_ADC2B_AFE_CTL: case CS53L30_ADC2A_DIG_VOL: case CS53L30_ADC2B_DIG_VOL: case CS53L30_INT_MASK: return true; default: return false; } } static DECLARE_TLV_DB_SCALE(adc_boost_tlv, 0, 2000, 0); static DECLARE_TLV_DB_SCALE(adc_ng_boost_tlv, 0, 3000, 0); static DECLARE_TLV_DB_SCALE(pga_tlv, -600, 50, 0); static DECLARE_TLV_DB_SCALE(dig_tlv, -9600, 100, 1); static DECLARE_TLV_DB_SCALE(pga_preamp_tlv, 0, 10000, 0); static const char * const input1_sel_text[] = { "DMIC1 On AB In", "DMIC1 On A In", "DMIC1 On B In", "ADC1 On AB In", "ADC1 On A In", "ADC1 On B In", "DMIC1 Off ADC1 Off", }; static unsigned int const input1_sel_values[] = { CS53L30_CH_TYPE, CS53L30_ADCxB_PDN | CS53L30_CH_TYPE, CS53L30_ADCxA_PDN | CS53L30_CH_TYPE, CS53L30_DMICx_PDN, CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN, CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN, CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN, }; static const char * const input2_sel_text[] = { "DMIC2 On AB In", "DMIC2 On A In", "DMIC2 On B In", "ADC2 On AB In", "ADC2 On A In", "ADC2 On B In", "DMIC2 Off ADC2 Off", }; static unsigned int const input2_sel_values[] = { 0x0, CS53L30_ADCxB_PDN, CS53L30_ADCxA_PDN, CS53L30_DMICx_PDN, CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN, CS53L30_ADCxA_PDN | CS53L30_DMICx_PDN, CS53L30_ADCxA_PDN | CS53L30_ADCxB_PDN | CS53L30_DMICx_PDN, }; static const char * const input1_route_sel_text[] = { "ADC1_SEL", "DMIC1_SEL", }; static const struct soc_enum input1_route_sel_enum = SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, CS53L30_CH_TYPE_SHIFT, ARRAY_SIZE(input1_route_sel_text), input1_route_sel_text); static SOC_VALUE_ENUM_SINGLE_DECL(input1_sel_enum, CS53L30_ADCDMIC1_CTL1, 0, CS53L30_ADCDMICx_PDN_MASK, input1_sel_text, input1_sel_values); static const struct snd_kcontrol_new input1_route_sel_mux = SOC_DAPM_ENUM("Input 1 Route", input1_route_sel_enum); static const char * const input2_route_sel_text[] = { "ADC2_SEL", "DMIC2_SEL", }; /* Note: CS53L30_ADCDMIC1_CTL1 CH_TYPE controls inputs 1 and 2 */ static const struct soc_enum input2_route_sel_enum = SOC_ENUM_SINGLE(CS53L30_ADCDMIC1_CTL1, 0, ARRAY_SIZE(input2_route_sel_text), input2_route_sel_text); static SOC_VALUE_ENUM_SINGLE_DECL(input2_sel_enum, CS53L30_ADCDMIC2_CTL1, 0, CS53L30_ADCDMICx_PDN_MASK, input2_sel_text, input2_sel_values); static const struct snd_kcontrol_new input2_route_sel_mux = SOC_DAPM_ENUM("Input 2 Route", input2_route_sel_enum); /* * TB = 6144*(MCLK(int) scaling factor)/MCLK(internal) * TB - Time base * NOTE: If MCLK_INT_SCALE = 0, then TB=1 */ static const char * const cs53l30_ng_delay_text[] = { "TB*50ms", "TB*100ms", "TB*150ms", "TB*200ms", }; static const struct soc_enum adc1_ng_delay_enum = SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT, ARRAY_SIZE(cs53l30_ng_delay_text), cs53l30_ng_delay_text); static const struct soc_enum adc2_ng_delay_enum = SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_DELAY_SHIFT, ARRAY_SIZE(cs53l30_ng_delay_text), cs53l30_ng_delay_text); /* The noise gate threshold selected will depend on NG Boost */ static const char * const cs53l30_ng_thres_text[] = { "-64dB/-34dB", "-66dB/-36dB", "-70dB/-40dB", "-73dB/-43dB", "-76dB/-46dB", "-82dB/-52dB", "-58dB", "-64dB", }; static const struct soc_enum adc1_ng_thres_enum = SOC_ENUM_SINGLE(CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT, ARRAY_SIZE(cs53l30_ng_thres_text), cs53l30_ng_thres_text); static const struct soc_enum adc2_ng_thres_enum = SOC_ENUM_SINGLE(CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_THRESH_SHIFT, ARRAY_SIZE(cs53l30_ng_thres_text), cs53l30_ng_thres_text); /* Corner frequencies are with an Fs of 48kHz. */ static const char * const hpf_corner_freq_text[] = { "1.86Hz", "120Hz", "235Hz", "466Hz", }; static const struct soc_enum adc1_hpf_enum = SOC_ENUM_SINGLE(CS53L30_ADC1_CTL3, CS53L30_ADCx_HPF_CF_SHIFT, ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text); static const struct soc_enum adc2_hpf_enum = SOC_ENUM_SINGLE(CS53L30_ADC2_CTL3, CS53L30_ADCx_HPF_CF_SHIFT, ARRAY_SIZE(hpf_corner_freq_text), hpf_corner_freq_text); static const struct snd_kcontrol_new cs53l30_snd_controls[] = { SOC_SINGLE("Digital Soft-Ramp Switch", CS53L30_SFT_RAMP, CS53L30_DIGSFT_SHIFT, 1, 0), SOC_SINGLE("ADC1 Noise Gate Ganging Switch", CS53L30_ADC1_CTL3, CS53L30_ADCx_NG_ALL_SHIFT, 1, 0), SOC_SINGLE("ADC2 Noise Gate Ganging Switch", CS53L30_ADC2_CTL3, CS53L30_ADCx_NG_ALL_SHIFT, 1, 0), SOC_SINGLE("ADC1A Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL, CS53L30_ADCxA_NG_SHIFT, 1, 0), SOC_SINGLE("ADC1B Noise Gate Enable Switch", CS53L30_ADC1_NG_CTL, CS53L30_ADCxB_NG_SHIFT, 1, 0), SOC_SINGLE("ADC2A Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL, CS53L30_ADCxA_NG_SHIFT, 1, 0), SOC_SINGLE("ADC2B Noise Gate Enable Switch", CS53L30_ADC2_NG_CTL, CS53L30_ADCxB_NG_SHIFT, 1, 0), SOC_SINGLE("ADC1 Notch Filter Switch", CS53L30_ADCDMIC1_CTL2, CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1), SOC_SINGLE("ADC2 Notch Filter Switch", CS53L30_ADCDMIC2_CTL2, CS53L30_ADCx_NOTCH_DIS_SHIFT, 1, 1), SOC_SINGLE("ADC1A Invert Switch", CS53L30_ADCDMIC1_CTL2, CS53L30_ADCxA_INV_SHIFT, 1, 0), SOC_SINGLE("ADC1B Invert Switch", CS53L30_ADCDMIC1_CTL2, CS53L30_ADCxB_INV_SHIFT, 1, 0), SOC_SINGLE("ADC2A Invert Switch", CS53L30_ADCDMIC2_CTL2, CS53L30_ADCxA_INV_SHIFT, 1, 0), SOC_SINGLE("ADC2B Invert Switch", CS53L30_ADCDMIC2_CTL2, CS53L30_ADCxB_INV_SHIFT, 1, 0), SOC_SINGLE_TLV("ADC1A Digital Boost Volume", CS53L30_ADCDMIC1_CTL2, CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv), SOC_SINGLE_TLV("ADC1B Digital Boost Volume", CS53L30_ADCDMIC1_CTL2, CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv), SOC_SINGLE_TLV("ADC2A Digital Boost Volume", CS53L30_ADCDMIC2_CTL2, CS53L30_ADCxA_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv), SOC_SINGLE_TLV("ADC2B Digital Boost Volume", CS53L30_ADCDMIC2_CTL2, CS53L30_ADCxB_DIG_BOOST_SHIFT, 1, 0, adc_boost_tlv), SOC_SINGLE_TLV("ADC1 NG Boost Volume", CS53L30_ADC1_NG_CTL, CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv), SOC_SINGLE_TLV("ADC2 NG Boost Volume", CS53L30_ADC2_NG_CTL, CS53L30_ADCx_NG_BOOST_SHIFT, 1, 0, adc_ng_boost_tlv), SOC_DOUBLE_R_TLV("ADC1 Preamplifier Volume", CS53L30_ADC1A_AFE_CTL, CS53L30_ADC1B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT, 2, 0, pga_preamp_tlv), SOC_DOUBLE_R_TLV("ADC2 Preamplifier Volume", CS53L30_ADC2A_AFE_CTL, CS53L30_ADC2B_AFE_CTL, CS53L30_ADCxy_PREAMP_SHIFT, 2, 0, pga_preamp_tlv), SOC_ENUM("Input 1 Channel Select", input1_sel_enum), SOC_ENUM("Input 2 Channel Select", input2_sel_enum), SOC_ENUM("ADC1 HPF Select", adc1_hpf_enum), SOC_ENUM("ADC2 HPF Select", adc2_hpf_enum), SOC_ENUM("ADC1 NG Threshold", adc1_ng_thres_enum), SOC_ENUM("ADC2 NG Threshold", adc2_ng_thres_enum), SOC_ENUM("ADC1 NG Delay", adc1_ng_delay_enum), SOC_ENUM("ADC2 NG Delay", adc2_ng_delay_enum), SOC_SINGLE_SX_TLV("ADC1A PGA Volume", CS53L30_ADC1A_AFE_CTL, 0, 0x34, 0x24, pga_tlv), SOC_SINGLE_SX_TLV("ADC1B PGA Volume", CS53L30_ADC1B_AFE_CTL, 0, 0x34, 0x24, pga_tlv), SOC_SINGLE_SX_TLV("ADC2A PGA Volume", CS53L30_ADC2A_AFE_CTL, 0, 0x34, 0x24, pga_tlv), SOC_SINGLE_SX_TLV("ADC2B PGA Volume", CS53L30_ADC2B_AFE_CTL, 0, 0x34, 0x24, pga_tlv), SOC_SINGLE_SX_TLV("ADC1A Digital Volume", CS53L30_ADC1A_DIG_VOL, 0, 0xA0, 0x6C, dig_tlv), SOC_SINGLE_SX_TLV("ADC1B Digital Volume", CS53L30_ADC1B_DIG_VOL, 0, 0xA0, 0x6C, dig_tlv), SOC_SINGLE_SX_TLV("ADC2A Digital Volume", CS53L30_ADC2A_DIG_VOL, 0, 0xA0, 0x6C, dig_tlv), SOC_SINGLE_SX_TLV("ADC2B Digital Volume", CS53L30_ADC2B_DIG_VOL, 0, 0xA0, 0x6C, dig_tlv), }; static const struct snd_soc_dapm_widget cs53l30_dapm_widgets[] = { SND_SOC_DAPM_INPUT("IN1_DMIC1"), SND_SOC_DAPM_INPUT("IN2"), SND_SOC_DAPM_INPUT("IN3_DMIC2"), SND_SOC_DAPM_INPUT("IN4"), SND_SOC_DAPM_SUPPLY("MIC1 Bias", CS53L30_MICBIAS_CTL, CS53L30_MIC1_BIAS_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_SUPPLY("MIC2 Bias", CS53L30_MICBIAS_CTL, CS53L30_MIC2_BIAS_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_SUPPLY("MIC3 Bias", CS53L30_MICBIAS_CTL, CS53L30_MIC3_BIAS_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_SUPPLY("MIC4 Bias", CS53L30_MICBIAS_CTL, CS53L30_MIC4_BIAS_PDN_SHIFT, 1, NULL, 0), SND_SOC_DAPM_AIF_OUT("ASP_SDOUT1", NULL, 0, CS53L30_ASP_CTL1, CS53L30_ASP_SDOUTx_PDN_SHIFT, 1), SND_SOC_DAPM_AIF_OUT("ASP_SDOUT2", NULL, 0, CS53L30_ASP_CTL2, CS53L30_ASP_SDOUTx_PDN_SHIFT, 1), SND_SOC_DAPM_MUX("Input Mux 1", SND_SOC_NOPM, 0, 0, &input1_route_sel_mux), SND_SOC_DAPM_MUX("Input Mux 2", SND_SOC_NOPM, 0, 0, &input2_route_sel_mux), SND_SOC_DAPM_ADC("ADC1A", NULL, CS53L30_ADCDMIC1_CTL1, CS53L30_ADCxA_PDN_SHIFT, 1), SND_SOC_DAPM_ADC("ADC1B", NULL, CS53L30_ADCDMIC1_CTL1, CS53L30_ADCxB_PDN_SHIFT, 1), SND_SOC_DAPM_ADC("ADC2A", NULL, CS53L30_ADCDMIC2_CTL1, CS53L30_ADCxA_PDN_SHIFT, 1), SND_SOC_DAPM_ADC("ADC2B", NULL, CS53L30_ADCDMIC2_CTL1, CS53L30_ADCxB_PDN_SHIFT, 1), SND_SOC_DAPM_ADC("DMIC1", NULL, CS53L30_ADCDMIC1_CTL1, CS53L30_DMICx_PDN_SHIFT, 1), SND_SOC_DAPM_ADC("DMIC2", NULL, CS53L30_ADCDMIC2_CTL1, CS53L30_DMICx_PDN_SHIFT, 1), }; static const struct snd_soc_dapm_route cs53l30_dapm_routes[] = { /* ADC Input Paths */ {"ADC1A", NULL, "IN1_DMIC1"}, {"Input Mux 1", "ADC1_SEL", "ADC1A"}, {"ADC1B", NULL, "IN2"}, {"ADC2A", NULL, "IN3_DMIC2"}, {"Input Mux 2", "ADC2_SEL", "ADC2A"}, {"ADC2B", NULL, "IN4"}, /* MIC Bias Paths */ {"ADC1A", NULL, "MIC1 Bias"}, {"ADC1B", NULL, "MIC2 Bias"}, {"ADC2A", NULL, "MIC3 Bias"}, {"ADC2B", NULL, "MIC4 Bias"}, /* DMIC Paths */ {"DMIC1", NULL, "IN1_DMIC1"}, {"Input Mux 1", "DMIC1_SEL", "DMIC1"}, {"DMIC2", NULL, "IN3_DMIC2"}, {"Input Mux 2", "DMIC2_SEL", "DMIC2"}, }; static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout1[] = { /* Output Paths when using SDOUT1 only */ {"ASP_SDOUT1", NULL, "ADC1A" }, {"ASP_SDOUT1", NULL, "Input Mux 1"}, {"ASP_SDOUT1", NULL, "ADC1B"}, {"ASP_SDOUT1", NULL, "ADC2A"}, {"ASP_SDOUT1", NULL, "Input Mux 2"}, {"ASP_SDOUT1", NULL, "ADC2B"}, {"Capture", NULL, "ASP_SDOUT1"}, }; static const struct snd_soc_dapm_route cs53l30_dapm_routes_sdout2[] = { /* Output Paths when using both SDOUT1 and SDOUT2 */ {"ASP_SDOUT1", NULL, "ADC1A" }, {"ASP_SDOUT1", NULL, "Input Mux 1"}, {"ASP_SDOUT1", NULL, "ADC1B"}, {"ASP_SDOUT2", NULL, "ADC2A"}, {"ASP_SDOUT2", NULL, "Input Mux 2"}, {"ASP_SDOUT2", NULL, "ADC2B"}, {"Capture", NULL, "ASP_SDOUT1"}, {"Capture", NULL, "ASP_SDOUT2"}, }; struct cs53l30_mclk_div { u32 mclk_rate; u32 srate; u8 asp_rate; u8 internal_fs_ratio; u8 mclk_int_scale; }; static const struct cs53l30_mclk_div cs53l30_mclk_coeffs[] = { /* NOTE: Enable MCLK_INT_SCALE to save power. */ /* MCLK, Sample Rate, asp_rate, internal_fs_ratio, mclk_int_scale */ {5644800, 11025, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {5644800, 22050, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {5644800, 44100, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6000000, 8000, 0x1, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 11025, 0x2, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 12000, 0x4, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 16000, 0x5, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 22050, 0x6, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 24000, 0x8, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 32000, 0x9, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 44100, 0xA, 0, CS53L30_MCLK_INT_SCALE}, {6000000, 48000, 0xC, 0, CS53L30_MCLK_INT_SCALE}, {6144000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6144000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 8000, 0x1, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 11025, 0x2, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 12000, 0x4, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 16000, 0x5, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 22050, 0x6, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 24000, 0x8, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 32000, 0x9, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 44100, 0xA, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, {6400000, 48000, 0xC, CS53L30_INTRNL_FS_RATIO, CS53L30_MCLK_INT_SCALE}, }; struct cs53l30_mclkx_div { u32 mclkx; u8 ratio; u8 mclkdiv; }; static const struct cs53l30_mclkx_div cs53l30_mclkx_coeffs[] = { {5644800, 1, CS53L30_MCLK_DIV_BY_1}, {6000000, 1, CS53L30_MCLK_DIV_BY_1}, {6144000, 1, CS53L30_MCLK_DIV_BY_1}, {11289600, 2, CS53L30_MCLK_DIV_BY_2}, {12288000, 2, CS53L30_MCLK_DIV_BY_2}, {12000000, 2, CS53L30_MCLK_DIV_BY_2}, {19200000, 3, CS53L30_MCLK_DIV_BY_3}, }; static int cs53l30_get_mclkx_coeff(int mclkx) { int i; for (i = 0; i < ARRAY_SIZE(cs53l30_mclkx_coeffs); i++) { if (cs53l30_mclkx_coeffs[i].mclkx == mclkx) return i; } return -EINVAL; } static int cs53l30_get_mclk_coeff(int mclk_rate, int srate) { int i; for (i = 0; i < ARRAY_SIZE(cs53l30_mclk_coeffs); i++) { if (cs53l30_mclk_coeffs[i].mclk_rate == mclk_rate && cs53l30_mclk_coeffs[i].srate == srate) return i; } return -EINVAL; } static int cs53l30_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); int mclkx_coeff; u32 mclk_rate; /* MCLKX -> MCLK */ mclkx_coeff = cs53l30_get_mclkx_coeff(freq); if (mclkx_coeff < 0) return mclkx_coeff; mclk_rate = cs53l30_mclkx_coeffs[mclkx_coeff].mclkx / cs53l30_mclkx_coeffs[mclkx_coeff].ratio; regmap_update_bits(priv->regmap, CS53L30_MCLKCTL, CS53L30_MCLK_DIV_MASK, cs53l30_mclkx_coeffs[mclkx_coeff].mclkdiv); priv->mclk_rate = mclk_rate; return 0; } static int cs53l30_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); u8 aspcfg = 0, aspctl1 = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: aspcfg |= CS53L30_ASP_MS; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } /* DAI mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* Set TDM_PDN to turn off TDM mode -- Reset default */ aspctl1 |= CS53L30_ASP_TDM_PDN; break; case SND_SOC_DAIFMT_DSP_A: /* * Clear TDM_PDN to turn on TDM mode; Use ASP_SCLK_INV = 0 * with SHIFT_LEFT = 1 combination as Figure 4-13 shows in * the CS53L30 datasheet */ aspctl1 |= CS53L30_SHIFT_LEFT; break; default: return -EINVAL; } /* Check to see if the SCLK is inverted */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_IB_NF: case SND_SOC_DAIFMT_IB_IF: aspcfg ^= CS53L30_ASP_SCLK_INV; break; default: break; } regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL, CS53L30_ASP_MS | CS53L30_ASP_SCLK_INV, aspcfg); regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1, CS53L30_ASP_TDM_PDN | CS53L30_SHIFT_LEFT, aspctl1); return 0; } static int cs53l30_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); int srate = params_rate(params); int mclk_coeff; /* MCLK -> srate */ mclk_coeff = cs53l30_get_mclk_coeff(priv->mclk_rate, srate); if (mclk_coeff < 0) return -EINVAL; regmap_update_bits(priv->regmap, CS53L30_INT_SR_CTL, CS53L30_INTRNL_FS_RATIO_MASK, cs53l30_mclk_coeffs[mclk_coeff].internal_fs_ratio); regmap_update_bits(priv->regmap, CS53L30_MCLKCTL, CS53L30_MCLK_INT_SCALE_MASK, cs53l30_mclk_coeffs[mclk_coeff].mclk_int_scale); regmap_update_bits(priv->regmap, CS53L30_ASPCFG_CTL, CS53L30_ASP_RATE_MASK, cs53l30_mclk_coeffs[mclk_coeff].asp_rate); return 0; } static int cs53l30_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct cs53l30_private *priv = snd_soc_component_get_drvdata(component); unsigned int reg; int i, inter_max_check, ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: if (dapm->bias_level == SND_SOC_BIAS_STANDBY) regmap_update_bits(priv->regmap, CS53L30_PWRCTL, CS53L30_PDN_LP_MASK, 0); break; case SND_SOC_BIAS_STANDBY: if (dapm->bias_level == SND_SOC_BIAS_OFF) { ret = clk_prepare_enable(priv->mclk); if (ret) { dev_err(component->dev, "failed to enable MCLK: %d\n", ret); return ret; } regmap_update_bits(priv->regmap, CS53L30_MCLKCTL, CS53L30_MCLK_DIS_MASK, 0); regmap_update_bits(priv->regmap, CS53L30_PWRCTL, CS53L30_PDN_ULP_MASK, 0); msleep(50); } else { regmap_update_bits(priv->regmap, CS53L30_PWRCTL, CS53L30_PDN_ULP_MASK, CS53L30_PDN_ULP); } break; case SND_SOC_BIAS_OFF: regmap_update_bits(priv->regmap, CS53L30_INT_MASK, CS53L30_PDN_DONE, 0); /* * If digital softramp is set, the amount of time required * for power down increases and depends on the digital * volume setting. */ /* Set the max possible time if digsft is set */ regmap_read(priv->regmap, CS53L30_SFT_RAMP, ®); if (reg & CS53L30_DIGSFT_MASK) inter_max_check = CS53L30_PDN_POLL_MAX; else inter_max_check = 10; regmap_update_bits(priv->regmap, CS53L30_PWRCTL, CS53L30_PDN_ULP_MASK, CS53L30_PDN_ULP); /* PDN_DONE will take a min of 20ms to be set.*/ msleep(20); /* Clr status */ regmap_read(priv->regmap, CS53L30_IS, ®); for (i = 0; i < inter_max_check; i++) { if (inter_max_check < 10) { usleep_range(1000, 1100); regmap_read(priv->regmap, CS53L30_IS, ®); if (reg & CS53L30_PDN_DONE) break; } else { usleep_range(10000, 10100); regmap_read(priv->regmap, CS53L30_IS, ®); if (reg & CS53L30_PDN_DONE) break; } } /* PDN_DONE is set. We now can disable the MCLK */ regmap_update_bits(priv->regmap, CS53L30_INT_MASK, CS53L30_PDN_DONE, CS53L30_PDN_DONE); regmap_update_bits(priv->regmap, CS53L30_MCLKCTL, CS53L30_MCLK_DIS_MASK, CS53L30_MCLK_DIS); clk_disable_unprepare(priv->mclk); break; } return 0; } static int cs53l30_set_tristate(struct snd_soc_dai *dai, int tristate) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); u8 val = tristate ? CS53L30_ASP_3ST : 0; return regmap_update_bits(priv->regmap, CS53L30_ASP_CTL1, CS53L30_ASP_3ST_MASK, val); } static unsigned int const cs53l30_src_rates[] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 }; static const struct snd_pcm_hw_constraint_list src_constraints = { .count = ARRAY_SIZE(cs53l30_src_rates), .list = cs53l30_src_rates, }; static int cs53l30_pcm_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &src_constraints); return 0; } /* * Note: CS53L30 counts the slot number per byte while ASoC counts the slot * number per slot_width. So there is a difference between the slots of ASoC * and the slots of CS53L30. */ static int cs53l30_set_dai_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); unsigned int loc[CS53L30_TDM_SLOT_MAX] = {48, 48, 48, 48}; unsigned int slot_next, slot_step; u64 tx_enable = 0; int i; if (!rx_mask) { dev_err(dai->dev, "rx masks must not be 0\n"); return -EINVAL; } /* Assuming slot_width is not supposed to be greater than 64 */ if (slots <= 0 || slot_width <= 0 || slot_width > 64) { dev_err(dai->dev, "invalid slot number or slot width\n"); return -EINVAL; } if (slot_width & 0x7) { dev_err(dai->dev, "slot width must count in byte\n"); return -EINVAL; } /* How many bytes in each ASoC slot */ slot_step = slot_width >> 3; for (i = 0; rx_mask && i < CS53L30_TDM_SLOT_MAX; i++) { /* Find the first slot from LSB */ slot_next = __ffs(rx_mask); /* Save the slot location by converting to CS53L30 slot */ loc[i] = slot_next * slot_step; /* Create the mask of CS53L30 slot */ tx_enable |= (u64)((u64)(1 << slot_step) - 1) << (u64)loc[i]; /* Clear this slot from rx_mask */ rx_mask &= ~(1 << slot_next); } /* Error out to avoid slot shift */ if (rx_mask && i == CS53L30_TDM_SLOT_MAX) { dev_err(dai->dev, "rx_mask exceeds max slot number: %d\n", CS53L30_TDM_SLOT_MAX); return -EINVAL; } /* Validate the last active CS53L30 slot */ slot_next = loc[i - 1] + slot_step - 1; if (slot_next > 47) { dev_err(dai->dev, "slot selection out of bounds: %u\n", slot_next); return -EINVAL; } for (i = 0; i < CS53L30_TDM_SLOT_MAX && loc[i] != 48; i++) { regmap_update_bits(priv->regmap, CS53L30_ASP_TDMTX_CTL(i), CS53L30_ASP_CHx_TX_LOC_MASK, loc[i]); dev_dbg(dai->dev, "loc[%d]=%x\n", i, loc[i]); } for (i = 0; i < CS53L30_ASP_TDMTX_ENx_MAX && tx_enable; i++) { regmap_write(priv->regmap, CS53L30_ASP_TDMTX_ENx(i), tx_enable & 0xff); tx_enable >>= 8; dev_dbg(dai->dev, "en_reg=%x, tx_enable=%llx\n", CS53L30_ASP_TDMTX_ENx(i), tx_enable & 0xff); } return 0; } static int cs53l30_mute_stream(struct snd_soc_dai *dai, int mute, int stream) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(dai->component); gpiod_set_value_cansleep(priv->mute_gpio, mute); return 0; } /* SNDRV_PCM_RATE_KNOT -> 12000, 24000 Hz, limit with constraint list */ #define CS53L30_RATES (SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT) #define CS53L30_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE) static const struct snd_soc_dai_ops cs53l30_ops = { .startup = cs53l30_pcm_startup, .hw_params = cs53l30_pcm_hw_params, .set_fmt = cs53l30_set_dai_fmt, .set_sysclk = cs53l30_set_sysclk, .set_tristate = cs53l30_set_tristate, .set_tdm_slot = cs53l30_set_dai_tdm_slot, .mute_stream = cs53l30_mute_stream, }; static struct snd_soc_dai_driver cs53l30_dai = { .name = "cs53l30", .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 4, .rates = CS53L30_RATES, .formats = CS53L30_FORMATS, }, .ops = &cs53l30_ops, .symmetric_rate = 1, }; static int cs53l30_component_probe(struct snd_soc_component *component) { struct cs53l30_private *priv = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); if (priv->use_sdout2) snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout2, ARRAY_SIZE(cs53l30_dapm_routes_sdout2)); else snd_soc_dapm_add_routes(dapm, cs53l30_dapm_routes_sdout1, ARRAY_SIZE(cs53l30_dapm_routes_sdout1)); return 0; } static const struct snd_soc_component_driver cs53l30_driver = { .probe = cs53l30_component_probe, .set_bias_level = cs53l30_set_bias_level, .controls = cs53l30_snd_controls, .num_controls = ARRAY_SIZE(cs53l30_snd_controls), .dapm_widgets = cs53l30_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs53l30_dapm_widgets), .dapm_routes = cs53l30_dapm_routes, .num_dapm_routes = ARRAY_SIZE(cs53l30_dapm_routes), .use_pmdown_time = 1, .endianness = 1, }; static struct regmap_config cs53l30_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = CS53L30_MAX_REGISTER, .reg_defaults = cs53l30_reg_defaults, .num_reg_defaults = ARRAY_SIZE(cs53l30_reg_defaults), .volatile_reg = cs53l30_volatile_register, .writeable_reg = cs53l30_writeable_register, .readable_reg = cs53l30_readable_register, .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; static int cs53l30_i2c_probe(struct i2c_client *client) { const struct device_node *np = client->dev.of_node; struct device *dev = &client->dev; struct cs53l30_private *cs53l30; unsigned int reg; int ret = 0, i, devid; u8 val; cs53l30 = devm_kzalloc(dev, sizeof(*cs53l30), GFP_KERNEL); if (!cs53l30) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(cs53l30->supplies); i++) cs53l30->supplies[i].supply = cs53l30_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); if (ret) { dev_err(dev, "failed to get supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); if (ret) { dev_err(dev, "failed to enable supplies: %d\n", ret); return ret; } /* Reset the Device */ cs53l30->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(cs53l30->reset_gpio)) { ret = PTR_ERR(cs53l30->reset_gpio); goto error_supplies; } gpiod_set_value_cansleep(cs53l30->reset_gpio, 1); i2c_set_clientdata(client, cs53l30); cs53l30->mclk_rate = 0; cs53l30->regmap = devm_regmap_init_i2c(client, &cs53l30_regmap); if (IS_ERR(cs53l30->regmap)) { ret = PTR_ERR(cs53l30->regmap); dev_err(dev, "regmap_init() failed: %d\n", ret); goto error; } /* Initialize codec */ devid = cirrus_read_device_id(cs53l30->regmap, CS53L30_DEVID_AB); if (devid < 0) { ret = devid; dev_err(dev, "Failed to read device ID: %d\n", ret); goto error; } if (devid != CS53L30_DEVID) { ret = -ENODEV; dev_err(dev, "Device ID (%X). Expected %X\n", devid, CS53L30_DEVID); goto error; } ret = regmap_read(cs53l30->regmap, CS53L30_REVID, ®); if (ret < 0) { dev_err(dev, "failed to get Revision ID: %d\n", ret); goto error; } /* Check if MCLK provided */ cs53l30->mclk = devm_clk_get_optional(dev, "mclk"); if (IS_ERR(cs53l30->mclk)) { ret = PTR_ERR(cs53l30->mclk); goto error; } /* Fetch the MUTE control */ cs53l30->mute_gpio = devm_gpiod_get_optional(dev, "mute", GPIOD_OUT_HIGH); if (IS_ERR(cs53l30->mute_gpio)) { ret = PTR_ERR(cs53l30->mute_gpio); goto error; } if (cs53l30->mute_gpio) { /* Enable MUTE controls via MUTE pin */ regmap_write(cs53l30->regmap, CS53L30_MUTEP_CTL1, CS53L30_MUTEP_CTL1_MUTEALL); /* Flip the polarity of MUTE pin */ if (gpiod_is_active_low(cs53l30->mute_gpio)) regmap_update_bits(cs53l30->regmap, CS53L30_MUTEP_CTL2, CS53L30_MUTE_PIN_POLARITY, 0); } if (!of_property_read_u8(np, "cirrus,micbias-lvl", &val)) regmap_update_bits(cs53l30->regmap, CS53L30_MICBIAS_CTL, CS53L30_MIC_BIAS_CTRL_MASK, val); if (of_property_read_bool(np, "cirrus,use-sdout2")) cs53l30->use_sdout2 = true; dev_info(dev, "Cirrus Logic CS53L30, Revision: %02X\n", reg & 0xFF); ret = devm_snd_soc_register_component(dev, &cs53l30_driver, &cs53l30_dai, 1); if (ret) { dev_err(dev, "failed to register component: %d\n", ret); goto error; } return 0; error: gpiod_set_value_cansleep(cs53l30->reset_gpio, 0); error_supplies: regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); return ret; } static void cs53l30_i2c_remove(struct i2c_client *client) { struct cs53l30_private *cs53l30 = i2c_get_clientdata(client); /* Hold down reset */ gpiod_set_value_cansleep(cs53l30->reset_gpio, 0); regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); } #ifdef CONFIG_PM static int cs53l30_runtime_suspend(struct device *dev) { struct cs53l30_private *cs53l30 = dev_get_drvdata(dev); regcache_cache_only(cs53l30->regmap, true); /* Hold down reset */ gpiod_set_value_cansleep(cs53l30->reset_gpio, 0); regulator_bulk_disable(ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); return 0; } static int cs53l30_runtime_resume(struct device *dev) { struct cs53l30_private *cs53l30 = dev_get_drvdata(dev); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(cs53l30->supplies), cs53l30->supplies); if (ret) { dev_err(dev, "failed to enable supplies: %d\n", ret); return ret; } gpiod_set_value_cansleep(cs53l30->reset_gpio, 1); regcache_cache_only(cs53l30->regmap, false); ret = regcache_sync(cs53l30->regmap); if (ret) { dev_err(dev, "failed to synchronize regcache: %d\n", ret); return ret; } return 0; } #endif static const struct dev_pm_ops cs53l30_runtime_pm = { SET_RUNTIME_PM_OPS(cs53l30_runtime_suspend, cs53l30_runtime_resume, NULL) }; static const struct of_device_id cs53l30_of_match[] = { { .compatible = "cirrus,cs53l30", }, {}, }; MODULE_DEVICE_TABLE(of, cs53l30_of_match); static const struct i2c_device_id cs53l30_id[] = { { "cs53l30" }, {} }; MODULE_DEVICE_TABLE(i2c, cs53l30_id); static struct i2c_driver cs53l30_i2c_driver = { .driver = { .name = "cs53l30", .of_match_table = cs53l30_of_match, .pm = &cs53l30_runtime_pm, }, .id_table = cs53l30_id, .probe = cs53l30_i2c_probe, .remove = cs53l30_i2c_remove, }; module_i2c_driver(cs53l30_i2c_driver); MODULE_DESCRIPTION("ASoC CS53L30 driver"); MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, "); MODULE_LICENSE("GPL");