// SPDX-License-Identifier: GPL-2.0 /* * Non-trivial C macros cannot be used in Rust. Similarly, inlined C functions * cannot be called either. This file explicitly creates functions ("helpers") * that wrap those so that they can be called from Rust. * * Even though Rust kernel modules should never use the bindings directly, some * of these helpers need to be exported because Rust generics and inlined * functions may not get their code generated in the crate where they are * defined. Other helpers, called from non-inline functions, may not be * exported, in principle. However, in general, the Rust compiler does not * guarantee codegen will be performed for a non-inline function either. * Therefore, this file exports all the helpers. In the future, this may be * revisited to reduce the number of exports after the compiler is informed * about the places codegen is required. * * All symbols are exported as GPL-only to guarantee no GPL-only feature is * accidentally exposed. * * Sorted alphabetically. */ #include #include #include #include #include #include #include #include #include #include #include #include #include __noreturn void rust_helper_BUG(void) { BUG(); } EXPORT_SYMBOL_GPL(rust_helper_BUG); void rust_helper_mutex_lock(struct mutex *lock) { mutex_lock(lock); } EXPORT_SYMBOL_GPL(rust_helper_mutex_lock); void rust_helper___spin_lock_init(spinlock_t *lock, const char *name, struct lock_class_key *key) { #ifdef CONFIG_DEBUG_SPINLOCK __raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG); #else spin_lock_init(lock); #endif } EXPORT_SYMBOL_GPL(rust_helper___spin_lock_init); void rust_helper_spin_lock(spinlock_t *lock) { spin_lock(lock); } EXPORT_SYMBOL_GPL(rust_helper_spin_lock); void rust_helper_spin_unlock(spinlock_t *lock) { spin_unlock(lock); } EXPORT_SYMBOL_GPL(rust_helper_spin_unlock); void rust_helper_init_wait(struct wait_queue_entry *wq_entry) { init_wait(wq_entry); } EXPORT_SYMBOL_GPL(rust_helper_init_wait); int rust_helper_signal_pending(struct task_struct *t) { return signal_pending(t); } EXPORT_SYMBOL_GPL(rust_helper_signal_pending); refcount_t rust_helper_REFCOUNT_INIT(int n) { return (refcount_t)REFCOUNT_INIT(n); } EXPORT_SYMBOL_GPL(rust_helper_REFCOUNT_INIT); void rust_helper_refcount_inc(refcount_t *r) { refcount_inc(r); } EXPORT_SYMBOL_GPL(rust_helper_refcount_inc); bool rust_helper_refcount_dec_and_test(refcount_t *r) { return refcount_dec_and_test(r); } EXPORT_SYMBOL_GPL(rust_helper_refcount_dec_and_test); __force void *rust_helper_ERR_PTR(long err) { return ERR_PTR(err); } EXPORT_SYMBOL_GPL(rust_helper_ERR_PTR); bool rust_helper_IS_ERR(__force const void *ptr) { return IS_ERR(ptr); } EXPORT_SYMBOL_GPL(rust_helper_IS_ERR); long rust_helper_PTR_ERR(__force const void *ptr) { return PTR_ERR(ptr); } EXPORT_SYMBOL_GPL(rust_helper_PTR_ERR); const char *rust_helper_errname(int err) { return errname(err); } EXPORT_SYMBOL_GPL(rust_helper_errname); struct task_struct *rust_helper_get_current(void) { return current; } EXPORT_SYMBOL_GPL(rust_helper_get_current); void rust_helper_get_task_struct(struct task_struct *t) { get_task_struct(t); } EXPORT_SYMBOL_GPL(rust_helper_get_task_struct); void rust_helper_put_task_struct(struct task_struct *t) { put_task_struct(t); } EXPORT_SYMBOL_GPL(rust_helper_put_task_struct); struct kunit *rust_helper_kunit_get_current_test(void) { return kunit_get_current_test(); } EXPORT_SYMBOL_GPL(rust_helper_kunit_get_current_test); void rust_helper_init_work_with_key(struct work_struct *work, work_func_t func, bool onstack, const char *name, struct lock_class_key *key) { __init_work(work, onstack); work->data = (atomic_long_t)WORK_DATA_INIT(); lockdep_init_map(&work->lockdep_map, name, key, 0); INIT_LIST_HEAD(&work->entry); work->func = func; } EXPORT_SYMBOL_GPL(rust_helper_init_work_with_key); void * __must_check __realloc_size(2) rust_helper_krealloc(const void *objp, size_t new_size, gfp_t flags) { return krealloc(objp, new_size, flags); } EXPORT_SYMBOL_GPL(rust_helper_krealloc); /* * `bindgen` binds the C `size_t` type as the Rust `usize` type, so we can * use it in contexts where Rust expects a `usize` like slice (array) indices. * `usize` is defined to be the same as C's `uintptr_t` type (can hold any * pointer) but not necessarily the same as `size_t` (can hold the size of any * single object). Most modern platforms use the same concrete integer type for * both of them, but in case we find ourselves on a platform where * that's not true, fail early instead of risking ABI or * integer-overflow issues. * * If your platform fails this assertion, it means that you are in * danger of integer-overflow bugs (even if you attempt to add * `--no-size_t-is-usize`). It may be easiest to change the kernel ABI on * your platform such that `size_t` matches `uintptr_t` (i.e., to increase * `size_t`, because `uintptr_t` has to be at least as big as `size_t`). */ static_assert( sizeof(size_t) == sizeof(uintptr_t) && __alignof__(size_t) == __alignof__(uintptr_t), "Rust code expects C `size_t` to match Rust `usize`" );