// SPDX-License-Identifier: GPL-2.0-only /* * linux/net/sunrpc/clnt.c * * This file contains the high-level RPC interface. * It is modeled as a finite state machine to support both synchronous * and asynchronous requests. * * - RPC header generation and argument serialization. * - Credential refresh. * - TCP connect handling. * - Retry of operation when it is suspected the operation failed because * of uid squashing on the server, or when the credentials were stale * and need to be refreshed, or when a packet was damaged in transit. * This may be have to be moved to the VFS layer. * * Copyright (C) 1992,1993 Rick Sladkey * Copyright (C) 1995,1996 Olaf Kirch */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sunrpc.h" #include "sysfs.h" #include "netns.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_CALL #endif /* * All RPC clients are linked into this list */ static DECLARE_WAIT_QUEUE_HEAD(destroy_wait); static void call_start(struct rpc_task *task); static void call_reserve(struct rpc_task *task); static void call_reserveresult(struct rpc_task *task); static void call_allocate(struct rpc_task *task); static void call_encode(struct rpc_task *task); static void call_decode(struct rpc_task *task); static void call_bind(struct rpc_task *task); static void call_bind_status(struct rpc_task *task); static void call_transmit(struct rpc_task *task); static void call_status(struct rpc_task *task); static void call_transmit_status(struct rpc_task *task); static void call_refresh(struct rpc_task *task); static void call_refreshresult(struct rpc_task *task); static void call_connect(struct rpc_task *task); static void call_connect_status(struct rpc_task *task); static int rpc_encode_header(struct rpc_task *task, struct xdr_stream *xdr); static int rpc_decode_header(struct rpc_task *task, struct xdr_stream *xdr); static int rpc_ping(struct rpc_clnt *clnt); static void rpc_check_timeout(struct rpc_task *task); static void rpc_register_client(struct rpc_clnt *clnt) { struct net *net = rpc_net_ns(clnt); struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); spin_lock(&sn->rpc_client_lock); list_add(&clnt->cl_clients, &sn->all_clients); spin_unlock(&sn->rpc_client_lock); } static void rpc_unregister_client(struct rpc_clnt *clnt) { struct net *net = rpc_net_ns(clnt); struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); spin_lock(&sn->rpc_client_lock); list_del(&clnt->cl_clients); spin_unlock(&sn->rpc_client_lock); } static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) { rpc_remove_client_dir(clnt); } static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt) { struct net *net = rpc_net_ns(clnt); struct super_block *pipefs_sb; pipefs_sb = rpc_get_sb_net(net); if (pipefs_sb) { __rpc_clnt_remove_pipedir(clnt); rpc_put_sb_net(net); } } static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb, struct rpc_clnt *clnt) { static uint32_t clntid; const char *dir_name = clnt->cl_program->pipe_dir_name; char name[15]; struct dentry *dir, *dentry; dir = rpc_d_lookup_sb(sb, dir_name); if (dir == NULL) { pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name); return dir; } for (;;) { snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++); name[sizeof(name) - 1] = '\0'; dentry = rpc_create_client_dir(dir, name, clnt); if (!IS_ERR(dentry)) break; if (dentry == ERR_PTR(-EEXIST)) continue; printk(KERN_INFO "RPC: Couldn't create pipefs entry" " %s/%s, error %ld\n", dir_name, name, PTR_ERR(dentry)); break; } dput(dir); return dentry; } static int rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt) { struct dentry *dentry; if (clnt->cl_program->pipe_dir_name != NULL) { dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt); if (IS_ERR(dentry)) return PTR_ERR(dentry); } return 0; } static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event) { if (clnt->cl_program->pipe_dir_name == NULL) return 1; switch (event) { case RPC_PIPEFS_MOUNT: if (clnt->cl_pipedir_objects.pdh_dentry != NULL) return 1; if (atomic_read(&clnt->cl_count) == 0) return 1; break; case RPC_PIPEFS_UMOUNT: if (clnt->cl_pipedir_objects.pdh_dentry == NULL) return 1; break; } return 0; } static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event, struct super_block *sb) { struct dentry *dentry; switch (event) { case RPC_PIPEFS_MOUNT: dentry = rpc_setup_pipedir_sb(sb, clnt); if (!dentry) return -ENOENT; if (IS_ERR(dentry)) return PTR_ERR(dentry); break; case RPC_PIPEFS_UMOUNT: __rpc_clnt_remove_pipedir(clnt); break; default: printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event); return -ENOTSUPP; } return 0; } static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event, struct super_block *sb) { int error = 0; for (;; clnt = clnt->cl_parent) { if (!rpc_clnt_skip_event(clnt, event)) error = __rpc_clnt_handle_event(clnt, event, sb); if (error || clnt == clnt->cl_parent) break; } return error; } static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct rpc_clnt *clnt; spin_lock(&sn->rpc_client_lock); list_for_each_entry(clnt, &sn->all_clients, cl_clients) { if (rpc_clnt_skip_event(clnt, event)) continue; spin_unlock(&sn->rpc_client_lock); return clnt; } spin_unlock(&sn->rpc_client_lock); return NULL; } static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct super_block *sb = ptr; struct rpc_clnt *clnt; int error = 0; while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) { error = __rpc_pipefs_event(clnt, event, sb); if (error) break; } return error; } static struct notifier_block rpc_clients_block = { .notifier_call = rpc_pipefs_event, .priority = SUNRPC_PIPEFS_RPC_PRIO, }; int rpc_clients_notifier_register(void) { return rpc_pipefs_notifier_register(&rpc_clients_block); } void rpc_clients_notifier_unregister(void) { return rpc_pipefs_notifier_unregister(&rpc_clients_block); } static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt, struct rpc_xprt *xprt, const struct rpc_timeout *timeout) { struct rpc_xprt *old; spin_lock(&clnt->cl_lock); old = rcu_dereference_protected(clnt->cl_xprt, lockdep_is_held(&clnt->cl_lock)); if (!xprt_bound(xprt)) clnt->cl_autobind = 1; clnt->cl_timeout = timeout; rcu_assign_pointer(clnt->cl_xprt, xprt); spin_unlock(&clnt->cl_lock); return old; } static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename) { clnt->cl_nodelen = strlcpy(clnt->cl_nodename, nodename, sizeof(clnt->cl_nodename)); } static int rpc_client_register(struct rpc_clnt *clnt, rpc_authflavor_t pseudoflavor, const char *client_name) { struct rpc_auth_create_args auth_args = { .pseudoflavor = pseudoflavor, .target_name = client_name, }; struct rpc_auth *auth; struct net *net = rpc_net_ns(clnt); struct super_block *pipefs_sb; int err; rpc_clnt_debugfs_register(clnt); pipefs_sb = rpc_get_sb_net(net); if (pipefs_sb) { err = rpc_setup_pipedir(pipefs_sb, clnt); if (err) goto out; } rpc_register_client(clnt); if (pipefs_sb) rpc_put_sb_net(net); auth = rpcauth_create(&auth_args, clnt); if (IS_ERR(auth)) { dprintk("RPC: Couldn't create auth handle (flavor %u)\n", pseudoflavor); err = PTR_ERR(auth); goto err_auth; } return 0; err_auth: pipefs_sb = rpc_get_sb_net(net); rpc_unregister_client(clnt); __rpc_clnt_remove_pipedir(clnt); out: if (pipefs_sb) rpc_put_sb_net(net); rpc_sysfs_client_destroy(clnt); rpc_clnt_debugfs_unregister(clnt); return err; } static DEFINE_IDA(rpc_clids); void rpc_cleanup_clids(void) { ida_destroy(&rpc_clids); } static int rpc_alloc_clid(struct rpc_clnt *clnt) { int clid; clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL); if (clid < 0) return clid; clnt->cl_clid = clid; return 0; } static void rpc_free_clid(struct rpc_clnt *clnt) { ida_simple_remove(&rpc_clids, clnt->cl_clid); } static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args, struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, struct rpc_clnt *parent) { const struct rpc_program *program = args->program; const struct rpc_version *version; struct rpc_clnt *clnt = NULL; const struct rpc_timeout *timeout; const char *nodename = args->nodename; int err; err = rpciod_up(); if (err) goto out_no_rpciod; err = -EINVAL; if (args->version >= program->nrvers) goto out_err; version = program->version[args->version]; if (version == NULL) goto out_err; err = -ENOMEM; clnt = kzalloc(sizeof(*clnt), GFP_KERNEL); if (!clnt) goto out_err; clnt->cl_parent = parent ? : clnt; err = rpc_alloc_clid(clnt); if (err) goto out_no_clid; clnt->cl_cred = get_cred(args->cred); clnt->cl_procinfo = version->procs; clnt->cl_maxproc = version->nrprocs; clnt->cl_prog = args->prognumber ? : program->number; clnt->cl_vers = version->number; clnt->cl_stats = program->stats; clnt->cl_metrics = rpc_alloc_iostats(clnt); rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects); err = -ENOMEM; if (clnt->cl_metrics == NULL) goto out_no_stats; clnt->cl_program = program; INIT_LIST_HEAD(&clnt->cl_tasks); spin_lock_init(&clnt->cl_lock); timeout = xprt->timeout; if (args->timeout != NULL) { memcpy(&clnt->cl_timeout_default, args->timeout, sizeof(clnt->cl_timeout_default)); timeout = &clnt->cl_timeout_default; } rpc_clnt_set_transport(clnt, xprt, timeout); xprt_iter_init(&clnt->cl_xpi, xps); xprt_switch_put(xps); clnt->cl_rtt = &clnt->cl_rtt_default; rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval); atomic_set(&clnt->cl_count, 1); if (nodename == NULL) nodename = utsname()->nodename; /* save the nodename */ rpc_clnt_set_nodename(clnt, nodename); rpc_sysfs_client_setup(clnt, xps, rpc_net_ns(clnt)); err = rpc_client_register(clnt, args->authflavor, args->client_name); if (err) goto out_no_path; if (parent) atomic_inc(&parent->cl_count); trace_rpc_clnt_new(clnt, xprt, program->name, args->servername); return clnt; out_no_path: rpc_free_iostats(clnt->cl_metrics); out_no_stats: put_cred(clnt->cl_cred); rpc_free_clid(clnt); out_no_clid: kfree(clnt); out_err: rpciod_down(); out_no_rpciod: xprt_switch_put(xps); xprt_put(xprt); trace_rpc_clnt_new_err(program->name, args->servername, err); return ERR_PTR(err); } static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args, struct rpc_xprt *xprt) { struct rpc_clnt *clnt = NULL; struct rpc_xprt_switch *xps; if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) { WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); xps = args->bc_xprt->xpt_bc_xps; xprt_switch_get(xps); } else { xps = xprt_switch_alloc(xprt, GFP_KERNEL); if (xps == NULL) { xprt_put(xprt); return ERR_PTR(-ENOMEM); } if (xprt->bc_xprt) { xprt_switch_get(xps); xprt->bc_xprt->xpt_bc_xps = xps; } } clnt = rpc_new_client(args, xps, xprt, NULL); if (IS_ERR(clnt)) return clnt; if (!(args->flags & RPC_CLNT_CREATE_NOPING)) { int err = rpc_ping(clnt); if (err != 0) { rpc_shutdown_client(clnt); return ERR_PTR(err); } } clnt->cl_softrtry = 1; if (args->flags & (RPC_CLNT_CREATE_HARDRTRY|RPC_CLNT_CREATE_SOFTERR)) { clnt->cl_softrtry = 0; if (args->flags & RPC_CLNT_CREATE_SOFTERR) clnt->cl_softerr = 1; } if (args->flags & RPC_CLNT_CREATE_AUTOBIND) clnt->cl_autobind = 1; if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT) clnt->cl_noretranstimeo = 1; if (args->flags & RPC_CLNT_CREATE_DISCRTRY) clnt->cl_discrtry = 1; if (!(args->flags & RPC_CLNT_CREATE_QUIET)) clnt->cl_chatty = 1; return clnt; } /** * rpc_create - create an RPC client and transport with one call * @args: rpc_clnt create argument structure * * Creates and initializes an RPC transport and an RPC client. * * It can ping the server in order to determine if it is up, and to see if * it supports this program and version. RPC_CLNT_CREATE_NOPING disables * this behavior so asynchronous tasks can also use rpc_create. */ struct rpc_clnt *rpc_create(struct rpc_create_args *args) { struct rpc_xprt *xprt; struct xprt_create xprtargs = { .net = args->net, .ident = args->protocol, .srcaddr = args->saddress, .dstaddr = args->address, .addrlen = args->addrsize, .servername = args->servername, .bc_xprt = args->bc_xprt, }; char servername[48]; struct rpc_clnt *clnt; int i; if (args->bc_xprt) { WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC)); xprt = args->bc_xprt->xpt_bc_xprt; if (xprt) { xprt_get(xprt); return rpc_create_xprt(args, xprt); } } if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS) xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS; if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT) xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT; /* * If the caller chooses not to specify a hostname, whip * up a string representation of the passed-in address. */ if (xprtargs.servername == NULL) { struct sockaddr_un *sun = (struct sockaddr_un *)args->address; struct sockaddr_in *sin = (struct sockaddr_in *)args->address; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)args->address; servername[0] = '\0'; switch (args->address->sa_family) { case AF_LOCAL: snprintf(servername, sizeof(servername), "%s", sun->sun_path); break; case AF_INET: snprintf(servername, sizeof(servername), "%pI4", &sin->sin_addr.s_addr); break; case AF_INET6: snprintf(servername, sizeof(servername), "%pI6", &sin6->sin6_addr); break; default: /* caller wants default server name, but * address family isn't recognized. */ return ERR_PTR(-EINVAL); } xprtargs.servername = servername; } xprt = xprt_create_transport(&xprtargs); if (IS_ERR(xprt)) return (struct rpc_clnt *)xprt; /* * By default, kernel RPC client connects from a reserved port. * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters, * but it is always enabled for rpciod, which handles the connect * operation. */ xprt->resvport = 1; if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT) xprt->resvport = 0; xprt->reuseport = 0; if (args->flags & RPC_CLNT_CREATE_REUSEPORT) xprt->reuseport = 1; clnt = rpc_create_xprt(args, xprt); if (IS_ERR(clnt) || args->nconnect <= 1) return clnt; for (i = 0; i < args->nconnect - 1; i++) { if (rpc_clnt_add_xprt(clnt, &xprtargs, NULL, NULL) < 0) break; } return clnt; } EXPORT_SYMBOL_GPL(rpc_create); /* * This function clones the RPC client structure. It allows us to share the * same transport while varying parameters such as the authentication * flavour. */ static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args, struct rpc_clnt *clnt) { struct rpc_xprt_switch *xps; struct rpc_xprt *xprt; struct rpc_clnt *new; int err; err = -ENOMEM; rcu_read_lock(); xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); rcu_read_unlock(); if (xprt == NULL || xps == NULL) { xprt_put(xprt); xprt_switch_put(xps); goto out_err; } args->servername = xprt->servername; args->nodename = clnt->cl_nodename; new = rpc_new_client(args, xps, xprt, clnt); if (IS_ERR(new)) return new; /* Turn off autobind on clones */ new->cl_autobind = 0; new->cl_softrtry = clnt->cl_softrtry; new->cl_softerr = clnt->cl_softerr; new->cl_noretranstimeo = clnt->cl_noretranstimeo; new->cl_discrtry = clnt->cl_discrtry; new->cl_chatty = clnt->cl_chatty; new->cl_principal = clnt->cl_principal; return new; out_err: trace_rpc_clnt_clone_err(clnt, err); return ERR_PTR(err); } /** * rpc_clone_client - Clone an RPC client structure * * @clnt: RPC client whose parameters are copied * * Returns a fresh RPC client or an ERR_PTR. */ struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt) { struct rpc_create_args args = { .program = clnt->cl_program, .prognumber = clnt->cl_prog, .version = clnt->cl_vers, .authflavor = clnt->cl_auth->au_flavor, .cred = clnt->cl_cred, }; return __rpc_clone_client(&args, clnt); } EXPORT_SYMBOL_GPL(rpc_clone_client); /** * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth * * @clnt: RPC client whose parameters are copied * @flavor: security flavor for new client * * Returns a fresh RPC client or an ERR_PTR. */ struct rpc_clnt * rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor) { struct rpc_create_args args = { .program = clnt->cl_program, .prognumber = clnt->cl_prog, .version = clnt->cl_vers, .authflavor = flavor, .cred = clnt->cl_cred, }; return __rpc_clone_client(&args, clnt); } EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth); /** * rpc_switch_client_transport: switch the RPC transport on the fly * @clnt: pointer to a struct rpc_clnt * @args: pointer to the new transport arguments * @timeout: pointer to the new timeout parameters * * This function allows the caller to switch the RPC transport for the * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS * server, for instance. It assumes that the caller has ensured that * there are no active RPC tasks by using some form of locking. * * Returns zero if "clnt" is now using the new xprt. Otherwise a * negative errno is returned, and "clnt" continues to use the old * xprt. */ int rpc_switch_client_transport(struct rpc_clnt *clnt, struct xprt_create *args, const struct rpc_timeout *timeout) { const struct rpc_timeout *old_timeo; rpc_authflavor_t pseudoflavor; struct rpc_xprt_switch *xps, *oldxps; struct rpc_xprt *xprt, *old; struct rpc_clnt *parent; int err; xprt = xprt_create_transport(args); if (IS_ERR(xprt)) return PTR_ERR(xprt); xps = xprt_switch_alloc(xprt, GFP_KERNEL); if (xps == NULL) { xprt_put(xprt); return -ENOMEM; } pseudoflavor = clnt->cl_auth->au_flavor; old_timeo = clnt->cl_timeout; old = rpc_clnt_set_transport(clnt, xprt, timeout); oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps); rpc_unregister_client(clnt); __rpc_clnt_remove_pipedir(clnt); rpc_sysfs_client_destroy(clnt); rpc_clnt_debugfs_unregister(clnt); /* * A new transport was created. "clnt" therefore * becomes the root of a new cl_parent tree. clnt's * children, if it has any, still point to the old xprt. */ parent = clnt->cl_parent; clnt->cl_parent = clnt; /* * The old rpc_auth cache cannot be re-used. GSS * contexts in particular are between a single * client and server. */ err = rpc_client_register(clnt, pseudoflavor, NULL); if (err) goto out_revert; synchronize_rcu(); if (parent != clnt) rpc_release_client(parent); xprt_switch_put(oldxps); xprt_put(old); trace_rpc_clnt_replace_xprt(clnt); return 0; out_revert: xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps); rpc_clnt_set_transport(clnt, old, old_timeo); clnt->cl_parent = parent; rpc_client_register(clnt, pseudoflavor, NULL); xprt_switch_put(xps); xprt_put(xprt); trace_rpc_clnt_replace_xprt_err(clnt); return err; } EXPORT_SYMBOL_GPL(rpc_switch_client_transport); static int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi) { struct rpc_xprt_switch *xps; rcu_read_lock(); xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); rcu_read_unlock(); if (xps == NULL) return -EAGAIN; xprt_iter_init_listall(xpi, xps); xprt_switch_put(xps); return 0; } /** * rpc_clnt_iterate_for_each_xprt - Apply a function to all transports * @clnt: pointer to client * @fn: function to apply * @data: void pointer to function data * * Iterates through the list of RPC transports currently attached to the * client and applies the function fn(clnt, xprt, data). * * On error, the iteration stops, and the function returns the error value. */ int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt, int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *), void *data) { struct rpc_xprt_iter xpi; int ret; ret = rpc_clnt_xprt_iter_init(clnt, &xpi); if (ret) return ret; for (;;) { struct rpc_xprt *xprt = xprt_iter_get_next(&xpi); if (!xprt) break; ret = fn(clnt, xprt, data); xprt_put(xprt); if (ret < 0) break; } xprt_iter_destroy(&xpi); return ret; } EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt); /* * Kill all tasks for the given client. * XXX: kill their descendants as well? */ void rpc_killall_tasks(struct rpc_clnt *clnt) { struct rpc_task *rovr; if (list_empty(&clnt->cl_tasks)) return; /* * Spin lock all_tasks to prevent changes... */ trace_rpc_clnt_killall(clnt); spin_lock(&clnt->cl_lock); list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) rpc_signal_task(rovr); spin_unlock(&clnt->cl_lock); } EXPORT_SYMBOL_GPL(rpc_killall_tasks); /* * Properly shut down an RPC client, terminating all outstanding * requests. */ void rpc_shutdown_client(struct rpc_clnt *clnt) { might_sleep(); trace_rpc_clnt_shutdown(clnt); while (!list_empty(&clnt->cl_tasks)) { rpc_killall_tasks(clnt); wait_event_timeout(destroy_wait, list_empty(&clnt->cl_tasks), 1*HZ); } rpc_release_client(clnt); } EXPORT_SYMBOL_GPL(rpc_shutdown_client); /* * Free an RPC client */ static void rpc_free_client_work(struct work_struct *work) { struct rpc_clnt *clnt = container_of(work, struct rpc_clnt, cl_work); trace_rpc_clnt_free(clnt); /* These might block on processes that might allocate memory, * so they cannot be called in rpciod, so they are handled separately * here. */ rpc_sysfs_client_destroy(clnt); rpc_clnt_debugfs_unregister(clnt); rpc_free_clid(clnt); rpc_clnt_remove_pipedir(clnt); xprt_put(rcu_dereference_raw(clnt->cl_xprt)); kfree(clnt); rpciod_down(); } static struct rpc_clnt * rpc_free_client(struct rpc_clnt *clnt) { struct rpc_clnt *parent = NULL; trace_rpc_clnt_release(clnt); if (clnt->cl_parent != clnt) parent = clnt->cl_parent; rpc_unregister_client(clnt); rpc_free_iostats(clnt->cl_metrics); clnt->cl_metrics = NULL; xprt_iter_destroy(&clnt->cl_xpi); put_cred(clnt->cl_cred); INIT_WORK(&clnt->cl_work, rpc_free_client_work); schedule_work(&clnt->cl_work); return parent; } /* * Free an RPC client */ static struct rpc_clnt * rpc_free_auth(struct rpc_clnt *clnt) { if (clnt->cl_auth == NULL) return rpc_free_client(clnt); /* * Note: RPCSEC_GSS may need to send NULL RPC calls in order to * release remaining GSS contexts. This mechanism ensures * that it can do so safely. */ atomic_inc(&clnt->cl_count); rpcauth_release(clnt->cl_auth); clnt->cl_auth = NULL; if (atomic_dec_and_test(&clnt->cl_count)) return rpc_free_client(clnt); return NULL; } /* * Release reference to the RPC client */ void rpc_release_client(struct rpc_clnt *clnt) { do { if (list_empty(&clnt->cl_tasks)) wake_up(&destroy_wait); if (!atomic_dec_and_test(&clnt->cl_count)) break; clnt = rpc_free_auth(clnt); } while (clnt != NULL); } EXPORT_SYMBOL_GPL(rpc_release_client); /** * rpc_bind_new_program - bind a new RPC program to an existing client * @old: old rpc_client * @program: rpc program to set * @vers: rpc program version * * Clones the rpc client and sets up a new RPC program. This is mainly * of use for enabling different RPC programs to share the same transport. * The Sun NFSv2/v3 ACL protocol can do this. */ struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old, const struct rpc_program *program, u32 vers) { struct rpc_create_args args = { .program = program, .prognumber = program->number, .version = vers, .authflavor = old->cl_auth->au_flavor, .cred = old->cl_cred, }; struct rpc_clnt *clnt; int err; clnt = __rpc_clone_client(&args, old); if (IS_ERR(clnt)) goto out; err = rpc_ping(clnt); if (err != 0) { rpc_shutdown_client(clnt); clnt = ERR_PTR(err); } out: return clnt; } EXPORT_SYMBOL_GPL(rpc_bind_new_program); struct rpc_xprt * rpc_task_get_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) { struct rpc_xprt_switch *xps; if (!xprt) return NULL; rcu_read_lock(); xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); atomic_long_inc(&xps->xps_queuelen); rcu_read_unlock(); atomic_long_inc(&xprt->queuelen); return xprt; } static void rpc_task_release_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) { struct rpc_xprt_switch *xps; atomic_long_dec(&xprt->queuelen); rcu_read_lock(); xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); atomic_long_dec(&xps->xps_queuelen); rcu_read_unlock(); xprt_put(xprt); } void rpc_task_release_transport(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; if (xprt) { task->tk_xprt = NULL; if (task->tk_client) rpc_task_release_xprt(task->tk_client, xprt); else xprt_put(xprt); } } EXPORT_SYMBOL_GPL(rpc_task_release_transport); void rpc_task_release_client(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; rpc_task_release_transport(task); if (clnt != NULL) { /* Remove from client task list */ spin_lock(&clnt->cl_lock); list_del(&task->tk_task); spin_unlock(&clnt->cl_lock); task->tk_client = NULL; rpc_release_client(clnt); } } static struct rpc_xprt * rpc_task_get_first_xprt(struct rpc_clnt *clnt) { struct rpc_xprt *xprt; rcu_read_lock(); xprt = xprt_get(rcu_dereference(clnt->cl_xprt)); rcu_read_unlock(); return rpc_task_get_xprt(clnt, xprt); } static struct rpc_xprt * rpc_task_get_next_xprt(struct rpc_clnt *clnt) { return rpc_task_get_xprt(clnt, xprt_iter_get_next(&clnt->cl_xpi)); } static void rpc_task_set_transport(struct rpc_task *task, struct rpc_clnt *clnt) { if (task->tk_xprt) return; if (task->tk_flags & RPC_TASK_NO_ROUND_ROBIN) task->tk_xprt = rpc_task_get_first_xprt(clnt); else task->tk_xprt = rpc_task_get_next_xprt(clnt); } static void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt) { if (clnt != NULL) { rpc_task_set_transport(task, clnt); task->tk_client = clnt; atomic_inc(&clnt->cl_count); if (clnt->cl_softrtry) task->tk_flags |= RPC_TASK_SOFT; if (clnt->cl_softerr) task->tk_flags |= RPC_TASK_TIMEOUT; if (clnt->cl_noretranstimeo) task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT; if (atomic_read(&clnt->cl_swapper)) task->tk_flags |= RPC_TASK_SWAPPER; /* Add to the client's list of all tasks */ spin_lock(&clnt->cl_lock); list_add_tail(&task->tk_task, &clnt->cl_tasks); spin_unlock(&clnt->cl_lock); } } static void rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg) { if (msg != NULL) { task->tk_msg.rpc_proc = msg->rpc_proc; task->tk_msg.rpc_argp = msg->rpc_argp; task->tk_msg.rpc_resp = msg->rpc_resp; task->tk_msg.rpc_cred = msg->rpc_cred; if (!(task->tk_flags & RPC_TASK_CRED_NOREF)) get_cred(task->tk_msg.rpc_cred); } } /* * Default callback for async RPC calls */ static void rpc_default_callback(struct rpc_task *task, void *data) { } static const struct rpc_call_ops rpc_default_ops = { .rpc_call_done = rpc_default_callback, }; /** * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it * @task_setup_data: pointer to task initialisation data */ struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data) { struct rpc_task *task; task = rpc_new_task(task_setup_data); if (!RPC_IS_ASYNC(task)) task->tk_flags |= RPC_TASK_CRED_NOREF; rpc_task_set_client(task, task_setup_data->rpc_client); rpc_task_set_rpc_message(task, task_setup_data->rpc_message); if (task->tk_action == NULL) rpc_call_start(task); atomic_inc(&task->tk_count); rpc_execute(task); return task; } EXPORT_SYMBOL_GPL(rpc_run_task); /** * rpc_call_sync - Perform a synchronous RPC call * @clnt: pointer to RPC client * @msg: RPC call parameters * @flags: RPC call flags */ int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags) { struct rpc_task *task; struct rpc_task_setup task_setup_data = { .rpc_client = clnt, .rpc_message = msg, .callback_ops = &rpc_default_ops, .flags = flags, }; int status; WARN_ON_ONCE(flags & RPC_TASK_ASYNC); if (flags & RPC_TASK_ASYNC) { rpc_release_calldata(task_setup_data.callback_ops, task_setup_data.callback_data); return -EINVAL; } task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = task->tk_status; rpc_put_task(task); return status; } EXPORT_SYMBOL_GPL(rpc_call_sync); /** * rpc_call_async - Perform an asynchronous RPC call * @clnt: pointer to RPC client * @msg: RPC call parameters * @flags: RPC call flags * @tk_ops: RPC call ops * @data: user call data */ int rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags, const struct rpc_call_ops *tk_ops, void *data) { struct rpc_task *task; struct rpc_task_setup task_setup_data = { .rpc_client = clnt, .rpc_message = msg, .callback_ops = tk_ops, .callback_data = data, .flags = flags|RPC_TASK_ASYNC, }; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); rpc_put_task(task); return 0; } EXPORT_SYMBOL_GPL(rpc_call_async); #if defined(CONFIG_SUNRPC_BACKCHANNEL) static void call_bc_encode(struct rpc_task *task); /** * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run * rpc_execute against it * @req: RPC request */ struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req) { struct rpc_task *task; struct rpc_task_setup task_setup_data = { .callback_ops = &rpc_default_ops, .flags = RPC_TASK_SOFTCONN | RPC_TASK_NO_RETRANS_TIMEOUT, }; dprintk("RPC: rpc_run_bc_task req= %p\n", req); /* * Create an rpc_task to send the data */ task = rpc_new_task(&task_setup_data); xprt_init_bc_request(req, task); task->tk_action = call_bc_encode; atomic_inc(&task->tk_count); WARN_ON_ONCE(atomic_read(&task->tk_count) != 2); rpc_execute(task); dprintk("RPC: rpc_run_bc_task: task= %p\n", task); return task; } #endif /* CONFIG_SUNRPC_BACKCHANNEL */ /** * rpc_prepare_reply_pages - Prepare to receive a reply data payload into pages * @req: RPC request to prepare * @pages: vector of struct page pointers * @base: offset in first page where receive should start, in bytes * @len: expected size of the upper layer data payload, in bytes * @hdrsize: expected size of upper layer reply header, in XDR words * */ void rpc_prepare_reply_pages(struct rpc_rqst *req, struct page **pages, unsigned int base, unsigned int len, unsigned int hdrsize) { hdrsize += RPC_REPHDRSIZE + req->rq_cred->cr_auth->au_ralign; xdr_inline_pages(&req->rq_rcv_buf, hdrsize << 2, pages, base, len); trace_rpc_xdr_reply_pages(req->rq_task, &req->rq_rcv_buf); } EXPORT_SYMBOL_GPL(rpc_prepare_reply_pages); void rpc_call_start(struct rpc_task *task) { task->tk_action = call_start; } EXPORT_SYMBOL_GPL(rpc_call_start); /** * rpc_peeraddr - extract remote peer address from clnt's xprt * @clnt: RPC client structure * @buf: target buffer * @bufsize: length of target buffer * * Returns the number of bytes that are actually in the stored address. */ size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize) { size_t bytes; struct rpc_xprt *xprt; rcu_read_lock(); xprt = rcu_dereference(clnt->cl_xprt); bytes = xprt->addrlen; if (bytes > bufsize) bytes = bufsize; memcpy(buf, &xprt->addr, bytes); rcu_read_unlock(); return bytes; } EXPORT_SYMBOL_GPL(rpc_peeraddr); /** * rpc_peeraddr2str - return remote peer address in printable format * @clnt: RPC client structure * @format: address format * * NB: the lifetime of the memory referenced by the returned pointer is * the same as the rpc_xprt itself. As long as the caller uses this * pointer, it must hold the RCU read lock. */ const char *rpc_peeraddr2str(struct rpc_clnt *clnt, enum rpc_display_format_t format) { struct rpc_xprt *xprt; xprt = rcu_dereference(clnt->cl_xprt); if (xprt->address_strings[format] != NULL) return xprt->address_strings[format]; else return "unprintable"; } EXPORT_SYMBOL_GPL(rpc_peeraddr2str); static const struct sockaddr_in rpc_inaddr_loopback = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_ANY), }; static const struct sockaddr_in6 rpc_in6addr_loopback = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, }; /* * Try a getsockname() on a connected datagram socket. Using a * connected datagram socket prevents leaving a socket in TIME_WAIT. * This conserves the ephemeral port number space. * * Returns zero and fills in "buf" if successful; otherwise, a * negative errno is returned. */ static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen, struct sockaddr *buf) { struct socket *sock; int err; err = __sock_create(net, sap->sa_family, SOCK_DGRAM, IPPROTO_UDP, &sock, 1); if (err < 0) { dprintk("RPC: can't create UDP socket (%d)\n", err); goto out; } switch (sap->sa_family) { case AF_INET: err = kernel_bind(sock, (struct sockaddr *)&rpc_inaddr_loopback, sizeof(rpc_inaddr_loopback)); break; case AF_INET6: err = kernel_bind(sock, (struct sockaddr *)&rpc_in6addr_loopback, sizeof(rpc_in6addr_loopback)); break; default: err = -EAFNOSUPPORT; goto out; } if (err < 0) { dprintk("RPC: can't bind UDP socket (%d)\n", err); goto out_release; } err = kernel_connect(sock, sap, salen, 0); if (err < 0) { dprintk("RPC: can't connect UDP socket (%d)\n", err); goto out_release; } err = kernel_getsockname(sock, buf); if (err < 0) { dprintk("RPC: getsockname failed (%d)\n", err); goto out_release; } err = 0; if (buf->sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf; sin6->sin6_scope_id = 0; } dprintk("RPC: %s succeeded\n", __func__); out_release: sock_release(sock); out: return err; } /* * Scraping a connected socket failed, so we don't have a useable * local address. Fallback: generate an address that will prevent * the server from calling us back. * * Returns zero and fills in "buf" if successful; otherwise, a * negative errno is returned. */ static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen) { switch (family) { case AF_INET: if (buflen < sizeof(rpc_inaddr_loopback)) return -EINVAL; memcpy(buf, &rpc_inaddr_loopback, sizeof(rpc_inaddr_loopback)); break; case AF_INET6: if (buflen < sizeof(rpc_in6addr_loopback)) return -EINVAL; memcpy(buf, &rpc_in6addr_loopback, sizeof(rpc_in6addr_loopback)); break; default: dprintk("RPC: %s: address family not supported\n", __func__); return -EAFNOSUPPORT; } dprintk("RPC: %s: succeeded\n", __func__); return 0; } /** * rpc_localaddr - discover local endpoint address for an RPC client * @clnt: RPC client structure * @buf: target buffer * @buflen: size of target buffer, in bytes * * Returns zero and fills in "buf" and "buflen" if successful; * otherwise, a negative errno is returned. * * This works even if the underlying transport is not currently connected, * or if the upper layer never previously provided a source address. * * The result of this function call is transient: multiple calls in * succession may give different results, depending on how local * networking configuration changes over time. */ int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen) { struct sockaddr_storage address; struct sockaddr *sap = (struct sockaddr *)&address; struct rpc_xprt *xprt; struct net *net; size_t salen; int err; rcu_read_lock(); xprt = rcu_dereference(clnt->cl_xprt); salen = xprt->addrlen; memcpy(sap, &xprt->addr, salen); net = get_net(xprt->xprt_net); rcu_read_unlock(); rpc_set_port(sap, 0); err = rpc_sockname(net, sap, salen, buf); put_net(net); if (err != 0) /* Couldn't discover local address, return ANYADDR */ return rpc_anyaddr(sap->sa_family, buf, buflen); return 0; } EXPORT_SYMBOL_GPL(rpc_localaddr); void rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize) { struct rpc_xprt *xprt; rcu_read_lock(); xprt = rcu_dereference(clnt->cl_xprt); if (xprt->ops->set_buffer_size) xprt->ops->set_buffer_size(xprt, sndsize, rcvsize); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rpc_setbufsize); /** * rpc_net_ns - Get the network namespace for this RPC client * @clnt: RPC client to query * */ struct net *rpc_net_ns(struct rpc_clnt *clnt) { struct net *ret; rcu_read_lock(); ret = rcu_dereference(clnt->cl_xprt)->xprt_net; rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rpc_net_ns); /** * rpc_max_payload - Get maximum payload size for a transport, in bytes * @clnt: RPC client to query * * For stream transports, this is one RPC record fragment (see RFC * 1831), as we don't support multi-record requests yet. For datagram * transports, this is the size of an IP packet minus the IP, UDP, and * RPC header sizes. */ size_t rpc_max_payload(struct rpc_clnt *clnt) { size_t ret; rcu_read_lock(); ret = rcu_dereference(clnt->cl_xprt)->max_payload; rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rpc_max_payload); /** * rpc_max_bc_payload - Get maximum backchannel payload size, in bytes * @clnt: RPC client to query */ size_t rpc_max_bc_payload(struct rpc_clnt *clnt) { struct rpc_xprt *xprt; size_t ret; rcu_read_lock(); xprt = rcu_dereference(clnt->cl_xprt); ret = xprt->ops->bc_maxpayload(xprt); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rpc_max_bc_payload); unsigned int rpc_num_bc_slots(struct rpc_clnt *clnt) { struct rpc_xprt *xprt; unsigned int ret; rcu_read_lock(); xprt = rcu_dereference(clnt->cl_xprt); ret = xprt->ops->bc_num_slots(xprt); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rpc_num_bc_slots); /** * rpc_force_rebind - force transport to check that remote port is unchanged * @clnt: client to rebind * */ void rpc_force_rebind(struct rpc_clnt *clnt) { if (clnt->cl_autobind) { rcu_read_lock(); xprt_clear_bound(rcu_dereference(clnt->cl_xprt)); rcu_read_unlock(); } } EXPORT_SYMBOL_GPL(rpc_force_rebind); static int __rpc_restart_call(struct rpc_task *task, void (*action)(struct rpc_task *)) { task->tk_status = 0; task->tk_rpc_status = 0; task->tk_action = action; return 1; } /* * Restart an (async) RPC call. Usually called from within the * exit handler. */ int rpc_restart_call(struct rpc_task *task) { return __rpc_restart_call(task, call_start); } EXPORT_SYMBOL_GPL(rpc_restart_call); /* * Restart an (async) RPC call from the call_prepare state. * Usually called from within the exit handler. */ int rpc_restart_call_prepare(struct rpc_task *task) { if (task->tk_ops->rpc_call_prepare != NULL) return __rpc_restart_call(task, rpc_prepare_task); return rpc_restart_call(task); } EXPORT_SYMBOL_GPL(rpc_restart_call_prepare); const char *rpc_proc_name(const struct rpc_task *task) { const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; if (proc) { if (proc->p_name) return proc->p_name; else return "NULL"; } else return "no proc"; } static void __rpc_call_rpcerror(struct rpc_task *task, int tk_status, int rpc_status) { trace_rpc_call_rpcerror(task, tk_status, rpc_status); task->tk_rpc_status = rpc_status; rpc_exit(task, tk_status); } static void rpc_call_rpcerror(struct rpc_task *task, int status) { __rpc_call_rpcerror(task, status, status); } /* * 0. Initial state * * Other FSM states can be visited zero or more times, but * this state is visited exactly once for each RPC. */ static void call_start(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; int idx = task->tk_msg.rpc_proc->p_statidx; trace_rpc_request(task); /* Increment call count (version might not be valid for ping) */ if (clnt->cl_program->version[clnt->cl_vers]) clnt->cl_program->version[clnt->cl_vers]->counts[idx]++; clnt->cl_stats->rpccnt++; task->tk_action = call_reserve; rpc_task_set_transport(task, clnt); } /* * 1. Reserve an RPC call slot */ static void call_reserve(struct rpc_task *task) { task->tk_status = 0; task->tk_action = call_reserveresult; xprt_reserve(task); } static void call_retry_reserve(struct rpc_task *task); /* * 1b. Grok the result of xprt_reserve() */ static void call_reserveresult(struct rpc_task *task) { int status = task->tk_status; /* * After a call to xprt_reserve(), we must have either * a request slot or else an error status. */ task->tk_status = 0; if (status >= 0) { if (task->tk_rqstp) { task->tk_action = call_refresh; return; } rpc_call_rpcerror(task, -EIO); return; } switch (status) { case -ENOMEM: rpc_delay(task, HZ >> 2); fallthrough; case -EAGAIN: /* woken up; retry */ task->tk_action = call_retry_reserve; return; default: rpc_call_rpcerror(task, status); } } /* * 1c. Retry reserving an RPC call slot */ static void call_retry_reserve(struct rpc_task *task) { task->tk_status = 0; task->tk_action = call_reserveresult; xprt_retry_reserve(task); } /* * 2. Bind and/or refresh the credentials */ static void call_refresh(struct rpc_task *task) { task->tk_action = call_refreshresult; task->tk_status = 0; task->tk_client->cl_stats->rpcauthrefresh++; rpcauth_refreshcred(task); } /* * 2a. Process the results of a credential refresh */ static void call_refreshresult(struct rpc_task *task) { int status = task->tk_status; task->tk_status = 0; task->tk_action = call_refresh; switch (status) { case 0: if (rpcauth_uptodatecred(task)) { task->tk_action = call_allocate; return; } /* Use rate-limiting and a max number of retries if refresh * had status 0 but failed to update the cred. */ fallthrough; case -ETIMEDOUT: rpc_delay(task, 3*HZ); fallthrough; case -EAGAIN: status = -EACCES; fallthrough; case -EKEYEXPIRED: if (!task->tk_cred_retry) break; task->tk_cred_retry--; trace_rpc_retry_refresh_status(task); return; } trace_rpc_refresh_status(task); rpc_call_rpcerror(task, status); } /* * 2b. Allocate the buffer. For details, see sched.c:rpc_malloc. * (Note: buffer memory is freed in xprt_release). */ static void call_allocate(struct rpc_task *task) { const struct rpc_auth *auth = task->tk_rqstp->rq_cred->cr_auth; struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; const struct rpc_procinfo *proc = task->tk_msg.rpc_proc; int status; task->tk_status = 0; task->tk_action = call_encode; if (req->rq_buffer) return; if (proc->p_proc != 0) { BUG_ON(proc->p_arglen == 0); if (proc->p_decode != NULL) BUG_ON(proc->p_replen == 0); } /* * Calculate the size (in quads) of the RPC call * and reply headers, and convert both values * to byte sizes. */ req->rq_callsize = RPC_CALLHDRSIZE + (auth->au_cslack << 1) + proc->p_arglen; req->rq_callsize <<= 2; /* * Note: the reply buffer must at minimum allocate enough space * for the 'struct accepted_reply' from RFC5531. */ req->rq_rcvsize = RPC_REPHDRSIZE + auth->au_rslack + \ max_t(size_t, proc->p_replen, 2); req->rq_rcvsize <<= 2; status = xprt->ops->buf_alloc(task); trace_rpc_buf_alloc(task, status); if (status == 0) return; if (status != -ENOMEM) { rpc_call_rpcerror(task, status); return; } if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) { task->tk_action = call_allocate; rpc_delay(task, HZ>>4); return; } rpc_call_rpcerror(task, -ERESTARTSYS); } static int rpc_task_need_encode(struct rpc_task *task) { return test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) == 0 && (!(task->tk_flags & RPC_TASK_SENT) || !(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) || xprt_request_need_retransmit(task)); } static void rpc_xdr_encode(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct xdr_stream xdr; xdr_buf_init(&req->rq_snd_buf, req->rq_buffer, req->rq_callsize); xdr_buf_init(&req->rq_rcv_buf, req->rq_rbuffer, req->rq_rcvsize); req->rq_reply_bytes_recvd = 0; req->rq_snd_buf.head[0].iov_len = 0; xdr_init_encode(&xdr, &req->rq_snd_buf, req->rq_snd_buf.head[0].iov_base, req); xdr_free_bvec(&req->rq_snd_buf); if (rpc_encode_header(task, &xdr)) return; task->tk_status = rpcauth_wrap_req(task, &xdr); } /* * 3. Encode arguments of an RPC call */ static void call_encode(struct rpc_task *task) { if (!rpc_task_need_encode(task)) goto out; /* Dequeue task from the receive queue while we're encoding */ xprt_request_dequeue_xprt(task); /* Encode here so that rpcsec_gss can use correct sequence number. */ rpc_xdr_encode(task); /* Did the encode result in an error condition? */ if (task->tk_status != 0) { /* Was the error nonfatal? */ switch (task->tk_status) { case -EAGAIN: case -ENOMEM: rpc_delay(task, HZ >> 4); break; case -EKEYEXPIRED: if (!task->tk_cred_retry) { rpc_exit(task, task->tk_status); } else { task->tk_action = call_refresh; task->tk_cred_retry--; trace_rpc_retry_refresh_status(task); } break; default: rpc_call_rpcerror(task, task->tk_status); } return; } /* Add task to reply queue before transmission to avoid races */ if (rpc_reply_expected(task)) xprt_request_enqueue_receive(task); xprt_request_enqueue_transmit(task); out: task->tk_action = call_transmit; /* Check that the connection is OK */ if (!xprt_bound(task->tk_xprt)) task->tk_action = call_bind; else if (!xprt_connected(task->tk_xprt)) task->tk_action = call_connect; } /* * Helpers to check if the task was already transmitted, and * to take action when that is the case. */ static bool rpc_task_transmitted(struct rpc_task *task) { return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate); } static void rpc_task_handle_transmitted(struct rpc_task *task) { xprt_end_transmit(task); task->tk_action = call_transmit_status; } /* * 4. Get the server port number if not yet set */ static void call_bind(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; if (rpc_task_transmitted(task)) { rpc_task_handle_transmitted(task); return; } if (xprt_bound(xprt)) { task->tk_action = call_connect; return; } task->tk_action = call_bind_status; if (!xprt_prepare_transmit(task)) return; xprt->ops->rpcbind(task); } /* * 4a. Sort out bind result */ static void call_bind_status(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; int status = -EIO; if (rpc_task_transmitted(task)) { rpc_task_handle_transmitted(task); return; } if (task->tk_status >= 0) goto out_next; if (xprt_bound(xprt)) { task->tk_status = 0; goto out_next; } switch (task->tk_status) { case -ENOMEM: rpc_delay(task, HZ >> 2); goto retry_timeout; case -EACCES: trace_rpcb_prog_unavail_err(task); /* fail immediately if this is an RPC ping */ if (task->tk_msg.rpc_proc->p_proc == 0) { status = -EOPNOTSUPP; break; } if (task->tk_rebind_retry == 0) break; task->tk_rebind_retry--; rpc_delay(task, 3*HZ); goto retry_timeout; case -ENOBUFS: rpc_delay(task, HZ >> 2); goto retry_timeout; case -EAGAIN: goto retry_timeout; case -ETIMEDOUT: trace_rpcb_timeout_err(task); goto retry_timeout; case -EPFNOSUPPORT: /* server doesn't support any rpcbind version we know of */ trace_rpcb_bind_version_err(task); break; case -EPROTONOSUPPORT: trace_rpcb_bind_version_err(task); goto retry_timeout; case -ECONNREFUSED: /* connection problems */ case -ECONNRESET: case -ECONNABORTED: case -ENOTCONN: case -EHOSTDOWN: case -ENETDOWN: case -EHOSTUNREACH: case -ENETUNREACH: case -EPIPE: trace_rpcb_unreachable_err(task); if (!RPC_IS_SOFTCONN(task)) { rpc_delay(task, 5*HZ); goto retry_timeout; } status = task->tk_status; break; default: trace_rpcb_unrecognized_err(task); } rpc_call_rpcerror(task, status); return; out_next: task->tk_action = call_connect; return; retry_timeout: task->tk_status = 0; task->tk_action = call_bind; rpc_check_timeout(task); } /* * 4b. Connect to the RPC server */ static void call_connect(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; if (rpc_task_transmitted(task)) { rpc_task_handle_transmitted(task); return; } if (xprt_connected(xprt)) { task->tk_action = call_transmit; return; } task->tk_action = call_connect_status; if (task->tk_status < 0) return; if (task->tk_flags & RPC_TASK_NOCONNECT) { rpc_call_rpcerror(task, -ENOTCONN); return; } if (!xprt_prepare_transmit(task)) return; xprt_connect(task); } /* * 4c. Sort out connect result */ static void call_connect_status(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; struct rpc_clnt *clnt = task->tk_client; int status = task->tk_status; if (rpc_task_transmitted(task)) { rpc_task_handle_transmitted(task); return; } trace_rpc_connect_status(task); if (task->tk_status == 0) { clnt->cl_stats->netreconn++; goto out_next; } if (xprt_connected(xprt)) { task->tk_status = 0; goto out_next; } task->tk_status = 0; switch (status) { case -ECONNREFUSED: /* A positive refusal suggests a rebind is needed. */ if (RPC_IS_SOFTCONN(task)) break; if (clnt->cl_autobind) { rpc_force_rebind(clnt); goto out_retry; } fallthrough; case -ECONNRESET: case -ECONNABORTED: case -ENETDOWN: case -ENETUNREACH: case -EHOSTUNREACH: case -EPIPE: case -EPROTO: xprt_conditional_disconnect(task->tk_rqstp->rq_xprt, task->tk_rqstp->rq_connect_cookie); if (RPC_IS_SOFTCONN(task)) break; /* retry with existing socket, after a delay */ rpc_delay(task, 3*HZ); fallthrough; case -EADDRINUSE: case -ENOTCONN: case -EAGAIN: case -ETIMEDOUT: goto out_retry; case -ENOBUFS: rpc_delay(task, HZ >> 2); goto out_retry; } rpc_call_rpcerror(task, status); return; out_next: task->tk_action = call_transmit; return; out_retry: /* Check for timeouts before looping back to call_bind */ task->tk_action = call_bind; rpc_check_timeout(task); } /* * 5. Transmit the RPC request, and wait for reply */ static void call_transmit(struct rpc_task *task) { if (rpc_task_transmitted(task)) { rpc_task_handle_transmitted(task); return; } task->tk_action = call_transmit_status; if (!xprt_prepare_transmit(task)) return; task->tk_status = 0; if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) { if (!xprt_connected(task->tk_xprt)) { task->tk_status = -ENOTCONN; return; } xprt_transmit(task); } xprt_end_transmit(task); } /* * 5a. Handle cleanup after a transmission */ static void call_transmit_status(struct rpc_task *task) { task->tk_action = call_status; /* * Common case: success. Force the compiler to put this * test first. */ if (rpc_task_transmitted(task)) { task->tk_status = 0; xprt_request_wait_receive(task); return; } switch (task->tk_status) { default: break; case -EBADMSG: task->tk_status = 0; task->tk_action = call_encode; break; /* * Special cases: if we've been waiting on the * socket's write_space() callback, or if the * socket just returned a connection error, * then hold onto the transport lock. */ case -ENOBUFS: rpc_delay(task, HZ>>2); fallthrough; case -EBADSLT: case -EAGAIN: task->tk_action = call_transmit; task->tk_status = 0; break; case -ECONNREFUSED: case -EHOSTDOWN: case -ENETDOWN: case -EHOSTUNREACH: case -ENETUNREACH: case -EPERM: if (RPC_IS_SOFTCONN(task)) { if (!task->tk_msg.rpc_proc->p_proc) trace_xprt_ping(task->tk_xprt, task->tk_status); rpc_call_rpcerror(task, task->tk_status); return; } fallthrough; case -ECONNRESET: case -ECONNABORTED: case -EADDRINUSE: case -ENOTCONN: case -EPIPE: task->tk_action = call_bind; task->tk_status = 0; break; } rpc_check_timeout(task); } #if defined(CONFIG_SUNRPC_BACKCHANNEL) static void call_bc_transmit(struct rpc_task *task); static void call_bc_transmit_status(struct rpc_task *task); static void call_bc_encode(struct rpc_task *task) { xprt_request_enqueue_transmit(task); task->tk_action = call_bc_transmit; } /* * 5b. Send the backchannel RPC reply. On error, drop the reply. In * addition, disconnect on connectivity errors. */ static void call_bc_transmit(struct rpc_task *task) { task->tk_action = call_bc_transmit_status; if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) { if (!xprt_prepare_transmit(task)) return; task->tk_status = 0; xprt_transmit(task); } xprt_end_transmit(task); } static void call_bc_transmit_status(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (rpc_task_transmitted(task)) task->tk_status = 0; switch (task->tk_status) { case 0: /* Success */ case -ENETDOWN: case -EHOSTDOWN: case -EHOSTUNREACH: case -ENETUNREACH: case -ECONNRESET: case -ECONNREFUSED: case -EADDRINUSE: case -ENOTCONN: case -EPIPE: break; case -ENOBUFS: rpc_delay(task, HZ>>2); fallthrough; case -EBADSLT: case -EAGAIN: task->tk_status = 0; task->tk_action = call_bc_transmit; return; case -ETIMEDOUT: /* * Problem reaching the server. Disconnect and let the * forechannel reestablish the connection. The server will * have to retransmit the backchannel request and we'll * reprocess it. Since these ops are idempotent, there's no * need to cache our reply at this time. */ printk(KERN_NOTICE "RPC: Could not send backchannel reply " "error: %d\n", task->tk_status); xprt_conditional_disconnect(req->rq_xprt, req->rq_connect_cookie); break; default: /* * We were unable to reply and will have to drop the * request. The server should reconnect and retransmit. */ printk(KERN_NOTICE "RPC: Could not send backchannel reply " "error: %d\n", task->tk_status); break; } task->tk_action = rpc_exit_task; } #endif /* CONFIG_SUNRPC_BACKCHANNEL */ /* * 6. Sort out the RPC call status */ static void call_status(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; int status; if (!task->tk_msg.rpc_proc->p_proc) trace_xprt_ping(task->tk_xprt, task->tk_status); status = task->tk_status; if (status >= 0) { task->tk_action = call_decode; return; } trace_rpc_call_status(task); task->tk_status = 0; switch(status) { case -EHOSTDOWN: case -ENETDOWN: case -EHOSTUNREACH: case -ENETUNREACH: case -EPERM: if (RPC_IS_SOFTCONN(task)) goto out_exit; /* * Delay any retries for 3 seconds, then handle as if it * were a timeout. */ rpc_delay(task, 3*HZ); fallthrough; case -ETIMEDOUT: break; case -ECONNREFUSED: case -ECONNRESET: case -ECONNABORTED: case -ENOTCONN: rpc_force_rebind(clnt); break; case -EADDRINUSE: rpc_delay(task, 3*HZ); fallthrough; case -EPIPE: case -EAGAIN: break; case -EIO: /* shutdown or soft timeout */ goto out_exit; default: if (clnt->cl_chatty) printk("%s: RPC call returned error %d\n", clnt->cl_program->name, -status); goto out_exit; } task->tk_action = call_encode; if (status != -ECONNRESET && status != -ECONNABORTED) rpc_check_timeout(task); return; out_exit: rpc_call_rpcerror(task, status); } static bool rpc_check_connected(const struct rpc_rqst *req) { /* No allocated request or transport? return true */ if (!req || !req->rq_xprt) return true; return xprt_connected(req->rq_xprt); } static void rpc_check_timeout(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; if (RPC_SIGNALLED(task)) { rpc_call_rpcerror(task, -ERESTARTSYS); return; } if (xprt_adjust_timeout(task->tk_rqstp) == 0) return; trace_rpc_timeout_status(task); task->tk_timeouts++; if (RPC_IS_SOFTCONN(task) && !rpc_check_connected(task->tk_rqstp)) { rpc_call_rpcerror(task, -ETIMEDOUT); return; } if (RPC_IS_SOFT(task)) { /* * Once a "no retrans timeout" soft tasks (a.k.a NFSv4) has * been sent, it should time out only if the transport * connection gets terminally broken. */ if ((task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) && rpc_check_connected(task->tk_rqstp)) return; if (clnt->cl_chatty) { pr_notice_ratelimited( "%s: server %s not responding, timed out\n", clnt->cl_program->name, task->tk_xprt->servername); } if (task->tk_flags & RPC_TASK_TIMEOUT) rpc_call_rpcerror(task, -ETIMEDOUT); else __rpc_call_rpcerror(task, -EIO, -ETIMEDOUT); return; } if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) { task->tk_flags |= RPC_CALL_MAJORSEEN; if (clnt->cl_chatty) { pr_notice_ratelimited( "%s: server %s not responding, still trying\n", clnt->cl_program->name, task->tk_xprt->servername); } } rpc_force_rebind(clnt); /* * Did our request time out due to an RPCSEC_GSS out-of-sequence * event? RFC2203 requires the server to drop all such requests. */ rpcauth_invalcred(task); } /* * 7. Decode the RPC reply */ static void call_decode(struct rpc_task *task) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; struct xdr_stream xdr; int err; if (!task->tk_msg.rpc_proc->p_decode) { task->tk_action = rpc_exit_task; return; } if (task->tk_flags & RPC_CALL_MAJORSEEN) { if (clnt->cl_chatty) { pr_notice_ratelimited("%s: server %s OK\n", clnt->cl_program->name, task->tk_xprt->servername); } task->tk_flags &= ~RPC_CALL_MAJORSEEN; } /* * Did we ever call xprt_complete_rqst()? If not, we should assume * the message is incomplete. */ err = -EAGAIN; if (!req->rq_reply_bytes_recvd) goto out; /* Ensure that we see all writes made by xprt_complete_rqst() * before it changed req->rq_reply_bytes_recvd. */ smp_rmb(); req->rq_rcv_buf.len = req->rq_private_buf.len; trace_rpc_xdr_recvfrom(task, &req->rq_rcv_buf); /* Check that the softirq receive buffer is valid */ WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf, sizeof(req->rq_rcv_buf)) != 0); xdr_init_decode(&xdr, &req->rq_rcv_buf, req->rq_rcv_buf.head[0].iov_base, req); err = rpc_decode_header(task, &xdr); out: switch (err) { case 0: task->tk_action = rpc_exit_task; task->tk_status = rpcauth_unwrap_resp(task, &xdr); return; case -EAGAIN: task->tk_status = 0; if (task->tk_client->cl_discrtry) xprt_conditional_disconnect(req->rq_xprt, req->rq_connect_cookie); task->tk_action = call_encode; rpc_check_timeout(task); break; case -EKEYREJECTED: task->tk_action = call_reserve; rpc_check_timeout(task); rpcauth_invalcred(task); /* Ensure we obtain a new XID if we retry! */ xprt_release(task); } } static int rpc_encode_header(struct rpc_task *task, struct xdr_stream *xdr) { struct rpc_clnt *clnt = task->tk_client; struct rpc_rqst *req = task->tk_rqstp; __be32 *p; int error; error = -EMSGSIZE; p = xdr_reserve_space(xdr, RPC_CALLHDRSIZE << 2); if (!p) goto out_fail; *p++ = req->rq_xid; *p++ = rpc_call; *p++ = cpu_to_be32(RPC_VERSION); *p++ = cpu_to_be32(clnt->cl_prog); *p++ = cpu_to_be32(clnt->cl_vers); *p = cpu_to_be32(task->tk_msg.rpc_proc->p_proc); error = rpcauth_marshcred(task, xdr); if (error < 0) goto out_fail; return 0; out_fail: trace_rpc_bad_callhdr(task); rpc_call_rpcerror(task, error); return error; } static noinline int rpc_decode_header(struct rpc_task *task, struct xdr_stream *xdr) { struct rpc_clnt *clnt = task->tk_client; int error; __be32 *p; /* RFC-1014 says that the representation of XDR data must be a * multiple of four bytes * - if it isn't pointer subtraction in the NFS client may give * undefined results */ if (task->tk_rqstp->rq_rcv_buf.len & 3) goto out_unparsable; p = xdr_inline_decode(xdr, 3 * sizeof(*p)); if (!p) goto out_unparsable; p++; /* skip XID */ if (*p++ != rpc_reply) goto out_unparsable; if (*p++ != rpc_msg_accepted) goto out_msg_denied; error = rpcauth_checkverf(task, xdr); if (error) goto out_verifier; p = xdr_inline_decode(xdr, sizeof(*p)); if (!p) goto out_unparsable; switch (*p) { case rpc_success: return 0; case rpc_prog_unavail: trace_rpc__prog_unavail(task); error = -EPFNOSUPPORT; goto out_err; case rpc_prog_mismatch: trace_rpc__prog_mismatch(task); error = -EPROTONOSUPPORT; goto out_err; case rpc_proc_unavail: trace_rpc__proc_unavail(task); error = -EOPNOTSUPP; goto out_err; case rpc_garbage_args: case rpc_system_err: trace_rpc__garbage_args(task); error = -EIO; break; default: goto out_unparsable; } out_garbage: clnt->cl_stats->rpcgarbage++; if (task->tk_garb_retry) { task->tk_garb_retry--; task->tk_action = call_encode; return -EAGAIN; } out_err: rpc_call_rpcerror(task, error); return error; out_unparsable: trace_rpc__unparsable(task); error = -EIO; goto out_garbage; out_verifier: trace_rpc_bad_verifier(task); goto out_garbage; out_msg_denied: error = -EACCES; p = xdr_inline_decode(xdr, sizeof(*p)); if (!p) goto out_unparsable; switch (*p++) { case rpc_auth_error: break; case rpc_mismatch: trace_rpc__mismatch(task); error = -EPROTONOSUPPORT; goto out_err; default: goto out_unparsable; } p = xdr_inline_decode(xdr, sizeof(*p)); if (!p) goto out_unparsable; switch (*p++) { case rpc_autherr_rejectedcred: case rpc_autherr_rejectedverf: case rpcsec_gsserr_credproblem: case rpcsec_gsserr_ctxproblem: if (!task->tk_cred_retry) break; task->tk_cred_retry--; trace_rpc__stale_creds(task); return -EKEYREJECTED; case rpc_autherr_badcred: case rpc_autherr_badverf: /* possibly garbled cred/verf? */ if (!task->tk_garb_retry) break; task->tk_garb_retry--; trace_rpc__bad_creds(task); task->tk_action = call_encode; return -EAGAIN; case rpc_autherr_tooweak: trace_rpc__auth_tooweak(task); pr_warn("RPC: server %s requires stronger authentication.\n", task->tk_xprt->servername); break; default: goto out_unparsable; } goto out_err; } static void rpcproc_encode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, const void *obj) { } static int rpcproc_decode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr, void *obj) { return 0; } static const struct rpc_procinfo rpcproc_null = { .p_encode = rpcproc_encode_null, .p_decode = rpcproc_decode_null, }; static int rpc_ping(struct rpc_clnt *clnt) { struct rpc_message msg = { .rpc_proc = &rpcproc_null, }; int err; err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN | RPC_TASK_NULLCREDS); return err; } static struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt, struct rpc_xprt *xprt, struct rpc_cred *cred, int flags, const struct rpc_call_ops *ops, void *data) { struct rpc_message msg = { .rpc_proc = &rpcproc_null, }; struct rpc_task_setup task_setup_data = { .rpc_client = clnt, .rpc_xprt = xprt, .rpc_message = &msg, .rpc_op_cred = cred, .callback_ops = (ops != NULL) ? ops : &rpc_default_ops, .callback_data = data, .flags = flags | RPC_TASK_SOFT | RPC_TASK_SOFTCONN | RPC_TASK_NULLCREDS, }; return rpc_run_task(&task_setup_data); } struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags) { return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL); } EXPORT_SYMBOL_GPL(rpc_call_null); struct rpc_cb_add_xprt_calldata { struct rpc_xprt_switch *xps; struct rpc_xprt *xprt; }; static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata) { struct rpc_cb_add_xprt_calldata *data = calldata; if (task->tk_status == 0) rpc_xprt_switch_add_xprt(data->xps, data->xprt); } static void rpc_cb_add_xprt_release(void *calldata) { struct rpc_cb_add_xprt_calldata *data = calldata; xprt_put(data->xprt); xprt_switch_put(data->xps); kfree(data); } static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = { .rpc_call_done = rpc_cb_add_xprt_done, .rpc_release = rpc_cb_add_xprt_release, }; /** * rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt * @clnt: pointer to struct rpc_clnt * @xps: pointer to struct rpc_xprt_switch, * @xprt: pointer struct rpc_xprt * @dummy: unused */ int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, void *dummy) { struct rpc_cb_add_xprt_calldata *data; struct rpc_task *task; data = kmalloc(sizeof(*data), GFP_NOFS); if (!data) return -ENOMEM; data->xps = xprt_switch_get(xps); data->xprt = xprt_get(xprt); if (rpc_xprt_switch_has_addr(data->xps, (struct sockaddr *)&xprt->addr)) { rpc_cb_add_xprt_release(data); goto success; } task = rpc_call_null_helper(clnt, xprt, NULL, RPC_TASK_ASYNC, &rpc_cb_add_xprt_call_ops, data); rpc_put_task(task); success: return 1; } EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt); /** * rpc_clnt_setup_test_and_add_xprt() * * This is an rpc_clnt_add_xprt setup() function which returns 1 so: * 1) caller of the test function must dereference the rpc_xprt_switch * and the rpc_xprt. * 2) test function must call rpc_xprt_switch_add_xprt, usually in * the rpc_call_done routine. * * Upon success (return of 1), the test function adds the new * transport to the rpc_clnt xprt switch * * @clnt: struct rpc_clnt to get the new transport * @xps: the rpc_xprt_switch to hold the new transport * @xprt: the rpc_xprt to test * @data: a struct rpc_add_xprt_test pointer that holds the test function * and test function call data */ int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, void *data) { struct rpc_task *task; struct rpc_add_xprt_test *xtest = (struct rpc_add_xprt_test *)data; int status = -EADDRINUSE; xprt = xprt_get(xprt); xprt_switch_get(xps); if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr)) goto out_err; /* Test the connection */ task = rpc_call_null_helper(clnt, xprt, NULL, 0, NULL, NULL); if (IS_ERR(task)) { status = PTR_ERR(task); goto out_err; } status = task->tk_status; rpc_put_task(task); if (status < 0) goto out_err; /* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */ xtest->add_xprt_test(clnt, xprt, xtest->data); xprt_put(xprt); xprt_switch_put(xps); /* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */ return 1; out_err: xprt_put(xprt); xprt_switch_put(xps); pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not added\n", status, xprt->address_strings[RPC_DISPLAY_ADDR]); return status; } EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt); /** * rpc_clnt_add_xprt - Add a new transport to a rpc_clnt * @clnt: pointer to struct rpc_clnt * @xprtargs: pointer to struct xprt_create * @setup: callback to test and/or set up the connection * @data: pointer to setup function data * * Creates a new transport using the parameters set in args and * adds it to clnt. * If ping is set, then test that connectivity succeeds before * adding the new transport. * */ int rpc_clnt_add_xprt(struct rpc_clnt *clnt, struct xprt_create *xprtargs, int (*setup)(struct rpc_clnt *, struct rpc_xprt_switch *, struct rpc_xprt *, void *), void *data) { struct rpc_xprt_switch *xps; struct rpc_xprt *xprt; unsigned long connect_timeout; unsigned long reconnect_timeout; unsigned char resvport, reuseport; int ret = 0; rcu_read_lock(); xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); xprt = xprt_iter_xprt(&clnt->cl_xpi); if (xps == NULL || xprt == NULL) { rcu_read_unlock(); xprt_switch_put(xps); return -EAGAIN; } resvport = xprt->resvport; reuseport = xprt->reuseport; connect_timeout = xprt->connect_timeout; reconnect_timeout = xprt->max_reconnect_timeout; rcu_read_unlock(); xprt = xprt_create_transport(xprtargs); if (IS_ERR(xprt)) { ret = PTR_ERR(xprt); goto out_put_switch; } xprt->resvport = resvport; xprt->reuseport = reuseport; if (xprt->ops->set_connect_timeout != NULL) xprt->ops->set_connect_timeout(xprt, connect_timeout, reconnect_timeout); rpc_xprt_switch_set_roundrobin(xps); if (setup) { ret = setup(clnt, xps, xprt, data); if (ret != 0) goto out_put_xprt; } rpc_xprt_switch_add_xprt(xps, xprt); out_put_xprt: xprt_put(xprt); out_put_switch: xprt_switch_put(xps); return ret; } EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt); struct connect_timeout_data { unsigned long connect_timeout; unsigned long reconnect_timeout; }; static int rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *data) { struct connect_timeout_data *timeo = data; if (xprt->ops->set_connect_timeout) xprt->ops->set_connect_timeout(xprt, timeo->connect_timeout, timeo->reconnect_timeout); return 0; } void rpc_set_connect_timeout(struct rpc_clnt *clnt, unsigned long connect_timeout, unsigned long reconnect_timeout) { struct connect_timeout_data timeout = { .connect_timeout = connect_timeout, .reconnect_timeout = reconnect_timeout, }; rpc_clnt_iterate_for_each_xprt(clnt, rpc_xprt_set_connect_timeout, &timeout); } EXPORT_SYMBOL_GPL(rpc_set_connect_timeout); void rpc_clnt_xprt_switch_put(struct rpc_clnt *clnt) { rcu_read_lock(); xprt_switch_put(rcu_dereference(clnt->cl_xpi.xpi_xpswitch)); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_put); void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt) { rcu_read_lock(); rpc_xprt_switch_add_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch), xprt); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt); bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt, const struct sockaddr *sap) { struct rpc_xprt_switch *xps; bool ret; rcu_read_lock(); xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch); ret = rpc_xprt_switch_has_addr(xps, sap); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr); #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) static void rpc_show_header(void) { printk(KERN_INFO "-pid- flgs status -client- --rqstp- " "-timeout ---ops--\n"); } static void rpc_show_task(const struct rpc_clnt *clnt, const struct rpc_task *task) { const char *rpc_waitq = "none"; if (RPC_IS_QUEUED(task)) rpc_waitq = rpc_qname(task->tk_waitqueue); printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n", task->tk_pid, task->tk_flags, task->tk_status, clnt, task->tk_rqstp, rpc_task_timeout(task), task->tk_ops, clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task), task->tk_action, rpc_waitq); } void rpc_show_tasks(struct net *net) { struct rpc_clnt *clnt; struct rpc_task *task; int header = 0; struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); spin_lock(&sn->rpc_client_lock); list_for_each_entry(clnt, &sn->all_clients, cl_clients) { spin_lock(&clnt->cl_lock); list_for_each_entry(task, &clnt->cl_tasks, tk_task) { if (!header) { rpc_show_header(); header++; } rpc_show_task(clnt, task); } spin_unlock(&clnt->cl_lock); } spin_unlock(&sn->rpc_client_lock); } #endif #if IS_ENABLED(CONFIG_SUNRPC_SWAP) static int rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *dummy) { return xprt_enable_swap(xprt); } int rpc_clnt_swap_activate(struct rpc_clnt *clnt) { if (atomic_inc_return(&clnt->cl_swapper) == 1) return rpc_clnt_iterate_for_each_xprt(clnt, rpc_clnt_swap_activate_callback, NULL); return 0; } EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate); static int rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *dummy) { xprt_disable_swap(xprt); return 0; } void rpc_clnt_swap_deactivate(struct rpc_clnt *clnt) { if (atomic_dec_if_positive(&clnt->cl_swapper) == 0) rpc_clnt_iterate_for_each_xprt(clnt, rpc_clnt_swap_deactivate_callback, NULL); } EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate); #endif /* CONFIG_SUNRPC_SWAP */