/* * linux/net/sunrpc/auth_gss/auth_gss.c * * RPCSEC_GSS client authentication. * * Copyright (c) 2000 The Regents of the University of Michigan. * All rights reserved. * * Dug Song * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../netns.h" static const struct rpc_authops authgss_ops; static const struct rpc_credops gss_credops; static const struct rpc_credops gss_nullops; #define GSS_RETRY_EXPIRED 5 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; #define GSS_KEY_EXPIRE_TIMEO 240 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; #ifdef RPC_DEBUG # define RPCDBG_FACILITY RPCDBG_AUTH #endif #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) /* length of a krb5 verifier (48), plus data added before arguments when * using integrity (two 4-byte integers): */ #define GSS_VERF_SLACK 100 static DEFINE_HASHTABLE(gss_auth_hash_table, 16); static DEFINE_SPINLOCK(gss_auth_hash_lock); struct gss_pipe { struct rpc_pipe_dir_object pdo; struct rpc_pipe *pipe; struct rpc_clnt *clnt; const char *name; struct kref kref; }; struct gss_auth { struct kref kref; struct hlist_node hash; struct rpc_auth rpc_auth; struct gss_api_mech *mech; enum rpc_gss_svc service; struct rpc_clnt *client; struct net *net; /* * There are two upcall pipes; dentry[1], named "gssd", is used * for the new text-based upcall; dentry[0] is named after the * mechanism (for example, "krb5") and exists for * backwards-compatibility with older gssd's. */ struct gss_pipe *gss_pipe[2]; const char *target_name; }; /* pipe_version >= 0 if and only if someone has a pipe open. */ static DEFINE_SPINLOCK(pipe_version_lock); static struct rpc_wait_queue pipe_version_rpc_waitqueue; static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); static void gss_free_ctx(struct gss_cl_ctx *); static const struct rpc_pipe_ops gss_upcall_ops_v0; static const struct rpc_pipe_ops gss_upcall_ops_v1; static inline struct gss_cl_ctx * gss_get_ctx(struct gss_cl_ctx *ctx) { atomic_inc(&ctx->count); return ctx; } static inline void gss_put_ctx(struct gss_cl_ctx *ctx) { if (atomic_dec_and_test(&ctx->count)) gss_free_ctx(ctx); } /* gss_cred_set_ctx: * called by gss_upcall_callback and gss_create_upcall in order * to set the gss context. The actual exchange of an old context * and a new one is protected by the pipe->lock. */ static void gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) { struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) return; gss_get_ctx(ctx); rcu_assign_pointer(gss_cred->gc_ctx, ctx); set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); smp_mb__before_clear_bit(); clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); } static const void * simple_get_bytes(const void *p, const void *end, void *res, size_t len) { const void *q = (const void *)((const char *)p + len); if (unlikely(q > end || q < p)) return ERR_PTR(-EFAULT); memcpy(res, p, len); return q; } static inline const void * simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest) { const void *q; unsigned int len; p = simple_get_bytes(p, end, &len, sizeof(len)); if (IS_ERR(p)) return p; q = (const void *)((const char *)p + len); if (unlikely(q > end || q < p)) return ERR_PTR(-EFAULT); dest->data = kmemdup(p, len, GFP_NOFS); if (unlikely(dest->data == NULL)) return ERR_PTR(-ENOMEM); dest->len = len; return q; } static struct gss_cl_ctx * gss_cred_get_ctx(struct rpc_cred *cred) { struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_cl_ctx *ctx = NULL; rcu_read_lock(); if (gss_cred->gc_ctx) ctx = gss_get_ctx(gss_cred->gc_ctx); rcu_read_unlock(); return ctx; } static struct gss_cl_ctx * gss_alloc_context(void) { struct gss_cl_ctx *ctx; ctx = kzalloc(sizeof(*ctx), GFP_NOFS); if (ctx != NULL) { ctx->gc_proc = RPC_GSS_PROC_DATA; ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ spin_lock_init(&ctx->gc_seq_lock); atomic_set(&ctx->count,1); } return ctx; } #define GSSD_MIN_TIMEOUT (60 * 60) static const void * gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) { const void *q; unsigned int seclen; unsigned int timeout; unsigned long now = jiffies; u32 window_size; int ret; /* First unsigned int gives the remaining lifetime in seconds of the * credential - e.g. the remaining TGT lifetime for Kerberos or * the -t value passed to GSSD. */ p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); if (IS_ERR(p)) goto err; if (timeout == 0) timeout = GSSD_MIN_TIMEOUT; ctx->gc_expiry = now + ((unsigned long)timeout * HZ); /* Sequence number window. Determines the maximum number of * simultaneous requests */ p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); if (IS_ERR(p)) goto err; ctx->gc_win = window_size; /* gssd signals an error by passing ctx->gc_win = 0: */ if (ctx->gc_win == 0) { /* * in which case, p points to an error code. Anything other * than -EKEYEXPIRED gets converted to -EACCES. */ p = simple_get_bytes(p, end, &ret, sizeof(ret)); if (!IS_ERR(p)) p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : ERR_PTR(-EACCES); goto err; } /* copy the opaque wire context */ p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); if (IS_ERR(p)) goto err; /* import the opaque security context */ p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); if (IS_ERR(p)) goto err; q = (const void *)((const char *)p + seclen); if (unlikely(q > end || q < p)) { p = ERR_PTR(-EFAULT); goto err; } ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS); if (ret < 0) { p = ERR_PTR(ret); goto err; } dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u\n", __func__, ctx->gc_expiry, now, timeout); return q; err: dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p)); return p; } #define UPCALL_BUF_LEN 128 struct gss_upcall_msg { atomic_t count; kuid_t uid; struct rpc_pipe_msg msg; struct list_head list; struct gss_auth *auth; struct rpc_pipe *pipe; struct rpc_wait_queue rpc_waitqueue; wait_queue_head_t waitqueue; struct gss_cl_ctx *ctx; char databuf[UPCALL_BUF_LEN]; }; static int get_pipe_version(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); int ret; spin_lock(&pipe_version_lock); if (sn->pipe_version >= 0) { atomic_inc(&sn->pipe_users); ret = sn->pipe_version; } else ret = -EAGAIN; spin_unlock(&pipe_version_lock); return ret; } static void put_pipe_version(struct net *net) { struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { sn->pipe_version = -1; spin_unlock(&pipe_version_lock); } } static void gss_release_msg(struct gss_upcall_msg *gss_msg) { struct net *net = gss_msg->auth->net; if (!atomic_dec_and_test(&gss_msg->count)) return; put_pipe_version(net); BUG_ON(!list_empty(&gss_msg->list)); if (gss_msg->ctx != NULL) gss_put_ctx(gss_msg->ctx); rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); kfree(gss_msg); } static struct gss_upcall_msg * __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid) { struct gss_upcall_msg *pos; list_for_each_entry(pos, &pipe->in_downcall, list) { if (!uid_eq(pos->uid, uid)) continue; atomic_inc(&pos->count); dprintk("RPC: %s found msg %p\n", __func__, pos); return pos; } dprintk("RPC: %s found nothing\n", __func__); return NULL; } /* Try to add an upcall to the pipefs queue. * If an upcall owned by our uid already exists, then we return a reference * to that upcall instead of adding the new upcall. */ static inline struct gss_upcall_msg * gss_add_msg(struct gss_upcall_msg *gss_msg) { struct rpc_pipe *pipe = gss_msg->pipe; struct gss_upcall_msg *old; spin_lock(&pipe->lock); old = __gss_find_upcall(pipe, gss_msg->uid); if (old == NULL) { atomic_inc(&gss_msg->count); list_add(&gss_msg->list, &pipe->in_downcall); } else gss_msg = old; spin_unlock(&pipe->lock); return gss_msg; } static void __gss_unhash_msg(struct gss_upcall_msg *gss_msg) { list_del_init(&gss_msg->list); rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); wake_up_all(&gss_msg->waitqueue); atomic_dec(&gss_msg->count); } static void gss_unhash_msg(struct gss_upcall_msg *gss_msg) { struct rpc_pipe *pipe = gss_msg->pipe; if (list_empty(&gss_msg->list)) return; spin_lock(&pipe->lock); if (!list_empty(&gss_msg->list)) __gss_unhash_msg(gss_msg); spin_unlock(&pipe->lock); } static void gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) { switch (gss_msg->msg.errno) { case 0: if (gss_msg->ctx == NULL) break; clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); break; case -EKEYEXPIRED: set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); } gss_cred->gc_upcall_timestamp = jiffies; gss_cred->gc_upcall = NULL; rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); } static void gss_upcall_callback(struct rpc_task *task) { struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, struct gss_cred, gc_base); struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; struct rpc_pipe *pipe = gss_msg->pipe; spin_lock(&pipe->lock); gss_handle_downcall_result(gss_cred, gss_msg); spin_unlock(&pipe->lock); task->tk_status = gss_msg->msg.errno; gss_release_msg(gss_msg); } static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg) { uid_t uid = from_kuid(&init_user_ns, gss_msg->uid); memcpy(gss_msg->databuf, &uid, sizeof(uid)); gss_msg->msg.data = gss_msg->databuf; gss_msg->msg.len = sizeof(uid); BUG_ON(sizeof(uid) > UPCALL_BUF_LEN); } static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, const char *service_name, const char *target_name) { struct gss_api_mech *mech = gss_msg->auth->mech; char *p = gss_msg->databuf; int len = 0; gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ", mech->gm_name, from_kuid(&init_user_ns, gss_msg->uid)); p += gss_msg->msg.len; if (target_name) { len = sprintf(p, "target=%s ", target_name); p += len; gss_msg->msg.len += len; } if (service_name != NULL) { len = sprintf(p, "service=%s ", service_name); p += len; gss_msg->msg.len += len; } if (mech->gm_upcall_enctypes) { len = sprintf(p, "enctypes=%s ", mech->gm_upcall_enctypes); p += len; gss_msg->msg.len += len; } len = sprintf(p, "\n"); gss_msg->msg.len += len; gss_msg->msg.data = gss_msg->databuf; BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN); } static struct gss_upcall_msg * gss_alloc_msg(struct gss_auth *gss_auth, kuid_t uid, const char *service_name) { struct gss_upcall_msg *gss_msg; int vers; gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS); if (gss_msg == NULL) return ERR_PTR(-ENOMEM); vers = get_pipe_version(gss_auth->net); if (vers < 0) { kfree(gss_msg); return ERR_PTR(vers); } gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; INIT_LIST_HEAD(&gss_msg->list); rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); init_waitqueue_head(&gss_msg->waitqueue); atomic_set(&gss_msg->count, 1); gss_msg->uid = uid; gss_msg->auth = gss_auth; switch (vers) { case 0: gss_encode_v0_msg(gss_msg); default: gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name); }; return gss_msg; } static struct gss_upcall_msg * gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) { struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_upcall_msg *gss_new, *gss_msg; kuid_t uid = cred->cr_uid; gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); if (IS_ERR(gss_new)) return gss_new; gss_msg = gss_add_msg(gss_new); if (gss_msg == gss_new) { int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); if (res) { gss_unhash_msg(gss_new); gss_msg = ERR_PTR(res); } } else gss_release_msg(gss_new); return gss_msg; } static void warn_gssd(void) { static unsigned long ratelimit; unsigned long now = jiffies; if (time_after(now, ratelimit)) { printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n" "Please check user daemon is running.\n"); ratelimit = now + 15*HZ; } } static inline int gss_refresh_upcall(struct rpc_task *task) { struct rpc_cred *cred = task->tk_rqstp->rq_cred; struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_upcall_msg *gss_msg; struct rpc_pipe *pipe; int err = 0; dprintk("RPC: %5u %s for uid %u\n", task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid)); gss_msg = gss_setup_upcall(gss_auth, cred); if (PTR_ERR(gss_msg) == -EAGAIN) { /* XXX: warning on the first, under the assumption we * shouldn't normally hit this case on a refresh. */ warn_gssd(); task->tk_timeout = 15*HZ; rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL); return -EAGAIN; } if (IS_ERR(gss_msg)) { err = PTR_ERR(gss_msg); goto out; } pipe = gss_msg->pipe; spin_lock(&pipe->lock); if (gss_cred->gc_upcall != NULL) rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { task->tk_timeout = 0; gss_cred->gc_upcall = gss_msg; /* gss_upcall_callback will release the reference to gss_upcall_msg */ atomic_inc(&gss_msg->count); rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); } else { gss_handle_downcall_result(gss_cred, gss_msg); err = gss_msg->msg.errno; } spin_unlock(&pipe->lock); gss_release_msg(gss_msg); out: dprintk("RPC: %5u %s for uid %u result %d\n", task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid), err); return err; } static inline int gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) { struct net *net = gss_auth->net; struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); struct rpc_pipe *pipe; struct rpc_cred *cred = &gss_cred->gc_base; struct gss_upcall_msg *gss_msg; unsigned long timeout; DEFINE_WAIT(wait); int err; dprintk("RPC: %s for uid %u\n", __func__, from_kuid(&init_user_ns, cred->cr_uid)); retry: err = 0; /* Default timeout is 15s unless we know that gssd is not running */ timeout = 15 * HZ; if (!sn->gssd_running) timeout = HZ >> 2; gss_msg = gss_setup_upcall(gss_auth, cred); if (PTR_ERR(gss_msg) == -EAGAIN) { err = wait_event_interruptible_timeout(pipe_version_waitqueue, sn->pipe_version >= 0, timeout); if (sn->pipe_version < 0) { if (err == 0) sn->gssd_running = 0; warn_gssd(); err = -EACCES; } if (err < 0) goto out; goto retry; } if (IS_ERR(gss_msg)) { err = PTR_ERR(gss_msg); goto out; } pipe = gss_msg->pipe; for (;;) { prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); spin_lock(&pipe->lock); if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { break; } spin_unlock(&pipe->lock); if (fatal_signal_pending(current)) { err = -ERESTARTSYS; goto out_intr; } schedule(); } if (gss_msg->ctx) gss_cred_set_ctx(cred, gss_msg->ctx); else err = gss_msg->msg.errno; spin_unlock(&pipe->lock); out_intr: finish_wait(&gss_msg->waitqueue, &wait); gss_release_msg(gss_msg); out: dprintk("RPC: %s for uid %u result %d\n", __func__, from_kuid(&init_user_ns, cred->cr_uid), err); return err; } #define MSG_BUF_MAXSIZE 1024 static ssize_t gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) { const void *p, *end; void *buf; struct gss_upcall_msg *gss_msg; struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; struct gss_cl_ctx *ctx; uid_t id; kuid_t uid; ssize_t err = -EFBIG; if (mlen > MSG_BUF_MAXSIZE) goto out; err = -ENOMEM; buf = kmalloc(mlen, GFP_NOFS); if (!buf) goto out; err = -EFAULT; if (copy_from_user(buf, src, mlen)) goto err; end = (const void *)((char *)buf + mlen); p = simple_get_bytes(buf, end, &id, sizeof(id)); if (IS_ERR(p)) { err = PTR_ERR(p); goto err; } uid = make_kuid(&init_user_ns, id); if (!uid_valid(uid)) { err = -EINVAL; goto err; } err = -ENOMEM; ctx = gss_alloc_context(); if (ctx == NULL) goto err; err = -ENOENT; /* Find a matching upcall */ spin_lock(&pipe->lock); gss_msg = __gss_find_upcall(pipe, uid); if (gss_msg == NULL) { spin_unlock(&pipe->lock); goto err_put_ctx; } list_del_init(&gss_msg->list); spin_unlock(&pipe->lock); p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); if (IS_ERR(p)) { err = PTR_ERR(p); switch (err) { case -EACCES: case -EKEYEXPIRED: gss_msg->msg.errno = err; err = mlen; break; case -EFAULT: case -ENOMEM: case -EINVAL: case -ENOSYS: gss_msg->msg.errno = -EAGAIN; break; default: printk(KERN_CRIT "%s: bad return from " "gss_fill_context: %zd\n", __func__, err); BUG(); } goto err_release_msg; } gss_msg->ctx = gss_get_ctx(ctx); err = mlen; err_release_msg: spin_lock(&pipe->lock); __gss_unhash_msg(gss_msg); spin_unlock(&pipe->lock); gss_release_msg(gss_msg); err_put_ctx: gss_put_ctx(ctx); err: kfree(buf); out: dprintk("RPC: %s returning %Zd\n", __func__, err); return err; } static int gss_pipe_open(struct inode *inode, int new_version) { struct net *net = inode->i_sb->s_fs_info; struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); int ret = 0; spin_lock(&pipe_version_lock); if (sn->pipe_version < 0) { /* First open of any gss pipe determines the version: */ sn->pipe_version = new_version; rpc_wake_up(&pipe_version_rpc_waitqueue); wake_up(&pipe_version_waitqueue); } else if (sn->pipe_version != new_version) { /* Trying to open a pipe of a different version */ ret = -EBUSY; goto out; } atomic_inc(&sn->pipe_users); out: spin_unlock(&pipe_version_lock); return ret; } static int gss_pipe_open_v0(struct inode *inode) { return gss_pipe_open(inode, 0); } static int gss_pipe_open_v1(struct inode *inode) { return gss_pipe_open(inode, 1); } static void gss_pipe_release(struct inode *inode) { struct net *net = inode->i_sb->s_fs_info; struct rpc_pipe *pipe = RPC_I(inode)->pipe; struct gss_upcall_msg *gss_msg; restart: spin_lock(&pipe->lock); list_for_each_entry(gss_msg, &pipe->in_downcall, list) { if (!list_empty(&gss_msg->msg.list)) continue; gss_msg->msg.errno = -EPIPE; atomic_inc(&gss_msg->count); __gss_unhash_msg(gss_msg); spin_unlock(&pipe->lock); gss_release_msg(gss_msg); goto restart; } spin_unlock(&pipe->lock); put_pipe_version(net); } static void gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) { struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); if (msg->errno < 0) { dprintk("RPC: %s releasing msg %p\n", __func__, gss_msg); atomic_inc(&gss_msg->count); gss_unhash_msg(gss_msg); if (msg->errno == -ETIMEDOUT) warn_gssd(); gss_release_msg(gss_msg); } } static void gss_pipe_dentry_destroy(struct dentry *dir, struct rpc_pipe_dir_object *pdo) { struct gss_pipe *gss_pipe = pdo->pdo_data; struct rpc_pipe *pipe = gss_pipe->pipe; if (pipe->dentry != NULL) { rpc_unlink(pipe->dentry); pipe->dentry = NULL; } } static int gss_pipe_dentry_create(struct dentry *dir, struct rpc_pipe_dir_object *pdo) { struct gss_pipe *p = pdo->pdo_data; struct dentry *dentry; dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); if (IS_ERR(dentry)) return PTR_ERR(dentry); p->pipe->dentry = dentry; return 0; } static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { .create = gss_pipe_dentry_create, .destroy = gss_pipe_dentry_destroy, }; static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, const char *name, const struct rpc_pipe_ops *upcall_ops) { struct gss_pipe *p; int err = -ENOMEM; p = kmalloc(sizeof(*p), GFP_KERNEL); if (p == NULL) goto err; p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); if (IS_ERR(p->pipe)) { err = PTR_ERR(p->pipe); goto err_free_gss_pipe; } p->name = name; p->clnt = clnt; kref_init(&p->kref); rpc_init_pipe_dir_object(&p->pdo, &gss_pipe_dir_object_ops, p); return p; err_free_gss_pipe: kfree(p); err: return ERR_PTR(err); } struct gss_alloc_pdo { struct rpc_clnt *clnt; const char *name; const struct rpc_pipe_ops *upcall_ops; }; static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) { struct gss_pipe *gss_pipe; struct gss_alloc_pdo *args = data; if (pdo->pdo_ops != &gss_pipe_dir_object_ops) return 0; gss_pipe = container_of(pdo, struct gss_pipe, pdo); if (strcmp(gss_pipe->name, args->name) != 0) return 0; if (!kref_get_unless_zero(&gss_pipe->kref)) return 0; return 1; } static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) { struct gss_pipe *gss_pipe; struct gss_alloc_pdo *args = data; gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); if (!IS_ERR(gss_pipe)) return &gss_pipe->pdo; return NULL; } static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, const char *name, const struct rpc_pipe_ops *upcall_ops) { struct net *net = rpc_net_ns(clnt); struct rpc_pipe_dir_object *pdo; struct gss_alloc_pdo args = { .clnt = clnt, .name = name, .upcall_ops = upcall_ops, }; pdo = rpc_find_or_alloc_pipe_dir_object(net, &clnt->cl_pipedir_objects, gss_pipe_match_pdo, gss_pipe_alloc_pdo, &args); if (pdo != NULL) return container_of(pdo, struct gss_pipe, pdo); return ERR_PTR(-ENOMEM); } static void __gss_pipe_free(struct gss_pipe *p) { struct rpc_clnt *clnt = p->clnt; struct net *net = rpc_net_ns(clnt); rpc_remove_pipe_dir_object(net, &clnt->cl_pipedir_objects, &p->pdo); rpc_destroy_pipe_data(p->pipe); kfree(p); } static void __gss_pipe_release(struct kref *kref) { struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); __gss_pipe_free(p); } static void gss_pipe_free(struct gss_pipe *p) { if (p != NULL) kref_put(&p->kref, __gss_pipe_release); } /* * NOTE: we have the opportunity to use different * parameters based on the input flavor (which must be a pseudoflavor) */ static struct gss_auth * gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) { rpc_authflavor_t flavor = args->pseudoflavor; struct gss_auth *gss_auth; struct gss_pipe *gss_pipe; struct rpc_auth * auth; int err = -ENOMEM; /* XXX? */ dprintk("RPC: creating GSS authenticator for client %p\n", clnt); if (!try_module_get(THIS_MODULE)) return ERR_PTR(err); if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) goto out_dec; INIT_HLIST_NODE(&gss_auth->hash); gss_auth->target_name = NULL; if (args->target_name) { gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); if (gss_auth->target_name == NULL) goto err_free; } gss_auth->client = clnt; gss_auth->net = get_net(rpc_net_ns(clnt)); err = -EINVAL; gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); if (!gss_auth->mech) { dprintk("RPC: Pseudoflavor %d not found!\n", flavor); goto err_put_net; } gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); if (gss_auth->service == 0) goto err_put_mech; auth = &gss_auth->rpc_auth; auth->au_cslack = GSS_CRED_SLACK >> 2; auth->au_rslack = GSS_VERF_SLACK >> 2; auth->au_ops = &authgss_ops; auth->au_flavor = flavor; atomic_set(&auth->au_count, 1); kref_init(&gss_auth->kref); err = rpcauth_init_credcache(auth); if (err) goto err_put_mech; /* * Note: if we created the old pipe first, then someone who * examined the directory at the right moment might conclude * that we supported only the old pipe. So we instead create * the new pipe first. */ gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); if (IS_ERR(gss_pipe)) { err = PTR_ERR(gss_pipe); goto err_destroy_credcache; } gss_auth->gss_pipe[1] = gss_pipe; gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, &gss_upcall_ops_v0); if (IS_ERR(gss_pipe)) { err = PTR_ERR(gss_pipe); goto err_destroy_pipe_1; } gss_auth->gss_pipe[0] = gss_pipe; return gss_auth; err_destroy_pipe_1: gss_pipe_free(gss_auth->gss_pipe[1]); err_destroy_credcache: rpcauth_destroy_credcache(auth); err_put_mech: gss_mech_put(gss_auth->mech); err_put_net: put_net(gss_auth->net); err_free: kfree(gss_auth->target_name); kfree(gss_auth); out_dec: module_put(THIS_MODULE); return ERR_PTR(err); } static void gss_free(struct gss_auth *gss_auth) { gss_pipe_free(gss_auth->gss_pipe[0]); gss_pipe_free(gss_auth->gss_pipe[1]); gss_mech_put(gss_auth->mech); put_net(gss_auth->net); kfree(gss_auth->target_name); kfree(gss_auth); module_put(THIS_MODULE); } static void gss_free_callback(struct kref *kref) { struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); gss_free(gss_auth); } static void gss_destroy(struct rpc_auth *auth) { struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); dprintk("RPC: destroying GSS authenticator %p flavor %d\n", auth, auth->au_flavor); if (hash_hashed(&gss_auth->hash)) { spin_lock(&gss_auth_hash_lock); hash_del(&gss_auth->hash); spin_unlock(&gss_auth_hash_lock); } gss_pipe_free(gss_auth->gss_pipe[0]); gss_auth->gss_pipe[0] = NULL; gss_pipe_free(gss_auth->gss_pipe[1]); gss_auth->gss_pipe[1] = NULL; rpcauth_destroy_credcache(auth); kref_put(&gss_auth->kref, gss_free_callback); } static struct gss_auth * gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt, struct gss_auth *new) { struct gss_auth *gss_auth; unsigned long hashval = (unsigned long)clnt; spin_lock(&gss_auth_hash_lock); hash_for_each_possible(gss_auth_hash_table, gss_auth, hash, hashval) { if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) continue; if (gss_auth->target_name != args->target_name) { if (gss_auth->target_name == NULL) continue; if (args->target_name == NULL) continue; if (strcmp(gss_auth->target_name, args->target_name)) continue; } if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count)) continue; goto out; } if (new) hash_add(gss_auth_hash_table, &new->hash, hashval); gss_auth = new; out: spin_unlock(&gss_auth_hash_lock); return gss_auth; } static struct gss_auth * gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) { struct gss_auth *gss_auth; struct gss_auth *new; gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); if (gss_auth != NULL) goto out; new = gss_create_new(args, clnt); if (IS_ERR(new)) return new; gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); if (gss_auth != new) gss_destroy(&new->rpc_auth); out: return gss_auth; } static struct rpc_auth * gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) { struct gss_auth *gss_auth; struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt); while (clnt != clnt->cl_parent) { struct rpc_clnt *parent = clnt->cl_parent; /* Find the original parent for this transport */ if (rcu_access_pointer(parent->cl_xprt) != xprt) break; clnt = parent; } gss_auth = gss_create_hashed(args, clnt); if (IS_ERR(gss_auth)) return ERR_CAST(gss_auth); return &gss_auth->rpc_auth; } /* * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call * to the server with the GSS control procedure field set to * RPC_GSS_PROC_DESTROY. This should normally cause the server to release * all RPCSEC_GSS state associated with that context. */ static int gss_destroying_context(struct rpc_cred *cred) { struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); struct rpc_task *task; if (gss_cred->gc_ctx == NULL || test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0) return 0; gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY; cred->cr_ops = &gss_nullops; /* Take a reference to ensure the cred will be destroyed either * by the RPC call or by the put_rpccred() below */ get_rpccred(cred); task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT); if (!IS_ERR(task)) rpc_put_task(task); put_rpccred(cred); return 1; } /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure * to create a new cred or context, so they check that things have been * allocated before freeing them. */ static void gss_do_free_ctx(struct gss_cl_ctx *ctx) { dprintk("RPC: %s\n", __func__); gss_delete_sec_context(&ctx->gc_gss_ctx); kfree(ctx->gc_wire_ctx.data); kfree(ctx); } static void gss_free_ctx_callback(struct rcu_head *head) { struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); gss_do_free_ctx(ctx); } static void gss_free_ctx(struct gss_cl_ctx *ctx) { call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); } static void gss_free_cred(struct gss_cred *gss_cred) { dprintk("RPC: %s cred=%p\n", __func__, gss_cred); kfree(gss_cred); } static void gss_free_cred_callback(struct rcu_head *head) { struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); gss_free_cred(gss_cred); } static void gss_destroy_nullcred(struct rpc_cred *cred) { struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); struct gss_cl_ctx *ctx = gss_cred->gc_ctx; RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); call_rcu(&cred->cr_rcu, gss_free_cred_callback); if (ctx) gss_put_ctx(ctx); kref_put(&gss_auth->kref, gss_free_callback); } static void gss_destroy_cred(struct rpc_cred *cred) { if (gss_destroying_context(cred)) return; gss_destroy_nullcred(cred); } /* * Lookup RPCSEC_GSS cred for the current process */ static struct rpc_cred * gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) { return rpcauth_lookup_credcache(auth, acred, flags); } static struct rpc_cred * gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags) { struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); struct gss_cred *cred = NULL; int err = -ENOMEM; dprintk("RPC: %s for uid %d, flavor %d\n", __func__, from_kuid(&init_user_ns, acred->uid), auth->au_flavor); if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS))) goto out_err; rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); /* * Note: in order to force a call to call_refresh(), we deliberately * fail to flag the credential as RPCAUTH_CRED_UPTODATE. */ cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; cred->gc_service = gss_auth->service; cred->gc_principal = NULL; if (acred->machine_cred) cred->gc_principal = acred->principal; kref_get(&gss_auth->kref); return &cred->gc_base; out_err: dprintk("RPC: %s failed with error %d\n", __func__, err); return ERR_PTR(err); } static int gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) { struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); int err; do { err = gss_create_upcall(gss_auth, gss_cred); } while (err == -EAGAIN); return err; } /* * Returns -EACCES if GSS context is NULL or will expire within the * timeout (miliseconds) */ static int gss_key_timeout(struct rpc_cred *rc) { struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); unsigned long now = jiffies; unsigned long expire; if (gss_cred->gc_ctx == NULL) return -EACCES; expire = gss_cred->gc_ctx->gc_expiry - (gss_key_expire_timeo * HZ); if (time_after(now, expire)) return -EACCES; return 0; } static int gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) { struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); int ret; if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) goto out; /* Don't match with creds that have expired. */ if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry)) return 0; if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) return 0; out: if (acred->principal != NULL) { if (gss_cred->gc_principal == NULL) return 0; ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; goto check_expire; } if (gss_cred->gc_principal != NULL) return 0; ret = uid_eq(rc->cr_uid, acred->uid); check_expire: if (ret == 0) return ret; /* Notify acred users of GSS context expiration timeout */ if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) && (gss_key_timeout(rc) != 0)) { /* test will now be done from generic cred */ test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags); /* tell NFS layer that key will expire soon */ set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags); } return ret; } /* * Marshal credentials. * Maybe we should keep a cached credential for performance reasons. */ static __be32 * gss_marshal(struct rpc_task *task, __be32 *p) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_cred *cred = req->rq_cred; struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); __be32 *cred_len; u32 maj_stat = 0; struct xdr_netobj mic; struct kvec iov; struct xdr_buf verf_buf; dprintk("RPC: %5u %s\n", task->tk_pid, __func__); *p++ = htonl(RPC_AUTH_GSS); cred_len = p++; spin_lock(&ctx->gc_seq_lock); req->rq_seqno = ctx->gc_seq++; spin_unlock(&ctx->gc_seq_lock); *p++ = htonl((u32) RPC_GSS_VERSION); *p++ = htonl((u32) ctx->gc_proc); *p++ = htonl((u32) req->rq_seqno); *p++ = htonl((u32) gss_cred->gc_service); p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); *cred_len = htonl((p - (cred_len + 1)) << 2); /* We compute the checksum for the verifier over the xdr-encoded bytes * starting with the xid and ending at the end of the credential: */ iov.iov_base = xprt_skip_transport_header(req->rq_xprt, req->rq_snd_buf.head[0].iov_base); iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; xdr_buf_from_iov(&iov, &verf_buf); /* set verifier flavor*/ *p++ = htonl(RPC_AUTH_GSS); mic.data = (u8 *)(p + 1); maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); if (maj_stat == GSS_S_CONTEXT_EXPIRED) { clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); } else if (maj_stat != 0) { printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat); goto out_put_ctx; } p = xdr_encode_opaque(p, NULL, mic.len); gss_put_ctx(ctx); return p; out_put_ctx: gss_put_ctx(ctx); return NULL; } static int gss_renew_cred(struct rpc_task *task) { struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; struct gss_cred *gss_cred = container_of(oldcred, struct gss_cred, gc_base); struct rpc_auth *auth = oldcred->cr_auth; struct auth_cred acred = { .uid = oldcred->cr_uid, .principal = gss_cred->gc_principal, .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0), }; struct rpc_cred *new; new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); if (IS_ERR(new)) return PTR_ERR(new); task->tk_rqstp->rq_cred = new; put_rpccred(oldcred); return 0; } static int gss_cred_is_negative_entry(struct rpc_cred *cred) { if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { unsigned long now = jiffies; unsigned long begin, expire; struct gss_cred *gss_cred; gss_cred = container_of(cred, struct gss_cred, gc_base); begin = gss_cred->gc_upcall_timestamp; expire = begin + gss_expired_cred_retry_delay * HZ; if (time_in_range_open(now, begin, expire)) return 1; } return 0; } /* * Refresh credentials. XXX - finish */ static int gss_refresh(struct rpc_task *task) { struct rpc_cred *cred = task->tk_rqstp->rq_cred; int ret = 0; if (gss_cred_is_negative_entry(cred)) return -EKEYEXPIRED; if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { ret = gss_renew_cred(task); if (ret < 0) goto out; cred = task->tk_rqstp->rq_cred; } if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) ret = gss_refresh_upcall(task); out: return ret; } /* Dummy refresh routine: used only when destroying the context */ static int gss_refresh_null(struct rpc_task *task) { return -EACCES; } static __be32 * gss_validate(struct rpc_task *task, __be32 *p) { struct rpc_cred *cred = task->tk_rqstp->rq_cred; struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); __be32 seq; struct kvec iov; struct xdr_buf verf_buf; struct xdr_netobj mic; u32 flav,len; u32 maj_stat; __be32 *ret = ERR_PTR(-EIO); dprintk("RPC: %5u %s\n", task->tk_pid, __func__); flav = ntohl(*p++); if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE) goto out_bad; if (flav != RPC_AUTH_GSS) goto out_bad; seq = htonl(task->tk_rqstp->rq_seqno); iov.iov_base = &seq; iov.iov_len = sizeof(seq); xdr_buf_from_iov(&iov, &verf_buf); mic.data = (u8 *)p; mic.len = len; ret = ERR_PTR(-EACCES); maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); if (maj_stat == GSS_S_CONTEXT_EXPIRED) clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); if (maj_stat) { dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n", task->tk_pid, __func__, maj_stat); goto out_bad; } /* We leave it to unwrap to calculate au_rslack. For now we just * calculate the length of the verifier: */ cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; gss_put_ctx(ctx); dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n", task->tk_pid, __func__); return p + XDR_QUADLEN(len); out_bad: gss_put_ctx(ctx); dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__, PTR_ERR(ret)); return ret; } static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) { struct xdr_stream xdr; xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p); encode(rqstp, &xdr, obj); } static inline int gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, kxdreproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) { struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; struct xdr_buf integ_buf; __be32 *integ_len = NULL; struct xdr_netobj mic; u32 offset; __be32 *q; struct kvec *iov; u32 maj_stat = 0; int status = -EIO; integ_len = p++; offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; *p++ = htonl(rqstp->rq_seqno); gss_wrap_req_encode(encode, rqstp, p, obj); if (xdr_buf_subsegment(snd_buf, &integ_buf, offset, snd_buf->len - offset)) return status; *integ_len = htonl(integ_buf.len); /* guess whether we're in the head or the tail: */ if (snd_buf->page_len || snd_buf->tail[0].iov_len) iov = snd_buf->tail; else iov = snd_buf->head; p = iov->iov_base + iov->iov_len; mic.data = (u8 *)(p + 1); maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); status = -EIO; /* XXX? */ if (maj_stat == GSS_S_CONTEXT_EXPIRED) clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); else if (maj_stat) return status; q = xdr_encode_opaque(p, NULL, mic.len); offset = (u8 *)q - (u8 *)p; iov->iov_len += offset; snd_buf->len += offset; return 0; } static void priv_release_snd_buf(struct rpc_rqst *rqstp) { int i; for (i=0; i < rqstp->rq_enc_pages_num; i++) __free_page(rqstp->rq_enc_pages[i]); kfree(rqstp->rq_enc_pages); } static int alloc_enc_pages(struct rpc_rqst *rqstp) { struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; int first, last, i; if (snd_buf->page_len == 0) { rqstp->rq_enc_pages_num = 0; return 0; } first = snd_buf->page_base >> PAGE_CACHE_SHIFT; last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT; rqstp->rq_enc_pages_num = last - first + 1 + 1; rqstp->rq_enc_pages = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *), GFP_NOFS); if (!rqstp->rq_enc_pages) goto out; for (i=0; i < rqstp->rq_enc_pages_num; i++) { rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS); if (rqstp->rq_enc_pages[i] == NULL) goto out_free; } rqstp->rq_release_snd_buf = priv_release_snd_buf; return 0; out_free: rqstp->rq_enc_pages_num = i; priv_release_snd_buf(rqstp); out: return -EAGAIN; } static inline int gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, kxdreproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj) { struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; u32 offset; u32 maj_stat; int status; __be32 *opaque_len; struct page **inpages; int first; int pad; struct kvec *iov; char *tmp; opaque_len = p++; offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; *p++ = htonl(rqstp->rq_seqno); gss_wrap_req_encode(encode, rqstp, p, obj); status = alloc_enc_pages(rqstp); if (status) return status; first = snd_buf->page_base >> PAGE_CACHE_SHIFT; inpages = snd_buf->pages + first; snd_buf->pages = rqstp->rq_enc_pages; snd_buf->page_base -= first << PAGE_CACHE_SHIFT; /* * Give the tail its own page, in case we need extra space in the * head when wrapping: * * call_allocate() allocates twice the slack space required * by the authentication flavor to rq_callsize. * For GSS, slack is GSS_CRED_SLACK. */ if (snd_buf->page_len || snd_buf->tail[0].iov_len) { tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); snd_buf->tail[0].iov_base = tmp; } maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); /* slack space should prevent this ever happening: */ BUG_ON(snd_buf->len > snd_buf->buflen); status = -EIO; /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was * done anyway, so it's safe to put the request on the wire: */ if (maj_stat == GSS_S_CONTEXT_EXPIRED) clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); else if (maj_stat) return status; *opaque_len = htonl(snd_buf->len - offset); /* guess whether we're in the head or the tail: */ if (snd_buf->page_len || snd_buf->tail[0].iov_len) iov = snd_buf->tail; else iov = snd_buf->head; p = iov->iov_base + iov->iov_len; pad = 3 - ((snd_buf->len - offset - 1) & 3); memset(p, 0, pad); iov->iov_len += pad; snd_buf->len += pad; return 0; } static int gss_wrap_req(struct rpc_task *task, kxdreproc_t encode, void *rqstp, __be32 *p, void *obj) { struct rpc_cred *cred = task->tk_rqstp->rq_cred; struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); int status = -EIO; dprintk("RPC: %5u %s\n", task->tk_pid, __func__); if (ctx->gc_proc != RPC_GSS_PROC_DATA) { /* The spec seems a little ambiguous here, but I think that not * wrapping context destruction requests makes the most sense. */ gss_wrap_req_encode(encode, rqstp, p, obj); status = 0; goto out; } switch (gss_cred->gc_service) { case RPC_GSS_SVC_NONE: gss_wrap_req_encode(encode, rqstp, p, obj); status = 0; break; case RPC_GSS_SVC_INTEGRITY: status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj); break; case RPC_GSS_SVC_PRIVACY: status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj); break; } out: gss_put_ctx(ctx); dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status); return status; } static inline int gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, __be32 **p) { struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; struct xdr_buf integ_buf; struct xdr_netobj mic; u32 data_offset, mic_offset; u32 integ_len; u32 maj_stat; int status = -EIO; integ_len = ntohl(*(*p)++); if (integ_len & 3) return status; data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; mic_offset = integ_len + data_offset; if (mic_offset > rcv_buf->len) return status; if (ntohl(*(*p)++) != rqstp->rq_seqno) return status; if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset, mic_offset - data_offset)) return status; if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset)) return status; maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic); if (maj_stat == GSS_S_CONTEXT_EXPIRED) clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); if (maj_stat != GSS_S_COMPLETE) return status; return 0; } static inline int gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, __be32 **p) { struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; u32 offset; u32 opaque_len; u32 maj_stat; int status = -EIO; opaque_len = ntohl(*(*p)++); offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base; if (offset + opaque_len > rcv_buf->len) return status; /* remove padding: */ rcv_buf->len = offset + opaque_len; maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf); if (maj_stat == GSS_S_CONTEXT_EXPIRED) clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); if (maj_stat != GSS_S_COMPLETE) return status; if (ntohl(*(*p)++) != rqstp->rq_seqno) return status; return 0; } static int gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp, __be32 *p, void *obj) { struct xdr_stream xdr; xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p); return decode(rqstp, &xdr, obj); } static int gss_unwrap_resp(struct rpc_task *task, kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj) { struct rpc_cred *cred = task->tk_rqstp->rq_cred; struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); __be32 *savedp = p; struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head; int savedlen = head->iov_len; int status = -EIO; if (ctx->gc_proc != RPC_GSS_PROC_DATA) goto out_decode; switch (gss_cred->gc_service) { case RPC_GSS_SVC_NONE: break; case RPC_GSS_SVC_INTEGRITY: status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p); if (status) goto out; break; case RPC_GSS_SVC_PRIVACY: status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p); if (status) goto out; break; } /* take into account extra slack for integrity and privacy cases: */ cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp) + (savedlen - head->iov_len); out_decode: status = gss_unwrap_req_decode(decode, rqstp, p, obj); out: gss_put_ctx(ctx); dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status); return status; } static const struct rpc_authops authgss_ops = { .owner = THIS_MODULE, .au_flavor = RPC_AUTH_GSS, .au_name = "RPCSEC_GSS", .create = gss_create, .destroy = gss_destroy, .lookup_cred = gss_lookup_cred, .crcreate = gss_create_cred, .list_pseudoflavors = gss_mech_list_pseudoflavors, .info2flavor = gss_mech_info2flavor, .flavor2info = gss_mech_flavor2info, }; static const struct rpc_credops gss_credops = { .cr_name = "AUTH_GSS", .crdestroy = gss_destroy_cred, .cr_init = gss_cred_init, .crbind = rpcauth_generic_bind_cred, .crmatch = gss_match, .crmarshal = gss_marshal, .crrefresh = gss_refresh, .crvalidate = gss_validate, .crwrap_req = gss_wrap_req, .crunwrap_resp = gss_unwrap_resp, .crkey_timeout = gss_key_timeout, }; static const struct rpc_credops gss_nullops = { .cr_name = "AUTH_GSS", .crdestroy = gss_destroy_nullcred, .crbind = rpcauth_generic_bind_cred, .crmatch = gss_match, .crmarshal = gss_marshal, .crrefresh = gss_refresh_null, .crvalidate = gss_validate, .crwrap_req = gss_wrap_req, .crunwrap_resp = gss_unwrap_resp, }; static const struct rpc_pipe_ops gss_upcall_ops_v0 = { .upcall = rpc_pipe_generic_upcall, .downcall = gss_pipe_downcall, .destroy_msg = gss_pipe_destroy_msg, .open_pipe = gss_pipe_open_v0, .release_pipe = gss_pipe_release, }; static const struct rpc_pipe_ops gss_upcall_ops_v1 = { .upcall = rpc_pipe_generic_upcall, .downcall = gss_pipe_downcall, .destroy_msg = gss_pipe_destroy_msg, .open_pipe = gss_pipe_open_v1, .release_pipe = gss_pipe_release, }; static __net_init int rpcsec_gss_init_net(struct net *net) { return gss_svc_init_net(net); } static __net_exit void rpcsec_gss_exit_net(struct net *net) { gss_svc_shutdown_net(net); } static struct pernet_operations rpcsec_gss_net_ops = { .init = rpcsec_gss_init_net, .exit = rpcsec_gss_exit_net, }; /* * Initialize RPCSEC_GSS module */ static int __init init_rpcsec_gss(void) { int err = 0; err = rpcauth_register(&authgss_ops); if (err) goto out; err = gss_svc_init(); if (err) goto out_unregister; err = register_pernet_subsys(&rpcsec_gss_net_ops); if (err) goto out_svc_exit; rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); return 0; out_svc_exit: gss_svc_shutdown(); out_unregister: rpcauth_unregister(&authgss_ops); out: return err; } static void __exit exit_rpcsec_gss(void) { unregister_pernet_subsys(&rpcsec_gss_net_ops); gss_svc_shutdown(); rpcauth_unregister(&authgss_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ } MODULE_ALIAS("rpc-auth-6"); MODULE_LICENSE("GPL"); module_param_named(expired_cred_retry_delay, gss_expired_cred_retry_delay, uint, 0644); MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " "the RPC engine retries an expired credential"); module_param_named(key_expire_timeo, gss_key_expire_timeo, uint, 0644); MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " "credential keys lifetime where the NFS layer cleans up " "prior to key expiration"); module_init(init_rpcsec_gss) module_exit(exit_rpcsec_gss)