#include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/security.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/mman.h> #include <linux/hugetlb.h> #include <linux/vmalloc.h> #include <asm/uaccess.h> #include "internal.h" /** * kstrdup - allocate space for and copy an existing string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory */ char *kstrdup(const char *s, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strlen(s) + 1; buf = kmalloc_track_caller(len, gfp); if (buf) memcpy(buf, s, len); return buf; } EXPORT_SYMBOL(kstrdup); /** * kstrndup - allocate space for and copy an existing string * @s: the string to duplicate * @max: read at most @max chars from @s * @gfp: the GFP mask used in the kmalloc() call when allocating memory */ char *kstrndup(const char *s, size_t max, gfp_t gfp) { size_t len; char *buf; if (!s) return NULL; len = strnlen(s, max); buf = kmalloc_track_caller(len+1, gfp); if (buf) { memcpy(buf, s, len); buf[len] = '\0'; } return buf; } EXPORT_SYMBOL(kstrndup); /** * kmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use */ void *kmemdup(const void *src, size_t len, gfp_t gfp) { void *p; p = kmalloc_track_caller(len, gfp); if (p) memcpy(p, src, len); return p; } EXPORT_SYMBOL(kmemdup); /** * memdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Returns an ERR_PTR() on failure. */ void *memdup_user(const void __user *src, size_t len) { void *p; /* * Always use GFP_KERNEL, since copy_from_user() can sleep and * cause pagefault, which makes it pointless to use GFP_NOFS * or GFP_ATOMIC. */ p = kmalloc_track_caller(len, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_user(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } return p; } EXPORT_SYMBOL(memdup_user); /* * strndup_user - duplicate an existing string from user space * @s: The string to duplicate * @n: Maximum number of bytes to copy, including the trailing NUL. */ char *strndup_user(const char __user *s, long n) { char *p; long length; length = strnlen_user(s, n); if (!length) return ERR_PTR(-EFAULT); if (length > n) return ERR_PTR(-EINVAL); p = memdup_user(s, length); if (IS_ERR(p)) return p; p[length - 1] = '\0'; return p; } EXPORT_SYMBOL(strndup_user); void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node *rb_parent) { struct vm_area_struct *next; vma->vm_prev = prev; if (prev) { next = prev->vm_next; prev->vm_next = vma; } else { mm->mmap = vma; if (rb_parent) next = rb_entry(rb_parent, struct vm_area_struct, vm_rb); else next = NULL; } vma->vm_next = next; if (next) next->vm_prev = vma; } /* Check if the vma is being used as a stack by this task */ static int vm_is_stack_for_task(struct task_struct *t, struct vm_area_struct *vma) { return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); } /* * Check if the vma is being used as a stack. * If is_group is non-zero, check in the entire thread group or else * just check in the current task. Returns the task_struct of the task * that the vma is stack for. Must be called under rcu_read_lock(). */ struct task_struct *task_of_stack(struct task_struct *task, struct vm_area_struct *vma, bool in_group) { if (vm_is_stack_for_task(task, vma)) return task; if (in_group) { struct task_struct *t; for_each_thread(task, t) { if (vm_is_stack_for_task(t, vma)) return t; } } return NULL; } #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) void arch_pick_mmap_layout(struct mm_struct *mm) { mm->mmap_base = TASK_UNMAPPED_BASE; mm->get_unmapped_area = arch_get_unmapped_area; } #endif /* * Like get_user_pages_fast() except its IRQ-safe in that it won't fall * back to the regular GUP. * If the architecture not support this function, simply return with no * page pinned */ int __weak __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { return 0; } EXPORT_SYMBOL_GPL(__get_user_pages_fast); /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @write: whether pages will be written to * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. * * get_user_pages_fast provides equivalent functionality to get_user_pages, * operating on current and current->mm, with force=0 and vma=NULL. However * unlike get_user_pages, it must be called without mmap_sem held. * * get_user_pages_fast may take mmap_sem and page table locks, so no * assumptions can be made about lack of locking. get_user_pages_fast is to be * implemented in a way that is advantageous (vs get_user_pages()) when the * user memory area is already faulted in and present in ptes. However if the * pages have to be faulted in, it may turn out to be slightly slower so * callers need to carefully consider what to use. On many architectures, * get_user_pages_fast simply falls back to get_user_pages. */ int __weak get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; int ret; down_read(&mm->mmap_sem); ret = get_user_pages(current, mm, start, nr_pages, write, 0, pages, NULL); up_read(&mm->mmap_sem); return ret; } EXPORT_SYMBOL_GPL(get_user_pages_fast); unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff) { unsigned long ret; struct mm_struct *mm = current->mm; unsigned long populate; ret = security_mmap_file(file, prot, flag); if (!ret) { down_write(&mm->mmap_sem); ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, &populate); up_write(&mm->mmap_sem); if (populate) mm_populate(ret, populate); } return ret; } unsigned long vm_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset) { if (unlikely(offset + PAGE_ALIGN(len) < offset)) return -EINVAL; if (unlikely(offset & ~PAGE_MASK)) return -EINVAL; return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); } EXPORT_SYMBOL(vm_mmap); void kvfree(const void *addr) { if (is_vmalloc_addr(addr)) vfree(addr); else kfree(addr); } EXPORT_SYMBOL(kvfree); struct address_space *page_mapping(struct page *page) { struct address_space *mapping = page->mapping; /* This happens if someone calls flush_dcache_page on slab page */ if (unlikely(PageSlab(page))) return NULL; if (unlikely(PageSwapCache(page))) { swp_entry_t entry; entry.val = page_private(page); mapping = swap_address_space(entry); } else if ((unsigned long)mapping & PAGE_MAPPING_ANON) mapping = NULL; return mapping; } int overcommit_ratio_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_kbytes = 0; return ret; } int overcommit_kbytes_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) sysctl_overcommit_ratio = 0; return ret; } /* * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used */ unsigned long vm_commit_limit(void) { unsigned long allowed; if (sysctl_overcommit_kbytes) allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); else allowed = ((totalram_pages - hugetlb_total_pages()) * sysctl_overcommit_ratio / 100); allowed += total_swap_pages; return allowed; } /** * get_cmdline() - copy the cmdline value to a buffer. * @task: the task whose cmdline value to copy. * @buffer: the buffer to copy to. * @buflen: the length of the buffer. Larger cmdline values are truncated * to this length. * Returns the size of the cmdline field copied. Note that the copy does * not guarantee an ending NULL byte. */ int get_cmdline(struct task_struct *task, char *buffer, int buflen) { int res = 0; unsigned int len; struct mm_struct *mm = get_task_mm(task); if (!mm) goto out; if (!mm->arg_end) goto out_mm; /* Shh! No looking before we're done */ len = mm->arg_end - mm->arg_start; if (len > buflen) len = buflen; res = access_process_vm(task, mm->arg_start, buffer, len, 0); /* * If the nul at the end of args has been overwritten, then * assume application is using setproctitle(3). */ if (res > 0 && buffer[res-1] != '\0' && len < buflen) { len = strnlen(buffer, res); if (len < res) { res = len; } else { len = mm->env_end - mm->env_start; if (len > buflen - res) len = buflen - res; res += access_process_vm(task, mm->env_start, buffer+res, len, 0); res = strnlen(buffer, res); } } out_mm: mmput(mm); out: return res; }