// SPDX-License-Identifier: GPL-2.0-only /* * mm/truncate.c - code for taking down pages from address_spaces * * Copyright (C) 2002, Linus Torvalds * * 10Sep2002 Andrew Morton * Initial version. */ #include <linux/kernel.h> #include <linux/backing-dev.h> #include <linux/dax.h> #include <linux/gfp.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/export.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/pagevec.h> #include <linux/task_io_accounting_ops.h> #include <linux/buffer_head.h> /* grr. try_to_release_page, do_invalidatepage */ #include <linux/shmem_fs.h> #include <linux/cleancache.h> #include <linux/rmap.h> #include "internal.h" /* * Regular page slots are stabilized by the page lock even without the tree * itself locked. These unlocked entries need verification under the tree * lock. */ static inline void __clear_shadow_entry(struct address_space *mapping, pgoff_t index, void *entry) { XA_STATE(xas, &mapping->i_pages, index); xas_set_update(&xas, workingset_update_node); if (xas_load(&xas) != entry) return; xas_store(&xas, NULL); mapping->nrexceptional--; } static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, void *entry) { xa_lock_irq(&mapping->i_pages); __clear_shadow_entry(mapping, index, entry); xa_unlock_irq(&mapping->i_pages); } /* * Unconditionally remove exceptional entries. Usually called from truncate * path. Note that the pagevec may be altered by this function by removing * exceptional entries similar to what pagevec_remove_exceptionals does. */ static void truncate_exceptional_pvec_entries(struct address_space *mapping, struct pagevec *pvec, pgoff_t *indices, pgoff_t end) { int i, j; bool dax, lock; /* Handled by shmem itself */ if (shmem_mapping(mapping)) return; for (j = 0; j < pagevec_count(pvec); j++) if (xa_is_value(pvec->pages[j])) break; if (j == pagevec_count(pvec)) return; dax = dax_mapping(mapping); lock = !dax && indices[j] < end; if (lock) xa_lock_irq(&mapping->i_pages); for (i = j; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; pgoff_t index = indices[i]; if (!xa_is_value(page)) { pvec->pages[j++] = page; continue; } if (index >= end) continue; if (unlikely(dax)) { dax_delete_mapping_entry(mapping, index); continue; } __clear_shadow_entry(mapping, index, page); } if (lock) xa_unlock_irq(&mapping->i_pages); pvec->nr = j; } /* * Invalidate exceptional entry if easily possible. This handles exceptional * entries for invalidate_inode_pages(). */ static int invalidate_exceptional_entry(struct address_space *mapping, pgoff_t index, void *entry) { /* Handled by shmem itself, or for DAX we do nothing. */ if (shmem_mapping(mapping) || dax_mapping(mapping)) return 1; clear_shadow_entry(mapping, index, entry); return 1; } /* * Invalidate exceptional entry if clean. This handles exceptional entries for * invalidate_inode_pages2() so for DAX it evicts only clean entries. */ static int invalidate_exceptional_entry2(struct address_space *mapping, pgoff_t index, void *entry) { /* Handled by shmem itself */ if (shmem_mapping(mapping)) return 1; if (dax_mapping(mapping)) return dax_invalidate_mapping_entry_sync(mapping, index); clear_shadow_entry(mapping, index, entry); return 1; } /** * do_invalidatepage - invalidate part or all of a page * @page: the page which is affected * @offset: start of the range to invalidate * @length: length of the range to invalidate * * do_invalidatepage() is called when all or part of the page has become * invalidated by a truncate operation. * * do_invalidatepage() does not have to release all buffers, but it must * ensure that no dirty buffer is left outside @offset and that no I/O * is underway against any of the blocks which are outside the truncation * point. Because the caller is about to free (and possibly reuse) those * blocks on-disk. */ void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { void (*invalidatepage)(struct page *, unsigned int, unsigned int); invalidatepage = page->mapping->a_ops->invalidatepage; #ifdef CONFIG_BLOCK if (!invalidatepage) invalidatepage = block_invalidatepage; #endif if (invalidatepage) (*invalidatepage)(page, offset, length); } /* * If truncate cannot remove the fs-private metadata from the page, the page * becomes orphaned. It will be left on the LRU and may even be mapped into * user pagetables if we're racing with filemap_fault(). * * We need to bail out if page->mapping is no longer equal to the original * mapping. This happens a) when the VM reclaimed the page while we waited on * its lock, b) when a concurrent invalidate_mapping_pages got there first and * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. */ static void truncate_cleanup_page(struct address_space *mapping, struct page *page) { if (page_mapped(page)) { unsigned int nr = thp_nr_pages(page); unmap_mapping_pages(mapping, page->index, nr, false); } if (page_has_private(page)) do_invalidatepage(page, 0, thp_size(page)); /* * Some filesystems seem to re-dirty the page even after * the VM has canceled the dirty bit (eg ext3 journaling). * Hence dirty accounting check is placed after invalidation. */ cancel_dirty_page(page); ClearPageMappedToDisk(page); } /* * This is for invalidate_mapping_pages(). That function can be called at * any time, and is not supposed to throw away dirty pages. But pages can * be marked dirty at any time too, so use remove_mapping which safely * discards clean, unused pages. * * Returns non-zero if the page was successfully invalidated. */ static int invalidate_complete_page(struct address_space *mapping, struct page *page) { int ret; if (page->mapping != mapping) return 0; if (page_has_private(page) && !try_to_release_page(page, 0)) return 0; ret = remove_mapping(mapping, page); return ret; } int truncate_inode_page(struct address_space *mapping, struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); if (page->mapping != mapping) return -EIO; truncate_cleanup_page(mapping, page); delete_from_page_cache(page); return 0; } /* * Used to get rid of pages on hardware memory corruption. */ int generic_error_remove_page(struct address_space *mapping, struct page *page) { if (!mapping) return -EINVAL; /* * Only punch for normal data pages for now. * Handling other types like directories would need more auditing. */ if (!S_ISREG(mapping->host->i_mode)) return -EIO; return truncate_inode_page(mapping, page); } EXPORT_SYMBOL(generic_error_remove_page); /* * Safely invalidate one page from its pagecache mapping. * It only drops clean, unused pages. The page must be locked. * * Returns 1 if the page is successfully invalidated, otherwise 0. */ int invalidate_inode_page(struct page *page) { struct address_space *mapping = page_mapping(page); if (!mapping) return 0; if (PageDirty(page) || PageWriteback(page)) return 0; if (page_mapped(page)) return 0; return invalidate_complete_page(mapping, page); } /** * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets * @mapping: mapping to truncate * @lstart: offset from which to truncate * @lend: offset to which to truncate (inclusive) * * Truncate the page cache, removing the pages that are between * specified offsets (and zeroing out partial pages * if lstart or lend + 1 is not page aligned). * * Truncate takes two passes - the first pass is nonblocking. It will not * block on page locks and it will not block on writeback. The second pass * will wait. This is to prevent as much IO as possible in the affected region. * The first pass will remove most pages, so the search cost of the second pass * is low. * * We pass down the cache-hot hint to the page freeing code. Even if the * mapping is large, it is probably the case that the final pages are the most * recently touched, and freeing happens in ascending file offset order. * * Note that since ->invalidatepage() accepts range to invalidate * truncate_inode_pages_range is able to handle cases where lend + 1 is not * page aligned properly. */ void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, loff_t lend) { pgoff_t start; /* inclusive */ pgoff_t end; /* exclusive */ unsigned int partial_start; /* inclusive */ unsigned int partial_end; /* exclusive */ struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; pgoff_t index; int i; if (mapping->nrpages == 0 && mapping->nrexceptional == 0) goto out; /* Offsets within partial pages */ partial_start = lstart & (PAGE_SIZE - 1); partial_end = (lend + 1) & (PAGE_SIZE - 1); /* * 'start' and 'end' always covers the range of pages to be fully * truncated. Partial pages are covered with 'partial_start' at the * start of the range and 'partial_end' at the end of the range. * Note that 'end' is exclusive while 'lend' is inclusive. */ start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; if (lend == -1) /* * lend == -1 indicates end-of-file so we have to set 'end' * to the highest possible pgoff_t and since the type is * unsigned we're using -1. */ end = -1; else end = (lend + 1) >> PAGE_SHIFT; pagevec_init(&pvec); index = start; while (index < end && pagevec_lookup_entries(&pvec, mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { /* * Pagevec array has exceptional entries and we may also fail * to lock some pages. So we store pages that can be deleted * in a new pagevec. */ struct pagevec locked_pvec; pagevec_init(&locked_pvec); for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; if (index >= end) break; if (xa_is_value(page)) continue; if (!trylock_page(page)) continue; WARN_ON(page_to_index(page) != index); if (PageWriteback(page)) { unlock_page(page); continue; } if (page->mapping != mapping) { unlock_page(page); continue; } pagevec_add(&locked_pvec, page); } for (i = 0; i < pagevec_count(&locked_pvec); i++) truncate_cleanup_page(mapping, locked_pvec.pages[i]); delete_from_page_cache_batch(mapping, &locked_pvec); for (i = 0; i < pagevec_count(&locked_pvec); i++) unlock_page(locked_pvec.pages[i]); truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); pagevec_release(&pvec); cond_resched(); index++; } if (partial_start) { struct page *page = find_lock_page(mapping, start - 1); if (page) { unsigned int top = PAGE_SIZE; if (start > end) { /* Truncation within a single page */ top = partial_end; partial_end = 0; } wait_on_page_writeback(page); zero_user_segment(page, partial_start, top); cleancache_invalidate_page(mapping, page); if (page_has_private(page)) do_invalidatepage(page, partial_start, top - partial_start); unlock_page(page); put_page(page); } } if (partial_end) { struct page *page = find_lock_page(mapping, end); if (page) { wait_on_page_writeback(page); zero_user_segment(page, 0, partial_end); cleancache_invalidate_page(mapping, page); if (page_has_private(page)) do_invalidatepage(page, 0, partial_end); unlock_page(page); put_page(page); } } /* * If the truncation happened within a single page no pages * will be released, just zeroed, so we can bail out now. */ if (start >= end) goto out; index = start; for ( ; ; ) { cond_resched(); if (!pagevec_lookup_entries(&pvec, mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { /* If all gone from start onwards, we're done */ if (index == start) break; /* Otherwise restart to make sure all gone */ index = start; continue; } if (index == start && indices[0] >= end) { /* All gone out of hole to be punched, we're done */ pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); break; } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; if (index >= end) { /* Restart punch to make sure all gone */ index = start - 1; break; } if (xa_is_value(page)) continue; lock_page(page); WARN_ON(page_to_index(page) != index); wait_on_page_writeback(page); truncate_inode_page(mapping, page); unlock_page(page); } truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); pagevec_release(&pvec); index++; } out: cleancache_invalidate_inode(mapping); } EXPORT_SYMBOL(truncate_inode_pages_range); /** * truncate_inode_pages - truncate *all* the pages from an offset * @mapping: mapping to truncate * @lstart: offset from which to truncate * * Called under (and serialised by) inode->i_mutex. * * Note: When this function returns, there can be a page in the process of * deletion (inside __delete_from_page_cache()) in the specified range. Thus * mapping->nrpages can be non-zero when this function returns even after * truncation of the whole mapping. */ void truncate_inode_pages(struct address_space *mapping, loff_t lstart) { truncate_inode_pages_range(mapping, lstart, (loff_t)-1); } EXPORT_SYMBOL(truncate_inode_pages); /** * truncate_inode_pages_final - truncate *all* pages before inode dies * @mapping: mapping to truncate * * Called under (and serialized by) inode->i_mutex. * * Filesystems have to use this in the .evict_inode path to inform the * VM that this is the final truncate and the inode is going away. */ void truncate_inode_pages_final(struct address_space *mapping) { unsigned long nrexceptional; unsigned long nrpages; /* * Page reclaim can not participate in regular inode lifetime * management (can't call iput()) and thus can race with the * inode teardown. Tell it when the address space is exiting, * so that it does not install eviction information after the * final truncate has begun. */ mapping_set_exiting(mapping); /* * When reclaim installs eviction entries, it increases * nrexceptional first, then decreases nrpages. Make sure we see * this in the right order or we might miss an entry. */ nrpages = mapping->nrpages; smp_rmb(); nrexceptional = mapping->nrexceptional; if (nrpages || nrexceptional) { /* * As truncation uses a lockless tree lookup, cycle * the tree lock to make sure any ongoing tree * modification that does not see AS_EXITING is * completed before starting the final truncate. */ xa_lock_irq(&mapping->i_pages); xa_unlock_irq(&mapping->i_pages); } /* * Cleancache needs notification even if there are no pages or shadow * entries. */ truncate_inode_pages(mapping, 0); } EXPORT_SYMBOL(truncate_inode_pages_final); static unsigned long __invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) { pgoff_t indices[PAGEVEC_SIZE]; struct pagevec pvec; pgoff_t index = start; unsigned long ret; unsigned long count = 0; int i; pagevec_init(&pvec); while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; if (index > end) break; if (xa_is_value(page)) { invalidate_exceptional_entry(mapping, index, page); continue; } if (!trylock_page(page)) continue; WARN_ON(page_to_index(page) != index); /* Middle of THP: skip */ if (PageTransTail(page)) { unlock_page(page); continue; } else if (PageTransHuge(page)) { index += HPAGE_PMD_NR - 1; i += HPAGE_PMD_NR - 1; /* * 'end' is in the middle of THP. Don't * invalidate the page as the part outside of * 'end' could be still useful. */ if (index > end) { unlock_page(page); continue; } /* Take a pin outside pagevec */ get_page(page); /* * Drop extra pins before trying to invalidate * the huge page. */ pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); } ret = invalidate_inode_page(page); unlock_page(page); /* * Invalidation is a hint that the page is no longer * of interest and try to speed up its reclaim. */ if (!ret) { deactivate_file_page(page); /* It is likely on the pagevec of a remote CPU */ if (nr_pagevec) (*nr_pagevec)++; } if (PageTransHuge(page)) put_page(page); count += ret; } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); cond_resched(); index++; } return count; } /** * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode * @mapping: the address_space which holds the pages to invalidate * @start: the offset 'from' which to invalidate * @end: the offset 'to' which to invalidate (inclusive) * * This function only removes the unlocked pages, if you want to * remove all the pages of one inode, you must call truncate_inode_pages. * * invalidate_mapping_pages() will not block on IO activity. It will not * invalidate pages which are dirty, locked, under writeback or mapped into * pagetables. * * Return: the number of the pages that were invalidated */ unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end) { return __invalidate_mapping_pages(mapping, start, end, NULL); } EXPORT_SYMBOL(invalidate_mapping_pages); /** * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode * @mapping: the address_space which holds the pages to invalidate * @start: the offset 'from' which to invalidate * @end: the offset 'to' which to invalidate (inclusive) * @nr_pagevec: invalidate failed page number for caller * * This helper is similar to invalidate_mapping_pages(), except that it accounts * for pages that are likely on a pagevec and counts them in @nr_pagevec, which * will be used by the caller. */ void invalidate_mapping_pagevec(struct address_space *mapping, pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) { __invalidate_mapping_pages(mapping, start, end, nr_pagevec); } /* * This is like invalidate_complete_page(), except it ignores the page's * refcount. We do this because invalidate_inode_pages2() needs stronger * invalidation guarantees, and cannot afford to leave pages behind because * shrink_page_list() has a temp ref on them, or because they're transiently * sitting in the lru_cache_add() pagevecs. */ static int invalidate_complete_page2(struct address_space *mapping, struct page *page) { unsigned long flags; if (page->mapping != mapping) return 0; if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) return 0; xa_lock_irqsave(&mapping->i_pages, flags); if (PageDirty(page)) goto failed; BUG_ON(page_has_private(page)); __delete_from_page_cache(page, NULL); xa_unlock_irqrestore(&mapping->i_pages, flags); if (mapping->a_ops->freepage) mapping->a_ops->freepage(page); put_page(page); /* pagecache ref */ return 1; failed: xa_unlock_irqrestore(&mapping->i_pages, flags); return 0; } static int do_launder_page(struct address_space *mapping, struct page *page) { if (!PageDirty(page)) return 0; if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) return 0; return mapping->a_ops->launder_page(page); } /** * invalidate_inode_pages2_range - remove range of pages from an address_space * @mapping: the address_space * @start: the page offset 'from' which to invalidate * @end: the page offset 'to' which to invalidate (inclusive) * * Any pages which are found to be mapped into pagetables are unmapped prior to * invalidation. * * Return: -EBUSY if any pages could not be invalidated. */ int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end) { pgoff_t indices[PAGEVEC_SIZE]; struct pagevec pvec; pgoff_t index; int i; int ret = 0; int ret2 = 0; int did_range_unmap = 0; if (mapping->nrpages == 0 && mapping->nrexceptional == 0) goto out; pagevec_init(&pvec); index = start; while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; if (index > end) break; if (xa_is_value(page)) { if (!invalidate_exceptional_entry2(mapping, index, page)) ret = -EBUSY; continue; } lock_page(page); WARN_ON(page_to_index(page) != index); if (page->mapping != mapping) { unlock_page(page); continue; } wait_on_page_writeback(page); if (page_mapped(page)) { if (!did_range_unmap) { /* * Zap the rest of the file in one hit. */ unmap_mapping_pages(mapping, index, (1 + end - index), false); did_range_unmap = 1; } else { /* * Just zap this page */ unmap_mapping_pages(mapping, index, 1, false); } } BUG_ON(page_mapped(page)); ret2 = do_launder_page(mapping, page); if (ret2 == 0) { if (!invalidate_complete_page2(mapping, page)) ret2 = -EBUSY; } if (ret2 < 0) ret = ret2; unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); cond_resched(); index++; } /* * For DAX we invalidate page tables after invalidating page cache. We * could invalidate page tables while invalidating each entry however * that would be expensive. And doing range unmapping before doesn't * work as we have no cheap way to find whether page cache entry didn't * get remapped later. */ if (dax_mapping(mapping)) { unmap_mapping_pages(mapping, start, end - start + 1, false); } out: cleancache_invalidate_inode(mapping); return ret; } EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); /** * invalidate_inode_pages2 - remove all pages from an address_space * @mapping: the address_space * * Any pages which are found to be mapped into pagetables are unmapped prior to * invalidation. * * Return: -EBUSY if any pages could not be invalidated. */ int invalidate_inode_pages2(struct address_space *mapping) { return invalidate_inode_pages2_range(mapping, 0, -1); } EXPORT_SYMBOL_GPL(invalidate_inode_pages2); /** * truncate_pagecache - unmap and remove pagecache that has been truncated * @inode: inode * @newsize: new file size * * inode's new i_size must already be written before truncate_pagecache * is called. * * This function should typically be called before the filesystem * releases resources associated with the freed range (eg. deallocates * blocks). This way, pagecache will always stay logically coherent * with on-disk format, and the filesystem would not have to deal with * situations such as writepage being called for a page that has already * had its underlying blocks deallocated. */ void truncate_pagecache(struct inode *inode, loff_t newsize) { struct address_space *mapping = inode->i_mapping; loff_t holebegin = round_up(newsize, PAGE_SIZE); /* * unmap_mapping_range is called twice, first simply for * efficiency so that truncate_inode_pages does fewer * single-page unmaps. However after this first call, and * before truncate_inode_pages finishes, it is possible for * private pages to be COWed, which remain after * truncate_inode_pages finishes, hence the second * unmap_mapping_range call must be made for correctness. */ unmap_mapping_range(mapping, holebegin, 0, 1); truncate_inode_pages(mapping, newsize); unmap_mapping_range(mapping, holebegin, 0, 1); } EXPORT_SYMBOL(truncate_pagecache); /** * truncate_setsize - update inode and pagecache for a new file size * @inode: inode * @newsize: new file size * * truncate_setsize updates i_size and performs pagecache truncation (if * necessary) to @newsize. It will be typically be called from the filesystem's * setattr function when ATTR_SIZE is passed in. * * Must be called with a lock serializing truncates and writes (generally * i_mutex but e.g. xfs uses a different lock) and before all filesystem * specific block truncation has been performed. */ void truncate_setsize(struct inode *inode, loff_t newsize) { loff_t oldsize = inode->i_size; i_size_write(inode, newsize); if (newsize > oldsize) pagecache_isize_extended(inode, oldsize, newsize); truncate_pagecache(inode, newsize); } EXPORT_SYMBOL(truncate_setsize); /** * pagecache_isize_extended - update pagecache after extension of i_size * @inode: inode for which i_size was extended * @from: original inode size * @to: new inode size * * Handle extension of inode size either caused by extending truncate or by * write starting after current i_size. We mark the page straddling current * i_size RO so that page_mkwrite() is called on the nearest write access to * the page. This way filesystem can be sure that page_mkwrite() is called on * the page before user writes to the page via mmap after the i_size has been * changed. * * The function must be called after i_size is updated so that page fault * coming after we unlock the page will already see the new i_size. * The function must be called while we still hold i_mutex - this not only * makes sure i_size is stable but also that userspace cannot observe new * i_size value before we are prepared to store mmap writes at new inode size. */ void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) { int bsize = i_blocksize(inode); loff_t rounded_from; struct page *page; pgoff_t index; WARN_ON(to > inode->i_size); if (from >= to || bsize == PAGE_SIZE) return; /* Page straddling @from will not have any hole block created? */ rounded_from = round_up(from, bsize); if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) return; index = from >> PAGE_SHIFT; page = find_lock_page(inode->i_mapping, index); /* Page not cached? Nothing to do */ if (!page) return; /* * See clear_page_dirty_for_io() for details why set_page_dirty() * is needed. */ if (page_mkclean(page)) set_page_dirty(page); unlock_page(page); put_page(page); } EXPORT_SYMBOL(pagecache_isize_extended); /** * truncate_pagecache_range - unmap and remove pagecache that is hole-punched * @inode: inode * @lstart: offset of beginning of hole * @lend: offset of last byte of hole * * This function should typically be called before the filesystem * releases resources associated with the freed range (eg. deallocates * blocks). This way, pagecache will always stay logically coherent * with on-disk format, and the filesystem would not have to deal with * situations such as writepage being called for a page that has already * had its underlying blocks deallocated. */ void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) { struct address_space *mapping = inode->i_mapping; loff_t unmap_start = round_up(lstart, PAGE_SIZE); loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; /* * This rounding is currently just for example: unmap_mapping_range * expands its hole outwards, whereas we want it to contract the hole * inwards. However, existing callers of truncate_pagecache_range are * doing their own page rounding first. Note that unmap_mapping_range * allows holelen 0 for all, and we allow lend -1 for end of file. */ /* * Unlike in truncate_pagecache, unmap_mapping_range is called only * once (before truncating pagecache), and without "even_cows" flag: * hole-punching should not remove private COWed pages from the hole. */ if ((u64)unmap_end > (u64)unmap_start) unmap_mapping_range(mapping, unmap_start, 1 + unmap_end - unmap_start, 0); truncate_inode_pages_range(mapping, lstart, lend); } EXPORT_SYMBOL(truncate_pagecache_range);