// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/oom_kill.c * * Copyright (C) 1998,2000 Rik van Riel * Thanks go out to Claus Fischer for some serious inspiration and * for goading me into coding this file... * Copyright (C) 2010 Google, Inc. * Rewritten by David Rientjes * * The routines in this file are used to kill a process when * we're seriously out of memory. This gets called from __alloc_pages() * in mm/page_alloc.c when we really run out of memory. * * Since we won't call these routines often (on a well-configured * machine) this file will double as a 'coding guide' and a signpost * for newbie kernel hackers. It features several pointers to major * kernel subsystems and hints as to where to find out what things do. */ #include <linux/oom.h> #include <linux/mm.h> #include <linux/err.h> #include <linux/gfp.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> #include <linux/sched/debug.h> #include <linux/swap.h> #include <linux/syscalls.h> #include <linux/timex.h> #include <linux/jiffies.h> #include <linux/cpuset.h> #include <linux/export.h> #include <linux/notifier.h> #include <linux/memcontrol.h> #include <linux/mempolicy.h> #include <linux/security.h> #include <linux/ptrace.h> #include <linux/freezer.h> #include <linux/ftrace.h> #include <linux/ratelimit.h> #include <linux/kthread.h> #include <linux/init.h> #include <linux/mmu_notifier.h> #include <asm/tlb.h> #include "internal.h" #include "slab.h" #define CREATE_TRACE_POINTS #include <trace/events/oom.h> int sysctl_panic_on_oom; int sysctl_oom_kill_allocating_task; int sysctl_oom_dump_tasks = 1; /* * Serializes oom killer invocations (out_of_memory()) from all contexts to * prevent from over eager oom killing (e.g. when the oom killer is invoked * from different domains). * * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled * and mark_oom_victim */ DEFINE_MUTEX(oom_lock); /* Serializes oom_score_adj and oom_score_adj_min updates */ DEFINE_MUTEX(oom_adj_mutex); static inline bool is_memcg_oom(struct oom_control *oc) { return oc->memcg != NULL; } #ifdef CONFIG_NUMA /** * oom_cpuset_eligible() - check task eligibility for kill * @start: task struct of which task to consider * @oc: pointer to struct oom_control * * Task eligibility is determined by whether or not a candidate task, @tsk, * shares the same mempolicy nodes as current if it is bound by such a policy * and whether or not it has the same set of allowed cpuset nodes. * * This function is assuming oom-killer context and 'current' has triggered * the oom-killer. */ static bool oom_cpuset_eligible(struct task_struct *start, struct oom_control *oc) { struct task_struct *tsk; bool ret = false; const nodemask_t *mask = oc->nodemask; if (is_memcg_oom(oc)) return true; rcu_read_lock(); for_each_thread(start, tsk) { if (mask) { /* * If this is a mempolicy constrained oom, tsk's * cpuset is irrelevant. Only return true if its * mempolicy intersects current, otherwise it may be * needlessly killed. */ ret = mempolicy_in_oom_domain(tsk, mask); } else { /* * This is not a mempolicy constrained oom, so only * check the mems of tsk's cpuset. */ ret = cpuset_mems_allowed_intersects(current, tsk); } if (ret) break; } rcu_read_unlock(); return ret; } #else static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) { return true; } #endif /* CONFIG_NUMA */ /* * The process p may have detached its own ->mm while exiting or through * kthread_use_mm(), but one or more of its subthreads may still have a valid * pointer. Return p, or any of its subthreads with a valid ->mm, with * task_lock() held. */ struct task_struct *find_lock_task_mm(struct task_struct *p) { struct task_struct *t; rcu_read_lock(); for_each_thread(p, t) { task_lock(t); if (likely(t->mm)) goto found; task_unlock(t); } t = NULL; found: rcu_read_unlock(); return t; } /* * order == -1 means the oom kill is required by sysrq, otherwise only * for display purposes. */ static inline bool is_sysrq_oom(struct oom_control *oc) { return oc->order == -1; } /* return true if the task is not adequate as candidate victim task. */ static bool oom_unkillable_task(struct task_struct *p) { if (is_global_init(p)) return true; if (p->flags & PF_KTHREAD) return true; return false; } /* * Check whether unreclaimable slab amount is greater than * all user memory(LRU pages). * dump_unreclaimable_slab() could help in the case that * oom due to too much unreclaimable slab used by kernel. */ static bool should_dump_unreclaim_slab(void) { unsigned long nr_lru; nr_lru = global_node_page_state(NR_ACTIVE_ANON) + global_node_page_state(NR_INACTIVE_ANON) + global_node_page_state(NR_ACTIVE_FILE) + global_node_page_state(NR_INACTIVE_FILE) + global_node_page_state(NR_ISOLATED_ANON) + global_node_page_state(NR_ISOLATED_FILE) + global_node_page_state(NR_UNEVICTABLE); return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); } /** * oom_badness - heuristic function to determine which candidate task to kill * @p: task struct of which task we should calculate * @totalpages: total present RAM allowed for page allocation * * The heuristic for determining which task to kill is made to be as simple and * predictable as possible. The goal is to return the highest value for the * task consuming the most memory to avoid subsequent oom failures. */ long oom_badness(struct task_struct *p, unsigned long totalpages) { long points; long adj; if (oom_unkillable_task(p)) return LONG_MIN; p = find_lock_task_mm(p); if (!p) return LONG_MIN; /* * Do not even consider tasks which are explicitly marked oom * unkillable or have been already oom reaped or the are in * the middle of vfork */ adj = (long)p->signal->oom_score_adj; if (adj == OOM_SCORE_ADJ_MIN || test_bit(MMF_OOM_SKIP, &p->mm->flags) || in_vfork(p)) { task_unlock(p); return LONG_MIN; } /* * The baseline for the badness score is the proportion of RAM that each * task's rss, pagetable and swap space use. */ points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + mm_pgtables_bytes(p->mm) / PAGE_SIZE; task_unlock(p); /* Normalize to oom_score_adj units */ adj *= totalpages / 1000; points += adj; return points; } static const char * const oom_constraint_text[] = { [CONSTRAINT_NONE] = "CONSTRAINT_NONE", [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", }; /* * Determine the type of allocation constraint. */ static enum oom_constraint constrained_alloc(struct oom_control *oc) { struct zone *zone; struct zoneref *z; enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); bool cpuset_limited = false; int nid; if (is_memcg_oom(oc)) { oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; return CONSTRAINT_MEMCG; } /* Default to all available memory */ oc->totalpages = totalram_pages() + total_swap_pages; if (!IS_ENABLED(CONFIG_NUMA)) return CONSTRAINT_NONE; if (!oc->zonelist) return CONSTRAINT_NONE; /* * Reach here only when __GFP_NOFAIL is used. So, we should avoid * to kill current.We have to random task kill in this case. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. */ if (oc->gfp_mask & __GFP_THISNODE) return CONSTRAINT_NONE; /* * This is not a __GFP_THISNODE allocation, so a truncated nodemask in * the page allocator means a mempolicy is in effect. Cpuset policy * is enforced in get_page_from_freelist(). */ if (oc->nodemask && !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { oc->totalpages = total_swap_pages; for_each_node_mask(nid, *oc->nodemask) oc->totalpages += node_present_pages(nid); return CONSTRAINT_MEMORY_POLICY; } /* Check this allocation failure is caused by cpuset's wall function */ for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, highest_zoneidx, oc->nodemask) if (!cpuset_zone_allowed(zone, oc->gfp_mask)) cpuset_limited = true; if (cpuset_limited) { oc->totalpages = total_swap_pages; for_each_node_mask(nid, cpuset_current_mems_allowed) oc->totalpages += node_present_pages(nid); return CONSTRAINT_CPUSET; } return CONSTRAINT_NONE; } static int oom_evaluate_task(struct task_struct *task, void *arg) { struct oom_control *oc = arg; long points; if (oom_unkillable_task(task)) goto next; /* p may not have freeable memory in nodemask */ if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) goto next; /* * This task already has access to memory reserves and is being killed. * Don't allow any other task to have access to the reserves unless * the task has MMF_OOM_SKIP because chances that it would release * any memory is quite low. */ if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) goto next; goto abort; } /* * If task is allocating a lot of memory and has been marked to be * killed first if it triggers an oom, then select it. */ if (oom_task_origin(task)) { points = LONG_MAX; goto select; } points = oom_badness(task, oc->totalpages); if (points == LONG_MIN || points < oc->chosen_points) goto next; select: if (oc->chosen) put_task_struct(oc->chosen); get_task_struct(task); oc->chosen = task; oc->chosen_points = points; next: return 0; abort: if (oc->chosen) put_task_struct(oc->chosen); oc->chosen = (void *)-1UL; return 1; } /* * Simple selection loop. We choose the process with the highest number of * 'points'. In case scan was aborted, oc->chosen is set to -1. */ static void select_bad_process(struct oom_control *oc) { oc->chosen_points = LONG_MIN; if (is_memcg_oom(oc)) mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); else { struct task_struct *p; rcu_read_lock(); for_each_process(p) if (oom_evaluate_task(p, oc)) break; rcu_read_unlock(); } } static int dump_task(struct task_struct *p, void *arg) { struct oom_control *oc = arg; struct task_struct *task; if (oom_unkillable_task(p)) return 0; /* p may not have freeable memory in nodemask */ if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) return 0; task = find_lock_task_mm(p); if (!task) { /* * All of p's threads have already detached their mm's. There's * no need to report them; they can't be oom killed anyway. */ return 0; } pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", task->pid, from_kuid(&init_user_ns, task_uid(task)), task->tgid, task->mm->total_vm, get_mm_rss(task->mm), mm_pgtables_bytes(task->mm), get_mm_counter(task->mm, MM_SWAPENTS), task->signal->oom_score_adj, task->comm); task_unlock(task); return 0; } /** * dump_tasks - dump current memory state of all system tasks * @oc: pointer to struct oom_control * * Dumps the current memory state of all eligible tasks. Tasks not in the same * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes * are not shown. * State information includes task's pid, uid, tgid, vm size, rss, * pgtables_bytes, swapents, oom_score_adj value, and name. */ static void dump_tasks(struct oom_control *oc) { pr_info("Tasks state (memory values in pages):\n"); pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); if (is_memcg_oom(oc)) mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); else { struct task_struct *p; rcu_read_lock(); for_each_process(p) dump_task(p, oc); rcu_read_unlock(); } } static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) { /* one line summary of the oom killer context. */ pr_info("oom-kill:constraint=%s,nodemask=%*pbl", oom_constraint_text[oc->constraint], nodemask_pr_args(oc->nodemask)); cpuset_print_current_mems_allowed(); mem_cgroup_print_oom_context(oc->memcg, victim); pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, from_kuid(&init_user_ns, task_uid(victim))); } static void dump_header(struct oom_control *oc, struct task_struct *p) { pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, current->signal->oom_score_adj); if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) pr_warn("COMPACTION is disabled!!!\n"); dump_stack(); if (is_memcg_oom(oc)) mem_cgroup_print_oom_meminfo(oc->memcg); else { show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); if (should_dump_unreclaim_slab()) dump_unreclaimable_slab(); } if (sysctl_oom_dump_tasks) dump_tasks(oc); if (p) dump_oom_summary(oc, p); } /* * Number of OOM victims in flight */ static atomic_t oom_victims = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); static bool oom_killer_disabled __read_mostly; #define K(x) ((x) << (PAGE_SHIFT-10)) /* * task->mm can be NULL if the task is the exited group leader. So to * determine whether the task is using a particular mm, we examine all the * task's threads: if one of those is using this mm then this task was also * using it. */ bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) { struct task_struct *t; for_each_thread(p, t) { struct mm_struct *t_mm = READ_ONCE(t->mm); if (t_mm) return t_mm == mm; } return false; } #ifdef CONFIG_MMU /* * OOM Reaper kernel thread which tries to reap the memory used by the OOM * victim (if that is possible) to help the OOM killer to move on. */ static struct task_struct *oom_reaper_th; static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); static struct task_struct *oom_reaper_list; static DEFINE_SPINLOCK(oom_reaper_lock); bool __oom_reap_task_mm(struct mm_struct *mm) { struct vm_area_struct *vma; bool ret = true; /* * Tell all users of get_user/copy_from_user etc... that the content * is no longer stable. No barriers really needed because unmapping * should imply barriers already and the reader would hit a page fault * if it stumbled over a reaped memory. */ set_bit(MMF_UNSTABLE, &mm->flags); for (vma = mm->mmap ; vma; vma = vma->vm_next) { if (!can_madv_lru_vma(vma)) continue; /* * Only anonymous pages have a good chance to be dropped * without additional steps which we cannot afford as we * are OOM already. * * We do not even care about fs backed pages because all * which are reclaimable have already been reclaimed and * we do not want to block exit_mmap by keeping mm ref * count elevated without a good reason. */ if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { struct mmu_notifier_range range; struct mmu_gather tlb; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, vma->vm_start, vma->vm_end); tlb_gather_mmu(&tlb, mm); if (mmu_notifier_invalidate_range_start_nonblock(&range)) { tlb_finish_mmu(&tlb); ret = false; continue; } unmap_page_range(&tlb, vma, range.start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); } } return ret; } /* * Reaps the address space of the give task. * * Returns true on success and false if none or part of the address space * has been reclaimed and the caller should retry later. */ static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) { bool ret = true; if (!mmap_read_trylock(mm)) { trace_skip_task_reaping(tsk->pid); return false; } /* * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't * work on the mm anymore. The check for MMF_OOM_SKIP must run * under mmap_lock for reading because it serializes against the * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). */ if (test_bit(MMF_OOM_SKIP, &mm->flags)) { trace_skip_task_reaping(tsk->pid); goto out_unlock; } trace_start_task_reaping(tsk->pid); /* failed to reap part of the address space. Try again later */ ret = __oom_reap_task_mm(mm); if (!ret) goto out_finish; pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", task_pid_nr(tsk), tsk->comm, K(get_mm_counter(mm, MM_ANONPAGES)), K(get_mm_counter(mm, MM_FILEPAGES)), K(get_mm_counter(mm, MM_SHMEMPAGES))); out_finish: trace_finish_task_reaping(tsk->pid); out_unlock: mmap_read_unlock(mm); return ret; } #define MAX_OOM_REAP_RETRIES 10 static void oom_reap_task(struct task_struct *tsk) { int attempts = 0; struct mm_struct *mm = tsk->signal->oom_mm; /* Retry the mmap_read_trylock(mm) a few times */ while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) schedule_timeout_idle(HZ/10); if (attempts <= MAX_OOM_REAP_RETRIES || test_bit(MMF_OOM_SKIP, &mm->flags)) goto done; pr_info("oom_reaper: unable to reap pid:%d (%s)\n", task_pid_nr(tsk), tsk->comm); sched_show_task(tsk); debug_show_all_locks(); done: tsk->oom_reaper_list = NULL; /* * Hide this mm from OOM killer because it has been either reaped or * somebody can't call mmap_write_unlock(mm). */ set_bit(MMF_OOM_SKIP, &mm->flags); /* Drop a reference taken by wake_oom_reaper */ put_task_struct(tsk); } static int oom_reaper(void *unused) { while (true) { struct task_struct *tsk = NULL; wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); spin_lock(&oom_reaper_lock); if (oom_reaper_list != NULL) { tsk = oom_reaper_list; oom_reaper_list = tsk->oom_reaper_list; } spin_unlock(&oom_reaper_lock); if (tsk) oom_reap_task(tsk); } return 0; } static void wake_oom_reaper(struct task_struct *tsk) { /* mm is already queued? */ if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) return; get_task_struct(tsk); spin_lock(&oom_reaper_lock); tsk->oom_reaper_list = oom_reaper_list; oom_reaper_list = tsk; spin_unlock(&oom_reaper_lock); trace_wake_reaper(tsk->pid); wake_up(&oom_reaper_wait); } static int __init oom_init(void) { oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); return 0; } subsys_initcall(oom_init) #else static inline void wake_oom_reaper(struct task_struct *tsk) { } #endif /* CONFIG_MMU */ /** * mark_oom_victim - mark the given task as OOM victim * @tsk: task to mark * * Has to be called with oom_lock held and never after * oom has been disabled already. * * tsk->mm has to be non NULL and caller has to guarantee it is stable (either * under task_lock or operate on the current). */ static void mark_oom_victim(struct task_struct *tsk) { struct mm_struct *mm = tsk->mm; WARN_ON(oom_killer_disabled); /* OOM killer might race with memcg OOM */ if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) return; /* oom_mm is bound to the signal struct life time. */ if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { mmgrab(tsk->signal->oom_mm); set_bit(MMF_OOM_VICTIM, &mm->flags); } /* * Make sure that the task is woken up from uninterruptible sleep * if it is frozen because OOM killer wouldn't be able to free * any memory and livelock. freezing_slow_path will tell the freezer * that TIF_MEMDIE tasks should be ignored. */ __thaw_task(tsk); atomic_inc(&oom_victims); trace_mark_victim(tsk->pid); } /** * exit_oom_victim - note the exit of an OOM victim */ void exit_oom_victim(void) { clear_thread_flag(TIF_MEMDIE); if (!atomic_dec_return(&oom_victims)) wake_up_all(&oom_victims_wait); } /** * oom_killer_enable - enable OOM killer */ void oom_killer_enable(void) { oom_killer_disabled = false; pr_info("OOM killer enabled.\n"); } /** * oom_killer_disable - disable OOM killer * @timeout: maximum timeout to wait for oom victims in jiffies * * Forces all page allocations to fail rather than trigger OOM killer. * Will block and wait until all OOM victims are killed or the given * timeout expires. * * The function cannot be called when there are runnable user tasks because * the userspace would see unexpected allocation failures as a result. Any * new usage of this function should be consulted with MM people. * * Returns true if successful and false if the OOM killer cannot be * disabled. */ bool oom_killer_disable(signed long timeout) { signed long ret; /* * Make sure to not race with an ongoing OOM killer. Check that the * current is not killed (possibly due to sharing the victim's memory). */ if (mutex_lock_killable(&oom_lock)) return false; oom_killer_disabled = true; mutex_unlock(&oom_lock); ret = wait_event_interruptible_timeout(oom_victims_wait, !atomic_read(&oom_victims), timeout); if (ret <= 0) { oom_killer_enable(); return false; } pr_info("OOM killer disabled.\n"); return true; } static inline bool __task_will_free_mem(struct task_struct *task) { struct signal_struct *sig = task->signal; /* * A coredumping process may sleep for an extended period in exit_mm(), * so the oom killer cannot assume that the process will promptly exit * and release memory. */ if (sig->flags & SIGNAL_GROUP_COREDUMP) return false; if (sig->flags & SIGNAL_GROUP_EXIT) return true; if (thread_group_empty(task) && (task->flags & PF_EXITING)) return true; return false; } /* * Checks whether the given task is dying or exiting and likely to * release its address space. This means that all threads and processes * sharing the same mm have to be killed or exiting. * Caller has to make sure that task->mm is stable (hold task_lock or * it operates on the current). */ static bool task_will_free_mem(struct task_struct *task) { struct mm_struct *mm = task->mm; struct task_struct *p; bool ret = true; /* * Skip tasks without mm because it might have passed its exit_mm and * exit_oom_victim. oom_reaper could have rescued that but do not rely * on that for now. We can consider find_lock_task_mm in future. */ if (!mm) return false; if (!__task_will_free_mem(task)) return false; /* * This task has already been drained by the oom reaper so there are * only small chances it will free some more */ if (test_bit(MMF_OOM_SKIP, &mm->flags)) return false; if (atomic_read(&mm->mm_users) <= 1) return true; /* * Make sure that all tasks which share the mm with the given tasks * are dying as well to make sure that a) nobody pins its mm and * b) the task is also reapable by the oom reaper. */ rcu_read_lock(); for_each_process(p) { if (!process_shares_mm(p, mm)) continue; if (same_thread_group(task, p)) continue; ret = __task_will_free_mem(p); if (!ret) break; } rcu_read_unlock(); return ret; } static void __oom_kill_process(struct task_struct *victim, const char *message) { struct task_struct *p; struct mm_struct *mm; bool can_oom_reap = true; p = find_lock_task_mm(victim); if (!p) { pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", message, task_pid_nr(victim), victim->comm); put_task_struct(victim); return; } else if (victim != p) { get_task_struct(p); put_task_struct(victim); victim = p; } /* Get a reference to safely compare mm after task_unlock(victim) */ mm = victim->mm; mmgrab(mm); /* Raise event before sending signal: task reaper must see this */ count_vm_event(OOM_KILL); memcg_memory_event_mm(mm, MEMCG_OOM_KILL); /* * We should send SIGKILL before granting access to memory reserves * in order to prevent the OOM victim from depleting the memory * reserves from the user space under its control. */ do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); mark_oom_victim(victim); pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", message, task_pid_nr(victim), victim->comm, K(mm->total_vm), K(get_mm_counter(mm, MM_ANONPAGES)), K(get_mm_counter(mm, MM_FILEPAGES)), K(get_mm_counter(mm, MM_SHMEMPAGES)), from_kuid(&init_user_ns, task_uid(victim)), mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); task_unlock(victim); /* * Kill all user processes sharing victim->mm in other thread groups, if * any. They don't get access to memory reserves, though, to avoid * depletion of all memory. This prevents mm->mmap_lock livelock when an * oom killed thread cannot exit because it requires the semaphore and * its contended by another thread trying to allocate memory itself. * That thread will now get access to memory reserves since it has a * pending fatal signal. */ rcu_read_lock(); for_each_process(p) { if (!process_shares_mm(p, mm)) continue; if (same_thread_group(p, victim)) continue; if (is_global_init(p)) { can_oom_reap = false; set_bit(MMF_OOM_SKIP, &mm->flags); pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", task_pid_nr(victim), victim->comm, task_pid_nr(p), p->comm); continue; } /* * No kthread_use_mm() user needs to read from the userspace so * we are ok to reap it. */ if (unlikely(p->flags & PF_KTHREAD)) continue; do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); } rcu_read_unlock(); if (can_oom_reap) wake_oom_reaper(victim); mmdrop(mm); put_task_struct(victim); } #undef K /* * Kill provided task unless it's secured by setting * oom_score_adj to OOM_SCORE_ADJ_MIN. */ static int oom_kill_memcg_member(struct task_struct *task, void *message) { if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && !is_global_init(task)) { get_task_struct(task); __oom_kill_process(task, message); } return 0; } static void oom_kill_process(struct oom_control *oc, const char *message) { struct task_struct *victim = oc->chosen; struct mem_cgroup *oom_group; static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); /* * If the task is already exiting, don't alarm the sysadmin or kill * its children or threads, just give it access to memory reserves * so it can die quickly */ task_lock(victim); if (task_will_free_mem(victim)) { mark_oom_victim(victim); wake_oom_reaper(victim); task_unlock(victim); put_task_struct(victim); return; } task_unlock(victim); if (__ratelimit(&oom_rs)) dump_header(oc, victim); /* * Do we need to kill the entire memory cgroup? * Or even one of the ancestor memory cgroups? * Check this out before killing the victim task. */ oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); __oom_kill_process(victim, message); /* * If necessary, kill all tasks in the selected memory cgroup. */ if (oom_group) { mem_cgroup_print_oom_group(oom_group); mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, (void *)message); mem_cgroup_put(oom_group); } } /* * Determines whether the kernel must panic because of the panic_on_oom sysctl. */ static void check_panic_on_oom(struct oom_control *oc) { if (likely(!sysctl_panic_on_oom)) return; if (sysctl_panic_on_oom != 2) { /* * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel * does not panic for cpuset, mempolicy, or memcg allocation * failures. */ if (oc->constraint != CONSTRAINT_NONE) return; } /* Do not panic for oom kills triggered by sysrq */ if (is_sysrq_oom(oc)) return; dump_header(oc, NULL); panic("Out of memory: %s panic_on_oom is enabled\n", sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); } static BLOCKING_NOTIFIER_HEAD(oom_notify_list); int register_oom_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&oom_notify_list, nb); } EXPORT_SYMBOL_GPL(register_oom_notifier); int unregister_oom_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&oom_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_oom_notifier); /** * out_of_memory - kill the "best" process when we run out of memory * @oc: pointer to struct oom_control * * If we run out of memory, we have the choice between either * killing a random task (bad), letting the system crash (worse) * OR try to be smart about which process to kill. Note that we * don't have to be perfect here, we just have to be good. */ bool out_of_memory(struct oom_control *oc) { unsigned long freed = 0; if (oom_killer_disabled) return false; if (!is_memcg_oom(oc)) { blocking_notifier_call_chain(&oom_notify_list, 0, &freed); if (freed > 0) /* Got some memory back in the last second. */ return true; } /* * If current has a pending SIGKILL or is exiting, then automatically * select it. The goal is to allow it to allocate so that it may * quickly exit and free its memory. */ if (task_will_free_mem(current)) { mark_oom_victim(current); wake_oom_reaper(current); return true; } /* * The OOM killer does not compensate for IO-less reclaim. * pagefault_out_of_memory lost its gfp context so we have to * make sure exclude 0 mask - all other users should have at least * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to * invoke the OOM killer even if it is a GFP_NOFS allocation. */ if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) return true; /* * Check if there were limitations on the allocation (only relevant for * NUMA and memcg) that may require different handling. */ oc->constraint = constrained_alloc(oc); if (oc->constraint != CONSTRAINT_MEMORY_POLICY) oc->nodemask = NULL; check_panic_on_oom(oc); if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && current->mm && !oom_unkillable_task(current) && oom_cpuset_eligible(current, oc) && current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { get_task_struct(current); oc->chosen = current; oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); return true; } select_bad_process(oc); /* Found nothing?!?! */ if (!oc->chosen) { dump_header(oc, NULL); pr_warn("Out of memory and no killable processes...\n"); /* * If we got here due to an actual allocation at the * system level, we cannot survive this and will enter * an endless loop in the allocator. Bail out now. */ if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) panic("System is deadlocked on memory\n"); } if (oc->chosen && oc->chosen != (void *)-1UL) oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : "Memory cgroup out of memory"); return !!oc->chosen; } /* * The pagefault handler calls here because it is out of memory, so kill a * memory-hogging task. If oom_lock is held by somebody else, a parallel oom * killing is already in progress so do nothing. */ void pagefault_out_of_memory(void) { struct oom_control oc = { .zonelist = NULL, .nodemask = NULL, .memcg = NULL, .gfp_mask = 0, .order = 0, }; if (mem_cgroup_oom_synchronize(true)) return; if (!mutex_trylock(&oom_lock)) return; out_of_memory(&oc); mutex_unlock(&oom_lock); } SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags) { #ifdef CONFIG_MMU struct mm_struct *mm = NULL; struct task_struct *task; struct task_struct *p; unsigned int f_flags; bool reap = true; struct pid *pid; long ret = 0; if (flags) return -EINVAL; pid = pidfd_get_pid(pidfd, &f_flags); if (IS_ERR(pid)) return PTR_ERR(pid); task = get_pid_task(pid, PIDTYPE_TGID); if (!task) { ret = -ESRCH; goto put_pid; } /* * Make sure to choose a thread which still has a reference to mm * during the group exit */ p = find_lock_task_mm(task); if (!p) { ret = -ESRCH; goto put_task; } mm = p->mm; mmgrab(mm); /* If the work has been done already, just exit with success */ if (test_bit(MMF_OOM_SKIP, &mm->flags)) reap = false; else if (!task_will_free_mem(p)) { reap = false; ret = -EINVAL; } task_unlock(p); if (!reap) goto drop_mm; if (mmap_read_lock_killable(mm)) { ret = -EINTR; goto drop_mm; } if (!__oom_reap_task_mm(mm)) ret = -EAGAIN; mmap_read_unlock(mm); drop_mm: mmdrop(mm); put_task: put_task_struct(task); put_pid: put_pid(pid); return ret; #else return -ENOSYS; #endif /* CONFIG_MMU */ }