/* * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) * * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar * * Interactivity improvements by Mike Galbraith * (C) 2007 Mike Galbraith * * Various enhancements by Dmitry Adamushko. * (C) 2007 Dmitry Adamushko * * Group scheduling enhancements by Srivatsa Vaddagiri * Copyright IBM Corporation, 2007 * Author: Srivatsa Vaddagiri * * Scaled math optimizations by Thomas Gleixner * Copyright (C) 2007, Thomas Gleixner * * Adaptive scheduling granularity, math enhancements by Peter Zijlstra * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra */ #include #include #include #include #include #include #include #include #include #include #include #include "sched.h" /* * Targeted preemption latency for CPU-bound tasks: * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) * * NOTE: this latency value is not the same as the concept of * 'timeslice length' - timeslices in CFS are of variable length * and have no persistent notion like in traditional, time-slice * based scheduling concepts. * * (to see the precise effective timeslice length of your workload, * run vmstat and monitor the context-switches (cs) field) */ unsigned int sysctl_sched_latency = 6000000ULL; unsigned int normalized_sysctl_sched_latency = 6000000ULL; /* * The initial- and re-scaling of tunables is configurable * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) * * Options are: * SCHED_TUNABLESCALING_NONE - unscaled, always *1 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus */ enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; /* * Minimal preemption granularity for CPU-bound tasks: * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) */ unsigned int sysctl_sched_min_granularity = 750000ULL; unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; /* * is kept at sysctl_sched_latency / sysctl_sched_min_granularity */ static unsigned int sched_nr_latency = 8; /* * After fork, child runs first. If set to 0 (default) then * parent will (try to) run first. */ unsigned int sysctl_sched_child_runs_first __read_mostly; /* * SCHED_OTHER wake-up granularity. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) * * This option delays the preemption effects of decoupled workloads * and reduces their over-scheduling. Synchronous workloads will still * have immediate wakeup/sleep latencies. */ unsigned int sysctl_sched_wakeup_granularity = 1000000UL; unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; const_debug unsigned int sysctl_sched_migration_cost = 500000UL; /* * The exponential sliding window over which load is averaged for shares * distribution. * (default: 10msec) */ unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; #ifdef CONFIG_CFS_BANDWIDTH /* * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool * each time a cfs_rq requests quota. * * Note: in the case that the slice exceeds the runtime remaining (either due * to consumption or the quota being specified to be smaller than the slice) * we will always only issue the remaining available time. * * default: 5 msec, units: microseconds */ unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; #endif static inline void update_load_add(struct load_weight *lw, unsigned long inc) { lw->weight += inc; lw->inv_weight = 0; } static inline void update_load_sub(struct load_weight *lw, unsigned long dec) { lw->weight -= dec; lw->inv_weight = 0; } static inline void update_load_set(struct load_weight *lw, unsigned long w) { lw->weight = w; lw->inv_weight = 0; } /* * Increase the granularity value when there are more CPUs, * because with more CPUs the 'effective latency' as visible * to users decreases. But the relationship is not linear, * so pick a second-best guess by going with the log2 of the * number of CPUs. * * This idea comes from the SD scheduler of Con Kolivas: */ static unsigned int get_update_sysctl_factor(void) { unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); unsigned int factor; switch (sysctl_sched_tunable_scaling) { case SCHED_TUNABLESCALING_NONE: factor = 1; break; case SCHED_TUNABLESCALING_LINEAR: factor = cpus; break; case SCHED_TUNABLESCALING_LOG: default: factor = 1 + ilog2(cpus); break; } return factor; } static void update_sysctl(void) { unsigned int factor = get_update_sysctl_factor(); #define SET_SYSCTL(name) \ (sysctl_##name = (factor) * normalized_sysctl_##name) SET_SYSCTL(sched_min_granularity); SET_SYSCTL(sched_latency); SET_SYSCTL(sched_wakeup_granularity); #undef SET_SYSCTL } void sched_init_granularity(void) { update_sysctl(); } #define WMULT_CONST (~0U) #define WMULT_SHIFT 32 static void __update_inv_weight(struct load_weight *lw) { unsigned long w; if (likely(lw->inv_weight)) return; w = scale_load_down(lw->weight); if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) lw->inv_weight = 1; else if (unlikely(!w)) lw->inv_weight = WMULT_CONST; else lw->inv_weight = WMULT_CONST / w; } /* * delta_exec * weight / lw.weight * OR * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT * * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case * we're guaranteed shift stays positive because inv_weight is guaranteed to * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. * * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus * weight/lw.weight <= 1, and therefore our shift will also be positive. */ static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) { u64 fact = scale_load_down(weight); int shift = WMULT_SHIFT; __update_inv_weight(lw); if (unlikely(fact >> 32)) { while (fact >> 32) { fact >>= 1; shift--; } } /* hint to use a 32x32->64 mul */ fact = (u64)(u32)fact * lw->inv_weight; while (fact >> 32) { fact >>= 1; shift--; } return mul_u64_u32_shr(delta_exec, fact, shift); } const struct sched_class fair_sched_class; /************************************************************** * CFS operations on generic schedulable entities: */ #ifdef CONFIG_FAIR_GROUP_SCHED /* cpu runqueue to which this cfs_rq is attached */ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) { return cfs_rq->rq; } /* An entity is a task if it doesn't "own" a runqueue */ #define entity_is_task(se) (!se->my_q) static inline struct task_struct *task_of(struct sched_entity *se) { #ifdef CONFIG_SCHED_DEBUG WARN_ON_ONCE(!entity_is_task(se)); #endif return container_of(se, struct task_struct, se); } /* Walk up scheduling entities hierarchy */ #define for_each_sched_entity(se) \ for (; se; se = se->parent) static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) { return p->se.cfs_rq; } /* runqueue on which this entity is (to be) queued */ static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) { return se->cfs_rq; } /* runqueue "owned" by this group */ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) { return grp->my_q; } static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update); static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) { if (!cfs_rq->on_list) { /* * Ensure we either appear before our parent (if already * enqueued) or force our parent to appear after us when it is * enqueued. The fact that we always enqueue bottom-up * reduces this to two cases. */ if (cfs_rq->tg->parent && cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq_of(cfs_rq)->leaf_cfs_rq_list); } else { list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, &rq_of(cfs_rq)->leaf_cfs_rq_list); } cfs_rq->on_list = 1; /* We should have no load, but we need to update last_decay. */ update_cfs_rq_blocked_load(cfs_rq, 0); } } static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) { if (cfs_rq->on_list) { list_del_rcu(&cfs_rq->leaf_cfs_rq_list); cfs_rq->on_list = 0; } } /* Iterate thr' all leaf cfs_rq's on a runqueue */ #define for_each_leaf_cfs_rq(rq, cfs_rq) \ list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) /* Do the two (enqueued) entities belong to the same group ? */ static inline struct cfs_rq * is_same_group(struct sched_entity *se, struct sched_entity *pse) { if (se->cfs_rq == pse->cfs_rq) return se->cfs_rq; return NULL; } static inline struct sched_entity *parent_entity(struct sched_entity *se) { return se->parent; } static void find_matching_se(struct sched_entity **se, struct sched_entity **pse) { int se_depth, pse_depth; /* * preemption test can be made between sibling entities who are in the * same cfs_rq i.e who have a common parent. Walk up the hierarchy of * both tasks until we find their ancestors who are siblings of common * parent. */ /* First walk up until both entities are at same depth */ se_depth = (*se)->depth; pse_depth = (*pse)->depth; while (se_depth > pse_depth) { se_depth--; *se = parent_entity(*se); } while (pse_depth > se_depth) { pse_depth--; *pse = parent_entity(*pse); } while (!is_same_group(*se, *pse)) { *se = parent_entity(*se); *pse = parent_entity(*pse); } } #else /* !CONFIG_FAIR_GROUP_SCHED */ static inline struct task_struct *task_of(struct sched_entity *se) { return container_of(se, struct task_struct, se); } static inline struct rq *rq_of(struct cfs_rq *cfs_rq) { return container_of(cfs_rq, struct rq, cfs); } #define entity_is_task(se) 1 #define for_each_sched_entity(se) \ for (; se; se = NULL) static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) { return &task_rq(p)->cfs; } static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) { struct task_struct *p = task_of(se); struct rq *rq = task_rq(p); return &rq->cfs; } /* runqueue "owned" by this group */ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) { return NULL; } static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) { } static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) { } #define for_each_leaf_cfs_rq(rq, cfs_rq) \ for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) static inline struct sched_entity *parent_entity(struct sched_entity *se) { return NULL; } static inline void find_matching_se(struct sched_entity **se, struct sched_entity **pse) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); /************************************************************** * Scheduling class tree data structure manipulation methods: */ static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) { s64 delta = (s64)(vruntime - max_vruntime); if (delta > 0) max_vruntime = vruntime; return max_vruntime; } static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) { s64 delta = (s64)(vruntime - min_vruntime); if (delta < 0) min_vruntime = vruntime; return min_vruntime; } static inline int entity_before(struct sched_entity *a, struct sched_entity *b) { return (s64)(a->vruntime - b->vruntime) < 0; } static void update_min_vruntime(struct cfs_rq *cfs_rq) { u64 vruntime = cfs_rq->min_vruntime; if (cfs_rq->curr) vruntime = cfs_rq->curr->vruntime; if (cfs_rq->rb_leftmost) { struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, struct sched_entity, run_node); if (!cfs_rq->curr) vruntime = se->vruntime; else vruntime = min_vruntime(vruntime, se->vruntime); } /* ensure we never gain time by being placed backwards. */ cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); #ifndef CONFIG_64BIT smp_wmb(); cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; #endif } /* * Enqueue an entity into the rb-tree: */ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; struct rb_node *parent = NULL; struct sched_entity *entry; int leftmost = 1; /* * Find the right place in the rbtree: */ while (*link) { parent = *link; entry = rb_entry(parent, struct sched_entity, run_node); /* * We dont care about collisions. Nodes with * the same key stay together. */ if (entity_before(se, entry)) { link = &parent->rb_left; } else { link = &parent->rb_right; leftmost = 0; } } /* * Maintain a cache of leftmost tree entries (it is frequently * used): */ if (leftmost) cfs_rq->rb_leftmost = &se->run_node; rb_link_node(&se->run_node, parent, link); rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); } static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { if (cfs_rq->rb_leftmost == &se->run_node) { struct rb_node *next_node; next_node = rb_next(&se->run_node); cfs_rq->rb_leftmost = next_node; } rb_erase(&se->run_node, &cfs_rq->tasks_timeline); } struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) { struct rb_node *left = cfs_rq->rb_leftmost; if (!left) return NULL; return rb_entry(left, struct sched_entity, run_node); } static struct sched_entity *__pick_next_entity(struct sched_entity *se) { struct rb_node *next = rb_next(&se->run_node); if (!next) return NULL; return rb_entry(next, struct sched_entity, run_node); } #ifdef CONFIG_SCHED_DEBUG struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) { struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); if (!last) return NULL; return rb_entry(last, struct sched_entity, run_node); } /************************************************************** * Scheduling class statistics methods: */ int sched_proc_update_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); unsigned int factor = get_update_sysctl_factor(); if (ret || !write) return ret; sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, sysctl_sched_min_granularity); #define WRT_SYSCTL(name) \ (normalized_sysctl_##name = sysctl_##name / (factor)) WRT_SYSCTL(sched_min_granularity); WRT_SYSCTL(sched_latency); WRT_SYSCTL(sched_wakeup_granularity); #undef WRT_SYSCTL return 0; } #endif /* * delta /= w */ static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) { if (unlikely(se->load.weight != NICE_0_LOAD)) delta = __calc_delta(delta, NICE_0_LOAD, &se->load); return delta; } /* * The idea is to set a period in which each task runs once. * * When there are too many tasks (sched_nr_latency) we have to stretch * this period because otherwise the slices get too small. * * p = (nr <= nl) ? l : l*nr/nl */ static u64 __sched_period(unsigned long nr_running) { u64 period = sysctl_sched_latency; unsigned long nr_latency = sched_nr_latency; if (unlikely(nr_running > nr_latency)) { period = sysctl_sched_min_granularity; period *= nr_running; } return period; } /* * We calculate the wall-time slice from the period by taking a part * proportional to the weight. * * s = p*P[w/rw] */ static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) { u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); for_each_sched_entity(se) { struct load_weight *load; struct load_weight lw; cfs_rq = cfs_rq_of(se); load = &cfs_rq->load; if (unlikely(!se->on_rq)) { lw = cfs_rq->load; update_load_add(&lw, se->load.weight); load = &lw; } slice = __calc_delta(slice, se->load.weight, load); } return slice; } /* * We calculate the vruntime slice of a to-be-inserted task. * * vs = s/w */ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) { return calc_delta_fair(sched_slice(cfs_rq, se), se); } #ifdef CONFIG_SMP static int select_idle_sibling(struct task_struct *p, int cpu); static unsigned long task_h_load(struct task_struct *p); static inline void __update_task_entity_contrib(struct sched_entity *se); static inline void __update_task_entity_utilization(struct sched_entity *se); /* Give new task start runnable values to heavy its load in infant time */ void init_task_runnable_average(struct task_struct *p) { u32 slice; slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice; p->se.avg.avg_period = slice; __update_task_entity_contrib(&p->se); __update_task_entity_utilization(&p->se); } #else void init_task_runnable_average(struct task_struct *p) { } #endif /* * Update the current task's runtime statistics. */ static void update_curr(struct cfs_rq *cfs_rq) { struct sched_entity *curr = cfs_rq->curr; u64 now = rq_clock_task(rq_of(cfs_rq)); u64 delta_exec; if (unlikely(!curr)) return; delta_exec = now - curr->exec_start; if (unlikely((s64)delta_exec <= 0)) return; curr->exec_start = now; schedstat_set(curr->statistics.exec_max, max(delta_exec, curr->statistics.exec_max)); curr->sum_exec_runtime += delta_exec; schedstat_add(cfs_rq, exec_clock, delta_exec); curr->vruntime += calc_delta_fair(delta_exec, curr); update_min_vruntime(cfs_rq); if (entity_is_task(curr)) { struct task_struct *curtask = task_of(curr); trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); cpuacct_charge(curtask, delta_exec); account_group_exec_runtime(curtask, delta_exec); } account_cfs_rq_runtime(cfs_rq, delta_exec); } static void update_curr_fair(struct rq *rq) { update_curr(cfs_rq_of(&rq->curr->se)); } static inline void update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) { schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); } /* * Task is being enqueued - update stats: */ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) { /* * Are we enqueueing a waiting task? (for current tasks * a dequeue/enqueue event is a NOP) */ if (se != cfs_rq->curr) update_stats_wait_start(cfs_rq, se); } static void update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) { schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); #ifdef CONFIG_SCHEDSTATS if (entity_is_task(se)) { trace_sched_stat_wait(task_of(se), rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); } #endif schedstat_set(se->statistics.wait_start, 0); } static inline void update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) { /* * Mark the end of the wait period if dequeueing a * waiting task: */ if (se != cfs_rq->curr) update_stats_wait_end(cfs_rq, se); } /* * We are picking a new current task - update its stats: */ static inline void update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) { /* * We are starting a new run period: */ se->exec_start = rq_clock_task(rq_of(cfs_rq)); } /************************************************** * Scheduling class queueing methods: */ #ifdef CONFIG_NUMA_BALANCING /* * Approximate time to scan a full NUMA task in ms. The task scan period is * calculated based on the tasks virtual memory size and * numa_balancing_scan_size. */ unsigned int sysctl_numa_balancing_scan_period_min = 1000; unsigned int sysctl_numa_balancing_scan_period_max = 60000; /* Portion of address space to scan in MB */ unsigned int sysctl_numa_balancing_scan_size = 256; /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ unsigned int sysctl_numa_balancing_scan_delay = 1000; static unsigned int task_nr_scan_windows(struct task_struct *p) { unsigned long rss = 0; unsigned long nr_scan_pages; /* * Calculations based on RSS as non-present and empty pages are skipped * by the PTE scanner and NUMA hinting faults should be trapped based * on resident pages */ nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); rss = get_mm_rss(p->mm); if (!rss) rss = nr_scan_pages; rss = round_up(rss, nr_scan_pages); return rss / nr_scan_pages; } /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ #define MAX_SCAN_WINDOW 2560 static unsigned int task_scan_min(struct task_struct *p) { unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); unsigned int scan, floor; unsigned int windows = 1; if (scan_size < MAX_SCAN_WINDOW) windows = MAX_SCAN_WINDOW / scan_size; floor = 1000 / windows; scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); return max_t(unsigned int, floor, scan); } static unsigned int task_scan_max(struct task_struct *p) { unsigned int smin = task_scan_min(p); unsigned int smax; /* Watch for min being lower than max due to floor calculations */ smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); return max(smin, smax); } static void account_numa_enqueue(struct rq *rq, struct task_struct *p) { rq->nr_numa_running += (p->numa_preferred_nid != -1); rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); } static void account_numa_dequeue(struct rq *rq, struct task_struct *p) { rq->nr_numa_running -= (p->numa_preferred_nid != -1); rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); } struct numa_group { atomic_t refcount; spinlock_t lock; /* nr_tasks, tasks */ int nr_tasks; pid_t gid; struct rcu_head rcu; nodemask_t active_nodes; unsigned long total_faults; /* * Faults_cpu is used to decide whether memory should move * towards the CPU. As a consequence, these stats are weighted * more by CPU use than by memory faults. */ unsigned long *faults_cpu; unsigned long faults[0]; }; /* Shared or private faults. */ #define NR_NUMA_HINT_FAULT_TYPES 2 /* Memory and CPU locality */ #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) /* Averaged statistics, and temporary buffers. */ #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) pid_t task_numa_group_id(struct task_struct *p) { return p->numa_group ? p->numa_group->gid : 0; } /* * The averaged statistics, shared & private, memory & cpu, * occupy the first half of the array. The second half of the * array is for current counters, which are averaged into the * first set by task_numa_placement. */ static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) { return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; } static inline unsigned long task_faults(struct task_struct *p, int nid) { if (!p->numa_faults) return 0; return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; } static inline unsigned long group_faults(struct task_struct *p, int nid) { if (!p->numa_group) return 0; return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; } static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) { return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; } /* Handle placement on systems where not all nodes are directly connected. */ static unsigned long score_nearby_nodes(struct task_struct *p, int nid, int maxdist, bool task) { unsigned long score = 0; int node; /* * All nodes are directly connected, and the same distance * from each other. No need for fancy placement algorithms. */ if (sched_numa_topology_type == NUMA_DIRECT) return 0; /* * This code is called for each node, introducing N^2 complexity, * which should be ok given the number of nodes rarely exceeds 8. */ for_each_online_node(node) { unsigned long faults; int dist = node_distance(nid, node); /* * The furthest away nodes in the system are not interesting * for placement; nid was already counted. */ if (dist == sched_max_numa_distance || node == nid) continue; /* * On systems with a backplane NUMA topology, compare groups * of nodes, and move tasks towards the group with the most * memory accesses. When comparing two nodes at distance * "hoplimit", only nodes closer by than "hoplimit" are part * of each group. Skip other nodes. */ if (sched_numa_topology_type == NUMA_BACKPLANE && dist > maxdist) continue; /* Add up the faults from nearby nodes. */ if (task) faults = task_faults(p, node); else faults = group_faults(p, node); /* * On systems with a glueless mesh NUMA topology, there are * no fixed "groups of nodes". Instead, nodes that are not * directly connected bounce traffic through intermediate * nodes; a numa_group can occupy any set of nodes. * The further away a node is, the less the faults count. * This seems to result in good task placement. */ if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { faults *= (sched_max_numa_distance - dist); faults /= (sched_max_numa_distance - LOCAL_DISTANCE); } score += faults; } return score; } /* * These return the fraction of accesses done by a particular task, or * task group, on a particular numa node. The group weight is given a * larger multiplier, in order to group tasks together that are almost * evenly spread out between numa nodes. */ static inline unsigned long task_weight(struct task_struct *p, int nid, int dist) { unsigned long faults, total_faults; if (!p->numa_faults) return 0; total_faults = p->total_numa_faults; if (!total_faults) return 0; faults = task_faults(p, nid); faults += score_nearby_nodes(p, nid, dist, true); return 1000 * faults / total_faults; } static inline unsigned long group_weight(struct task_struct *p, int nid, int dist) { unsigned long faults, total_faults; if (!p->numa_group) return 0; total_faults = p->numa_group->total_faults; if (!total_faults) return 0; faults = group_faults(p, nid); faults += score_nearby_nodes(p, nid, dist, false); return 1000 * faults / total_faults; } bool should_numa_migrate_memory(struct task_struct *p, struct page * page, int src_nid, int dst_cpu) { struct numa_group *ng = p->numa_group; int dst_nid = cpu_to_node(dst_cpu); int last_cpupid, this_cpupid; this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); /* * Multi-stage node selection is used in conjunction with a periodic * migration fault to build a temporal task<->page relation. By using * a two-stage filter we remove short/unlikely relations. * * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate * a task's usage of a particular page (n_p) per total usage of this * page (n_t) (in a given time-span) to a probability. * * Our periodic faults will sample this probability and getting the * same result twice in a row, given these samples are fully * independent, is then given by P(n)^2, provided our sample period * is sufficiently short compared to the usage pattern. * * This quadric squishes small probabilities, making it less likely we * act on an unlikely task<->page relation. */ last_cpupid = page_cpupid_xchg_last(page, this_cpupid); if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != dst_nid) return false; /* Always allow migrate on private faults */ if (cpupid_match_pid(p, last_cpupid)) return true; /* A shared fault, but p->numa_group has not been set up yet. */ if (!ng) return true; /* * Do not migrate if the destination is not a node that * is actively used by this numa group. */ if (!node_isset(dst_nid, ng->active_nodes)) return false; /* * Source is a node that is not actively used by this * numa group, while the destination is. Migrate. */ if (!node_isset(src_nid, ng->active_nodes)) return true; /* * Both source and destination are nodes in active * use by this numa group. Maximize memory bandwidth * by migrating from more heavily used groups, to less * heavily used ones, spreading the load around. * Use a 1/4 hysteresis to avoid spurious page movement. */ return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); } static unsigned long weighted_cpuload(const int cpu); static unsigned long source_load(int cpu, int type); static unsigned long target_load(int cpu, int type); static unsigned long capacity_of(int cpu); static long effective_load(struct task_group *tg, int cpu, long wl, long wg); /* Cached statistics for all CPUs within a node */ struct numa_stats { unsigned long nr_running; unsigned long load; /* Total compute capacity of CPUs on a node */ unsigned long compute_capacity; /* Approximate capacity in terms of runnable tasks on a node */ unsigned long task_capacity; int has_free_capacity; }; /* * XXX borrowed from update_sg_lb_stats */ static void update_numa_stats(struct numa_stats *ns, int nid) { int smt, cpu, cpus = 0; unsigned long capacity; memset(ns, 0, sizeof(*ns)); for_each_cpu(cpu, cpumask_of_node(nid)) { struct rq *rq = cpu_rq(cpu); ns->nr_running += rq->nr_running; ns->load += weighted_cpuload(cpu); ns->compute_capacity += capacity_of(cpu); cpus++; } /* * If we raced with hotplug and there are no CPUs left in our mask * the @ns structure is NULL'ed and task_numa_compare() will * not find this node attractive. * * We'll either bail at !has_free_capacity, or we'll detect a huge * imbalance and bail there. */ if (!cpus) return; /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); capacity = cpus / smt; /* cores */ ns->task_capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); ns->has_free_capacity = (ns->nr_running < ns->task_capacity); } struct task_numa_env { struct task_struct *p; int src_cpu, src_nid; int dst_cpu, dst_nid; struct numa_stats src_stats, dst_stats; int imbalance_pct; int dist; struct task_struct *best_task; long best_imp; int best_cpu; }; static void task_numa_assign(struct task_numa_env *env, struct task_struct *p, long imp) { if (env->best_task) put_task_struct(env->best_task); if (p) get_task_struct(p); env->best_task = p; env->best_imp = imp; env->best_cpu = env->dst_cpu; } static bool load_too_imbalanced(long src_load, long dst_load, struct task_numa_env *env) { long imb, old_imb; long orig_src_load, orig_dst_load; long src_capacity, dst_capacity; /* * The load is corrected for the CPU capacity available on each node. * * src_load dst_load * ------------ vs --------- * src_capacity dst_capacity */ src_capacity = env->src_stats.compute_capacity; dst_capacity = env->dst_stats.compute_capacity; /* We care about the slope of the imbalance, not the direction. */ if (dst_load < src_load) swap(dst_load, src_load); /* Is the difference below the threshold? */ imb = dst_load * src_capacity * 100 - src_load * dst_capacity * env->imbalance_pct; if (imb <= 0) return false; /* * The imbalance is above the allowed threshold. * Compare it with the old imbalance. */ orig_src_load = env->src_stats.load; orig_dst_load = env->dst_stats.load; if (orig_dst_load < orig_src_load) swap(orig_dst_load, orig_src_load); old_imb = orig_dst_load * src_capacity * 100 - orig_src_load * dst_capacity * env->imbalance_pct; /* Would this change make things worse? */ return (imb > old_imb); } /* * This checks if the overall compute and NUMA accesses of the system would * be improved if the source tasks was migrated to the target dst_cpu taking * into account that it might be best if task running on the dst_cpu should * be exchanged with the source task */ static void task_numa_compare(struct task_numa_env *env, long taskimp, long groupimp) { struct rq *src_rq = cpu_rq(env->src_cpu); struct rq *dst_rq = cpu_rq(env->dst_cpu); struct task_struct *cur; long src_load, dst_load; long load; long imp = env->p->numa_group ? groupimp : taskimp; long moveimp = imp; int dist = env->dist; rcu_read_lock(); raw_spin_lock_irq(&dst_rq->lock); cur = dst_rq->curr; /* * No need to move the exiting task, and this ensures that ->curr * wasn't reaped and thus get_task_struct() in task_numa_assign() * is safe under RCU read lock. * Note that rcu_read_lock() itself can't protect from the final * put_task_struct() after the last schedule(). */ if ((cur->flags & PF_EXITING) || is_idle_task(cur)) cur = NULL; raw_spin_unlock_irq(&dst_rq->lock); /* * Because we have preemption enabled we can get migrated around and * end try selecting ourselves (current == env->p) as a swap candidate. */ if (cur == env->p) goto unlock; /* * "imp" is the fault differential for the source task between the * source and destination node. Calculate the total differential for * the source task and potential destination task. The more negative * the value is, the more rmeote accesses that would be expected to * be incurred if the tasks were swapped. */ if (cur) { /* Skip this swap candidate if cannot move to the source cpu */ if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) goto unlock; /* * If dst and source tasks are in the same NUMA group, or not * in any group then look only at task weights. */ if (cur->numa_group == env->p->numa_group) { imp = taskimp + task_weight(cur, env->src_nid, dist) - task_weight(cur, env->dst_nid, dist); /* * Add some hysteresis to prevent swapping the * tasks within a group over tiny differences. */ if (cur->numa_group) imp -= imp/16; } else { /* * Compare the group weights. If a task is all by * itself (not part of a group), use the task weight * instead. */ if (cur->numa_group) imp += group_weight(cur, env->src_nid, dist) - group_weight(cur, env->dst_nid, dist); else imp += task_weight(cur, env->src_nid, dist) - task_weight(cur, env->dst_nid, dist); } } if (imp <= env->best_imp && moveimp <= env->best_imp) goto unlock; if (!cur) { /* Is there capacity at our destination? */ if (env->src_stats.nr_running <= env->src_stats.task_capacity && !env->dst_stats.has_free_capacity) goto unlock; goto balance; } /* Balance doesn't matter much if we're running a task per cpu */ if (imp > env->best_imp && src_rq->nr_running == 1 && dst_rq->nr_running == 1) goto assign; /* * In the overloaded case, try and keep the load balanced. */ balance: load = task_h_load(env->p); dst_load = env->dst_stats.load + load; src_load = env->src_stats.load - load; if (moveimp > imp && moveimp > env->best_imp) { /* * If the improvement from just moving env->p direction is * better than swapping tasks around, check if a move is * possible. Store a slightly smaller score than moveimp, * so an actually idle CPU will win. */ if (!load_too_imbalanced(src_load, dst_load, env)) { imp = moveimp - 1; cur = NULL; goto assign; } } if (imp <= env->best_imp) goto unlock; if (cur) { load = task_h_load(cur); dst_load -= load; src_load += load; } if (load_too_imbalanced(src_load, dst_load, env)) goto unlock; /* * One idle CPU per node is evaluated for a task numa move. * Call select_idle_sibling to maybe find a better one. */ if (!cur) env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); assign: task_numa_assign(env, cur, imp); unlock: rcu_read_unlock(); } static void task_numa_find_cpu(struct task_numa_env *env, long taskimp, long groupimp) { int cpu; for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { /* Skip this CPU if the source task cannot migrate */ if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) continue; env->dst_cpu = cpu; task_numa_compare(env, taskimp, groupimp); } } /* Only move tasks to a NUMA node less busy than the current node. */ static bool numa_has_capacity(struct task_numa_env *env) { struct numa_stats *src = &env->src_stats; struct numa_stats *dst = &env->dst_stats; if (src->has_free_capacity && !dst->has_free_capacity) return false; /* * Only consider a task move if the source has a higher load * than the destination, corrected for CPU capacity on each node. * * src->load dst->load * --------------------- vs --------------------- * src->compute_capacity dst->compute_capacity */ if (src->load * dst->compute_capacity > dst->load * src->compute_capacity) return true; return false; } static int task_numa_migrate(struct task_struct *p) { struct task_numa_env env = { .p = p, .src_cpu = task_cpu(p), .src_nid = task_node(p), .imbalance_pct = 112, .best_task = NULL, .best_imp = 0, .best_cpu = -1 }; struct sched_domain *sd; unsigned long taskweight, groupweight; int nid, ret, dist; long taskimp, groupimp; /* * Pick the lowest SD_NUMA domain, as that would have the smallest * imbalance and would be the first to start moving tasks about. * * And we want to avoid any moving of tasks about, as that would create * random movement of tasks -- counter the numa conditions we're trying * to satisfy here. */ rcu_read_lock(); sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); if (sd) env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; rcu_read_unlock(); /* * Cpusets can break the scheduler domain tree into smaller * balance domains, some of which do not cross NUMA boundaries. * Tasks that are "trapped" in such domains cannot be migrated * elsewhere, so there is no point in (re)trying. */ if (unlikely(!sd)) { p->numa_preferred_nid = task_node(p); return -EINVAL; } env.dst_nid = p->numa_preferred_nid; dist = env.dist = node_distance(env.src_nid, env.dst_nid); taskweight = task_weight(p, env.src_nid, dist); groupweight = group_weight(p, env.src_nid, dist); update_numa_stats(&env.src_stats, env.src_nid); taskimp = task_weight(p, env.dst_nid, dist) - taskweight; groupimp = group_weight(p, env.dst_nid, dist) - groupweight; update_numa_stats(&env.dst_stats, env.dst_nid); /* Try to find a spot on the preferred nid. */ if (numa_has_capacity(&env)) task_numa_find_cpu(&env, taskimp, groupimp); /* * Look at other nodes in these cases: * - there is no space available on the preferred_nid * - the task is part of a numa_group that is interleaved across * multiple NUMA nodes; in order to better consolidate the group, * we need to check other locations. */ if (env.best_cpu == -1 || (p->numa_group && nodes_weight(p->numa_group->active_nodes) > 1)) { for_each_online_node(nid) { if (nid == env.src_nid || nid == p->numa_preferred_nid) continue; dist = node_distance(env.src_nid, env.dst_nid); if (sched_numa_topology_type == NUMA_BACKPLANE && dist != env.dist) { taskweight = task_weight(p, env.src_nid, dist); groupweight = group_weight(p, env.src_nid, dist); } /* Only consider nodes where both task and groups benefit */ taskimp = task_weight(p, nid, dist) - taskweight; groupimp = group_weight(p, nid, dist) - groupweight; if (taskimp < 0 && groupimp < 0) continue; env.dist = dist; env.dst_nid = nid; update_numa_stats(&env.dst_stats, env.dst_nid); if (numa_has_capacity(&env)) task_numa_find_cpu(&env, taskimp, groupimp); } } /* * If the task is part of a workload that spans multiple NUMA nodes, * and is migrating into one of the workload's active nodes, remember * this node as the task's preferred numa node, so the workload can * settle down. * A task that migrated to a second choice node will be better off * trying for a better one later. Do not set the preferred node here. */ if (p->numa_group) { if (env.best_cpu == -1) nid = env.src_nid; else nid = env.dst_nid; if (node_isset(nid, p->numa_group->active_nodes)) sched_setnuma(p, env.dst_nid); } /* No better CPU than the current one was found. */ if (env.best_cpu == -1) return -EAGAIN; /* * Reset the scan period if the task is being rescheduled on an * alternative node to recheck if the tasks is now properly placed. */ p->numa_scan_period = task_scan_min(p); if (env.best_task == NULL) { ret = migrate_task_to(p, env.best_cpu); if (ret != 0) trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); return ret; } ret = migrate_swap(p, env.best_task); if (ret != 0) trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); put_task_struct(env.best_task); return ret; } /* Attempt to migrate a task to a CPU on the preferred node. */ static void numa_migrate_preferred(struct task_struct *p) { unsigned long interval = HZ; /* This task has no NUMA fault statistics yet */ if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) return; /* Periodically retry migrating the task to the preferred node */ interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); p->numa_migrate_retry = jiffies + interval; /* Success if task is already running on preferred CPU */ if (task_node(p) == p->numa_preferred_nid) return; /* Otherwise, try migrate to a CPU on the preferred node */ task_numa_migrate(p); } /* * Find the nodes on which the workload is actively running. We do this by * tracking the nodes from which NUMA hinting faults are triggered. This can * be different from the set of nodes where the workload's memory is currently * located. * * The bitmask is used to make smarter decisions on when to do NUMA page * migrations, To prevent flip-flopping, and excessive page migrations, nodes * are added when they cause over 6/16 of the maximum number of faults, but * only removed when they drop below 3/16. */ static void update_numa_active_node_mask(struct numa_group *numa_group) { unsigned long faults, max_faults = 0; int nid; for_each_online_node(nid) { faults = group_faults_cpu(numa_group, nid); if (faults > max_faults) max_faults = faults; } for_each_online_node(nid) { faults = group_faults_cpu(numa_group, nid); if (!node_isset(nid, numa_group->active_nodes)) { if (faults > max_faults * 6 / 16) node_set(nid, numa_group->active_nodes); } else if (faults < max_faults * 3 / 16) node_clear(nid, numa_group->active_nodes); } } /* * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS * increments. The more local the fault statistics are, the higher the scan * period will be for the next scan window. If local/(local+remote) ratio is * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) * the scan period will decrease. Aim for 70% local accesses. */ #define NUMA_PERIOD_SLOTS 10 #define NUMA_PERIOD_THRESHOLD 7 /* * Increase the scan period (slow down scanning) if the majority of * our memory is already on our local node, or if the majority of * the page accesses are shared with other processes. * Otherwise, decrease the scan period. */ static void update_task_scan_period(struct task_struct *p, unsigned long shared, unsigned long private) { unsigned int period_slot; int ratio; int diff; unsigned long remote = p->numa_faults_locality[0]; unsigned long local = p->numa_faults_locality[1]; /* * If there were no record hinting faults then either the task is * completely idle or all activity is areas that are not of interest * to automatic numa balancing. Related to that, if there were failed * migration then it implies we are migrating too quickly or the local * node is overloaded. In either case, scan slower */ if (local + shared == 0 || p->numa_faults_locality[2]) { p->numa_scan_period = min(p->numa_scan_period_max, p->numa_scan_period << 1); p->mm->numa_next_scan = jiffies + msecs_to_jiffies(p->numa_scan_period); return; } /* * Prepare to scale scan period relative to the current period. * == NUMA_PERIOD_THRESHOLD scan period stays the same * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) */ period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); if (ratio >= NUMA_PERIOD_THRESHOLD) { int slot = ratio - NUMA_PERIOD_THRESHOLD; if (!slot) slot = 1; diff = slot * period_slot; } else { diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; /* * Scale scan rate increases based on sharing. There is an * inverse relationship between the degree of sharing and * the adjustment made to the scanning period. Broadly * speaking the intent is that there is little point * scanning faster if shared accesses dominate as it may * simply bounce migrations uselessly */ ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); diff = (diff * ratio) / NUMA_PERIOD_SLOTS; } p->numa_scan_period = clamp(p->numa_scan_period + diff, task_scan_min(p), task_scan_max(p)); memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); } /* * Get the fraction of time the task has been running since the last * NUMA placement cycle. The scheduler keeps similar statistics, but * decays those on a 32ms period, which is orders of magnitude off * from the dozens-of-seconds NUMA balancing period. Use the scheduler * stats only if the task is so new there are no NUMA statistics yet. */ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) { u64 runtime, delta, now; /* Use the start of this time slice to avoid calculations. */ now = p->se.exec_start; runtime = p->se.sum_exec_runtime; if (p->last_task_numa_placement) { delta = runtime - p->last_sum_exec_runtime; *period = now - p->last_task_numa_placement; } else { delta = p->se.avg.runnable_avg_sum; *period = p->se.avg.avg_period; } p->last_sum_exec_runtime = runtime; p->last_task_numa_placement = now; return delta; } /* * Determine the preferred nid for a task in a numa_group. This needs to * be done in a way that produces consistent results with group_weight, * otherwise workloads might not converge. */ static int preferred_group_nid(struct task_struct *p, int nid) { nodemask_t nodes; int dist; /* Direct connections between all NUMA nodes. */ if (sched_numa_topology_type == NUMA_DIRECT) return nid; /* * On a system with glueless mesh NUMA topology, group_weight * scores nodes according to the number of NUMA hinting faults on * both the node itself, and on nearby nodes. */ if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { unsigned long score, max_score = 0; int node, max_node = nid; dist = sched_max_numa_distance; for_each_online_node(node) { score = group_weight(p, node, dist); if (score > max_score) { max_score = score; max_node = node; } } return max_node; } /* * Finding the preferred nid in a system with NUMA backplane * interconnect topology is more involved. The goal is to locate * tasks from numa_groups near each other in the system, and * untangle workloads from different sides of the system. This requires * searching down the hierarchy of node groups, recursively searching * inside the highest scoring group of nodes. The nodemask tricks * keep the complexity of the search down. */ nodes = node_online_map; for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { unsigned long max_faults = 0; nodemask_t max_group = NODE_MASK_NONE; int a, b; /* Are there nodes at this distance from each other? */ if (!find_numa_distance(dist)) continue; for_each_node_mask(a, nodes) { unsigned long faults = 0; nodemask_t this_group; nodes_clear(this_group); /* Sum group's NUMA faults; includes a==b case. */ for_each_node_mask(b, nodes) { if (node_distance(a, b) < dist) { faults += group_faults(p, b); node_set(b, this_group); node_clear(b, nodes); } } /* Remember the top group. */ if (faults > max_faults) { max_faults = faults; max_group = this_group; /* * subtle: at the smallest distance there is * just one node left in each "group", the * winner is the preferred nid. */ nid = a; } } /* Next round, evaluate the nodes within max_group. */ if (!max_faults) break; nodes = max_group; } return nid; } static void task_numa_placement(struct task_struct *p) { int seq, nid, max_nid = -1, max_group_nid = -1; unsigned long max_faults = 0, max_group_faults = 0; unsigned long fault_types[2] = { 0, 0 }; unsigned long total_faults; u64 runtime, period; spinlock_t *group_lock = NULL; /* * The p->mm->numa_scan_seq field gets updated without * exclusive access. Use READ_ONCE() here to ensure * that the field is read in a single access: */ seq = READ_ONCE(p->mm->numa_scan_seq); if (p->numa_scan_seq == seq) return; p->numa_scan_seq = seq; p->numa_scan_period_max = task_scan_max(p); total_faults = p->numa_faults_locality[0] + p->numa_faults_locality[1]; runtime = numa_get_avg_runtime(p, &period); /* If the task is part of a group prevent parallel updates to group stats */ if (p->numa_group) { group_lock = &p->numa_group->lock; spin_lock_irq(group_lock); } /* Find the node with the highest number of faults */ for_each_online_node(nid) { /* Keep track of the offsets in numa_faults array */ int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; unsigned long faults = 0, group_faults = 0; int priv; for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { long diff, f_diff, f_weight; mem_idx = task_faults_idx(NUMA_MEM, nid, priv); membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); /* Decay existing window, copy faults since last scan */ diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; fault_types[priv] += p->numa_faults[membuf_idx]; p->numa_faults[membuf_idx] = 0; /* * Normalize the faults_from, so all tasks in a group * count according to CPU use, instead of by the raw * number of faults. Tasks with little runtime have * little over-all impact on throughput, and thus their * faults are less important. */ f_weight = div64_u64(runtime << 16, period + 1); f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / (total_faults + 1); f_diff = f_weight - p->numa_faults[cpu_idx] / 2; p->numa_faults[cpubuf_idx] = 0; p->numa_faults[mem_idx] += diff; p->numa_faults[cpu_idx] += f_diff; faults += p->numa_faults[mem_idx]; p->total_numa_faults += diff; if (p->numa_group) { /* * safe because we can only change our own group * * mem_idx represents the offset for a given * nid and priv in a specific region because it * is at the beginning of the numa_faults array. */ p->numa_group->faults[mem_idx] += diff; p->numa_group->faults_cpu[mem_idx] += f_diff; p->numa_group->total_faults += diff; group_faults += p->numa_group->faults[mem_idx]; } } if (faults > max_faults) { max_faults = faults; max_nid = nid; } if (group_faults > max_group_faults) { max_group_faults = group_faults; max_group_nid = nid; } } update_task_scan_period(p, fault_types[0], fault_types[1]); if (p->numa_group) { update_numa_active_node_mask(p->numa_group); spin_unlock_irq(group_lock); max_nid = preferred_group_nid(p, max_group_nid); } if (max_faults) { /* Set the new preferred node */ if (max_nid != p->numa_preferred_nid) sched_setnuma(p, max_nid); if (task_node(p) != p->numa_preferred_nid) numa_migrate_preferred(p); } } static inline int get_numa_group(struct numa_group *grp) { return atomic_inc_not_zero(&grp->refcount); } static inline void put_numa_group(struct numa_group *grp) { if (atomic_dec_and_test(&grp->refcount)) kfree_rcu(grp, rcu); } static void task_numa_group(struct task_struct *p, int cpupid, int flags, int *priv) { struct numa_group *grp, *my_grp; struct task_struct *tsk; bool join = false; int cpu = cpupid_to_cpu(cpupid); int i; if (unlikely(!p->numa_group)) { unsigned int size = sizeof(struct numa_group) + 4*nr_node_ids*sizeof(unsigned long); grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); if (!grp) return; atomic_set(&grp->refcount, 1); spin_lock_init(&grp->lock); grp->gid = p->pid; /* Second half of the array tracks nids where faults happen */ grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * nr_node_ids; node_set(task_node(current), grp->active_nodes); for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) grp->faults[i] = p->numa_faults[i]; grp->total_faults = p->total_numa_faults; grp->nr_tasks++; rcu_assign_pointer(p->numa_group, grp); } rcu_read_lock(); tsk = READ_ONCE(cpu_rq(cpu)->curr); if (!cpupid_match_pid(tsk, cpupid)) goto no_join; grp = rcu_dereference(tsk->numa_group); if (!grp) goto no_join; my_grp = p->numa_group; if (grp == my_grp) goto no_join; /* * Only join the other group if its bigger; if we're the bigger group, * the other task will join us. */ if (my_grp->nr_tasks > grp->nr_tasks) goto no_join; /* * Tie-break on the grp address. */ if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) goto no_join; /* Always join threads in the same process. */ if (tsk->mm == current->mm) join = true; /* Simple filter to avoid false positives due to PID collisions */ if (flags & TNF_SHARED) join = true; /* Update priv based on whether false sharing was detected */ *priv = !join; if (join && !get_numa_group(grp)) goto no_join; rcu_read_unlock(); if (!join) return; BUG_ON(irqs_disabled()); double_lock_irq(&my_grp->lock, &grp->lock); for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { my_grp->faults[i] -= p->numa_faults[i]; grp->faults[i] += p->numa_faults[i]; } my_grp->total_faults -= p->total_numa_faults; grp->total_faults += p->total_numa_faults; my_grp->nr_tasks--; grp->nr_tasks++; spin_unlock(&my_grp->lock); spin_unlock_irq(&grp->lock); rcu_assign_pointer(p->numa_group, grp); put_numa_group(my_grp); return; no_join: rcu_read_unlock(); return; } void task_numa_free(struct task_struct *p) { struct numa_group *grp = p->numa_group; void *numa_faults = p->numa_faults; unsigned long flags; int i; if (grp) { spin_lock_irqsave(&grp->lock, flags); for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) grp->faults[i] -= p->numa_faults[i]; grp->total_faults -= p->total_numa_faults; grp->nr_tasks--; spin_unlock_irqrestore(&grp->lock, flags); RCU_INIT_POINTER(p->numa_group, NULL); put_numa_group(grp); } p->numa_faults = NULL; kfree(numa_faults); } /* * Got a PROT_NONE fault for a page on @node. */ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) { struct task_struct *p = current; bool migrated = flags & TNF_MIGRATED; int cpu_node = task_node(current); int local = !!(flags & TNF_FAULT_LOCAL); int priv; if (!numabalancing_enabled) return; /* for example, ksmd faulting in a user's mm */ if (!p->mm) return; /* Allocate buffer to track faults on a per-node basis */ if (unlikely(!p->numa_faults)) { int size = sizeof(*p->numa_faults) * NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); if (!p->numa_faults) return; p->total_numa_faults = 0; memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); } /* * First accesses are treated as private, otherwise consider accesses * to be private if the accessing pid has not changed */ if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { priv = 1; } else { priv = cpupid_match_pid(p, last_cpupid); if (!priv && !(flags & TNF_NO_GROUP)) task_numa_group(p, last_cpupid, flags, &priv); } /* * If a workload spans multiple NUMA nodes, a shared fault that * occurs wholly within the set of nodes that the workload is * actively using should be counted as local. This allows the * scan rate to slow down when a workload has settled down. */ if (!priv && !local && p->numa_group && node_isset(cpu_node, p->numa_group->active_nodes) && node_isset(mem_node, p->numa_group->active_nodes)) local = 1; task_numa_placement(p); /* * Retry task to preferred node migration periodically, in case it * case it previously failed, or the scheduler moved us. */ if (time_after(jiffies, p->numa_migrate_retry)) numa_migrate_preferred(p); if (migrated) p->numa_pages_migrated += pages; if (flags & TNF_MIGRATE_FAIL) p->numa_faults_locality[2] += pages; p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; p->numa_faults_locality[local] += pages; } static void reset_ptenuma_scan(struct task_struct *p) { /* * We only did a read acquisition of the mmap sem, so * p->mm->numa_scan_seq is written to without exclusive access * and the update is not guaranteed to be atomic. That's not * much of an issue though, since this is just used for * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not * expensive, to avoid any form of compiler optimizations: */ WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); p->mm->numa_scan_offset = 0; } /* * The expensive part of numa migration is done from task_work context. * Triggered from task_tick_numa(). */ void task_numa_work(struct callback_head *work) { unsigned long migrate, next_scan, now = jiffies; struct task_struct *p = current; struct mm_struct *mm = p->mm; struct vm_area_struct *vma; unsigned long start, end; unsigned long nr_pte_updates = 0; long pages; WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); work->next = work; /* protect against double add */ /* * Who cares about NUMA placement when they're dying. * * NOTE: make sure not to dereference p->mm before this check, * exit_task_work() happens _after_ exit_mm() so we could be called * without p->mm even though we still had it when we enqueued this * work. */ if (p->flags & PF_EXITING) return; if (!mm->numa_next_scan) { mm->numa_next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); } /* * Enforce maximal scan/migration frequency.. */ migrate = mm->numa_next_scan; if (time_before(now, migrate)) return; if (p->numa_scan_period == 0) { p->numa_scan_period_max = task_scan_max(p); p->numa_scan_period = task_scan_min(p); } next_scan = now + msecs_to_jiffies(p->numa_scan_period); if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) return; /* * Delay this task enough that another task of this mm will likely win * the next time around. */ p->node_stamp += 2 * TICK_NSEC; start = mm->numa_scan_offset; pages = sysctl_numa_balancing_scan_size; pages <<= 20 - PAGE_SHIFT; /* MB in pages */ if (!pages) return; down_read(&mm->mmap_sem); vma = find_vma(mm, start); if (!vma) { reset_ptenuma_scan(p); start = 0; vma = mm->mmap; } for (; vma; vma = vma->vm_next) { if (!vma_migratable(vma) || !vma_policy_mof(vma) || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { continue; } /* * Shared library pages mapped by multiple processes are not * migrated as it is expected they are cache replicated. Avoid * hinting faults in read-only file-backed mappings or the vdso * as migrating the pages will be of marginal benefit. */ if (!vma->vm_mm || (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) continue; /* * Skip inaccessible VMAs to avoid any confusion between * PROT_NONE and NUMA hinting ptes */ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) continue; do { start = max(start, vma->vm_start); end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); end = min(end, vma->vm_end); nr_pte_updates += change_prot_numa(vma, start, end); /* * Scan sysctl_numa_balancing_scan_size but ensure that * at least one PTE is updated so that unused virtual * address space is quickly skipped. */ if (nr_pte_updates) pages -= (end - start) >> PAGE_SHIFT; start = end; if (pages <= 0) goto out; cond_resched(); } while (end != vma->vm_end); } out: /* * It is possible to reach the end of the VMA list but the last few * VMAs are not guaranteed to the vma_migratable. If they are not, we * would find the !migratable VMA on the next scan but not reset the * scanner to the start so check it now. */ if (vma) mm->numa_scan_offset = start; else reset_ptenuma_scan(p); up_read(&mm->mmap_sem); } /* * Drive the periodic memory faults.. */ void task_tick_numa(struct rq *rq, struct task_struct *curr) { struct callback_head *work = &curr->numa_work; u64 period, now; /* * We don't care about NUMA placement if we don't have memory. */ if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) return; /* * Using runtime rather than walltime has the dual advantage that * we (mostly) drive the selection from busy threads and that the * task needs to have done some actual work before we bother with * NUMA placement. */ now = curr->se.sum_exec_runtime; period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; if (now - curr->node_stamp > period) { if (!curr->node_stamp) curr->numa_scan_period = task_scan_min(curr); curr->node_stamp += period; if (!time_before(jiffies, curr->mm->numa_next_scan)) { init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ task_work_add(curr, work, true); } } } #else static void task_tick_numa(struct rq *rq, struct task_struct *curr) { } static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) { } static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) { } #endif /* CONFIG_NUMA_BALANCING */ static void account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) { update_load_add(&cfs_rq->load, se->load.weight); if (!parent_entity(se)) update_load_add(&rq_of(cfs_rq)->load, se->load.weight); #ifdef CONFIG_SMP if (entity_is_task(se)) { struct rq *rq = rq_of(cfs_rq); account_numa_enqueue(rq, task_of(se)); list_add(&se->group_node, &rq->cfs_tasks); } #endif cfs_rq->nr_running++; } static void account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) { update_load_sub(&cfs_rq->load, se->load.weight); if (!parent_entity(se)) update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); if (entity_is_task(se)) { account_numa_dequeue(rq_of(cfs_rq), task_of(se)); list_del_init(&se->group_node); } cfs_rq->nr_running--; } #ifdef CONFIG_FAIR_GROUP_SCHED # ifdef CONFIG_SMP static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) { long tg_weight; /* * Use this CPU's actual weight instead of the last load_contribution * to gain a more accurate current total weight. See * update_cfs_rq_load_contribution(). */ tg_weight = atomic_long_read(&tg->load_avg); tg_weight -= cfs_rq->tg_load_contrib; tg_weight += cfs_rq->load.weight; return tg_weight; } static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) { long tg_weight, load, shares; tg_weight = calc_tg_weight(tg, cfs_rq); load = cfs_rq->load.weight; shares = (tg->shares * load); if (tg_weight) shares /= tg_weight; if (shares < MIN_SHARES) shares = MIN_SHARES; if (shares > tg->shares) shares = tg->shares; return shares; } # else /* CONFIG_SMP */ static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) { return tg->shares; } # endif /* CONFIG_SMP */ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, unsigned long weight) { if (se->on_rq) { /* commit outstanding execution time */ if (cfs_rq->curr == se) update_curr(cfs_rq); account_entity_dequeue(cfs_rq, se); } update_load_set(&se->load, weight); if (se->on_rq) account_entity_enqueue(cfs_rq, se); } static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); static void update_cfs_shares(struct cfs_rq *cfs_rq) { struct task_group *tg; struct sched_entity *se; long shares; tg = cfs_rq->tg; se = tg->se[cpu_of(rq_of(cfs_rq))]; if (!se || throttled_hierarchy(cfs_rq)) return; #ifndef CONFIG_SMP if (likely(se->load.weight == tg->shares)) return; #endif shares = calc_cfs_shares(cfs_rq, tg); reweight_entity(cfs_rq_of(se), se, shares); } #else /* CONFIG_FAIR_GROUP_SCHED */ static inline void update_cfs_shares(struct cfs_rq *cfs_rq) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_SMP /* * We choose a half-life close to 1 scheduling period. * Note: The tables below are dependent on this value. */ #define LOAD_AVG_PERIOD 32 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ /* Precomputed fixed inverse multiplies for multiplication by y^n */ static const u32 runnable_avg_yN_inv[] = { 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 0x85aac367, 0x82cd8698, }; /* * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent * over-estimates when re-combining. */ static const u32 runnable_avg_yN_sum[] = { 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, }; /* * Approximate: * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) */ static __always_inline u64 decay_load(u64 val, u64 n) { unsigned int local_n; if (!n) return val; else if (unlikely(n > LOAD_AVG_PERIOD * 63)) return 0; /* after bounds checking we can collapse to 32-bit */ local_n = n; /* * As y^PERIOD = 1/2, we can combine * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) * With a look-up table which covers y^n (n= LOAD_AVG_PERIOD)) { val >>= local_n / LOAD_AVG_PERIOD; local_n %= LOAD_AVG_PERIOD; } val *= runnable_avg_yN_inv[local_n]; /* We don't use SRR here since we always want to round down. */ return val >> 32; } /* * For updates fully spanning n periods, the contribution to runnable * average will be: \Sum 1024*y^n * * We can compute this reasonably efficiently by combining: * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n = LOAD_AVG_MAX_N)) return LOAD_AVG_MAX; /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ do { contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; n -= LOAD_AVG_PERIOD; } while (n > LOAD_AVG_PERIOD); contrib = decay_load(contrib, n); return contrib + runnable_avg_yN_sum[n]; } /* * We can represent the historical contribution to runnable average as the * coefficients of a geometric series. To do this we sub-divide our runnable * history into segments of approximately 1ms (1024us); label the segment that * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. * * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... * p0 p1 p2 * (now) (~1ms ago) (~2ms ago) * * Let u_i denote the fraction of p_i that the entity was runnable. * * We then designate the fractions u_i as our co-efficients, yielding the * following representation of historical load: * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... * * We choose y based on the with of a reasonably scheduling period, fixing: * y^32 = 0.5 * * This means that the contribution to load ~32ms ago (u_32) will be weighted * approximately half as much as the contribution to load within the last ms * (u_0). * * When a period "rolls over" and we have new u_0`, multiplying the previous * sum again by y is sufficient to update: * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] */ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu, struct sched_avg *sa, int runnable, int running) { u64 delta, periods; u32 runnable_contrib; int delta_w, decayed = 0; unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); delta = now - sa->last_runnable_update; /* * This should only happen when time goes backwards, which it * unfortunately does during sched clock init when we swap over to TSC. */ if ((s64)delta < 0) { sa->last_runnable_update = now; return 0; } /* * Use 1024ns as the unit of measurement since it's a reasonable * approximation of 1us and fast to compute. */ delta >>= 10; if (!delta) return 0; sa->last_runnable_update = now; /* delta_w is the amount already accumulated against our next period */ delta_w = sa->avg_period % 1024; if (delta + delta_w >= 1024) { /* period roll-over */ decayed = 1; /* * Now that we know we're crossing a period boundary, figure * out how much from delta we need to complete the current * period and accrue it. */ delta_w = 1024 - delta_w; if (runnable) sa->runnable_avg_sum += delta_w; if (running) sa->running_avg_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT; sa->avg_period += delta_w; delta -= delta_w; /* Figure out how many additional periods this update spans */ periods = delta / 1024; delta %= 1024; sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, periods + 1); sa->running_avg_sum = decay_load(sa->running_avg_sum, periods + 1); sa->avg_period = decay_load(sa->avg_period, periods + 1); /* Efficiently calculate \sum (1..n_period) 1024*y^i */ runnable_contrib = __compute_runnable_contrib(periods); if (runnable) sa->runnable_avg_sum += runnable_contrib; if (running) sa->running_avg_sum += runnable_contrib * scale_freq >> SCHED_CAPACITY_SHIFT; sa->avg_period += runnable_contrib; } /* Remainder of delta accrued against u_0` */ if (runnable) sa->runnable_avg_sum += delta; if (running) sa->running_avg_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT; sa->avg_period += delta; return decayed; } /* Synchronize an entity's decay with its parenting cfs_rq.*/ static inline u64 __synchronize_entity_decay(struct sched_entity *se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); u64 decays = atomic64_read(&cfs_rq->decay_counter); decays -= se->avg.decay_count; se->avg.decay_count = 0; if (!decays) return 0; se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); se->avg.utilization_avg_contrib = decay_load(se->avg.utilization_avg_contrib, decays); return decays; } #ifdef CONFIG_FAIR_GROUP_SCHED static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, int force_update) { struct task_group *tg = cfs_rq->tg; long tg_contrib; tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; tg_contrib -= cfs_rq->tg_load_contrib; if (!tg_contrib) return; if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { atomic_long_add(tg_contrib, &tg->load_avg); cfs_rq->tg_load_contrib += tg_contrib; } } /* * Aggregate cfs_rq runnable averages into an equivalent task_group * representation for computing load contributions. */ static inline void __update_tg_runnable_avg(struct sched_avg *sa, struct cfs_rq *cfs_rq) { struct task_group *tg = cfs_rq->tg; long contrib; /* The fraction of a cpu used by this cfs_rq */ contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, sa->avg_period + 1); contrib -= cfs_rq->tg_runnable_contrib; if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { atomic_add(contrib, &tg->runnable_avg); cfs_rq->tg_runnable_contrib += contrib; } } static inline void __update_group_entity_contrib(struct sched_entity *se) { struct cfs_rq *cfs_rq = group_cfs_rq(se); struct task_group *tg = cfs_rq->tg; int runnable_avg; u64 contrib; contrib = cfs_rq->tg_load_contrib * tg->shares; se->avg.load_avg_contrib = div_u64(contrib, atomic_long_read(&tg->load_avg) + 1); /* * For group entities we need to compute a correction term in the case * that they are consuming <1 cpu so that we would contribute the same * load as a task of equal weight. * * Explicitly co-ordinating this measurement would be expensive, but * fortunately the sum of each cpus contribution forms a usable * lower-bound on the true value. * * Consider the aggregate of 2 contributions. Either they are disjoint * (and the sum represents true value) or they are disjoint and we are * understating by the aggregate of their overlap. * * Extending this to N cpus, for a given overlap, the maximum amount we * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of * cpus that overlap for this interval and w_i is the interval width. * * On a small machine; the first term is well-bounded which bounds the * total error since w_i is a subset of the period. Whereas on a * larger machine, while this first term can be larger, if w_i is the * of consequential size guaranteed to see n_i*w_i quickly converge to * our upper bound of 1-cpu. */ runnable_avg = atomic_read(&tg->runnable_avg); if (runnable_avg < NICE_0_LOAD) { se->avg.load_avg_contrib *= runnable_avg; se->avg.load_avg_contrib >>= NICE_0_SHIFT; } } static inline void update_rq_runnable_avg(struct rq *rq, int runnable) { __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg, runnable, runnable); __update_tg_runnable_avg(&rq->avg, &rq->cfs); } #else /* CONFIG_FAIR_GROUP_SCHED */ static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, int force_update) {} static inline void __update_tg_runnable_avg(struct sched_avg *sa, struct cfs_rq *cfs_rq) {} static inline void __update_group_entity_contrib(struct sched_entity *se) {} static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} #endif /* CONFIG_FAIR_GROUP_SCHED */ static inline void __update_task_entity_contrib(struct sched_entity *se) { u32 contrib; /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); contrib /= (se->avg.avg_period + 1); se->avg.load_avg_contrib = scale_load(contrib); } /* Compute the current contribution to load_avg by se, return any delta */ static long __update_entity_load_avg_contrib(struct sched_entity *se) { long old_contrib = se->avg.load_avg_contrib; if (entity_is_task(se)) { __update_task_entity_contrib(se); } else { __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); __update_group_entity_contrib(se); } return se->avg.load_avg_contrib - old_contrib; } static inline void __update_task_entity_utilization(struct sched_entity *se) { u32 contrib; /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE); contrib /= (se->avg.avg_period + 1); se->avg.utilization_avg_contrib = scale_load(contrib); } static long __update_entity_utilization_avg_contrib(struct sched_entity *se) { long old_contrib = se->avg.utilization_avg_contrib; if (entity_is_task(se)) __update_task_entity_utilization(se); else se->avg.utilization_avg_contrib = group_cfs_rq(se)->utilization_load_avg; return se->avg.utilization_avg_contrib - old_contrib; } static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, long load_contrib) { if (likely(load_contrib < cfs_rq->blocked_load_avg)) cfs_rq->blocked_load_avg -= load_contrib; else cfs_rq->blocked_load_avg = 0; } static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); /* Update a sched_entity's runnable average */ static inline void update_entity_load_avg(struct sched_entity *se, int update_cfs_rq) { struct cfs_rq *cfs_rq = cfs_rq_of(se); long contrib_delta, utilization_delta; int cpu = cpu_of(rq_of(cfs_rq)); u64 now; /* * For a group entity we need to use their owned cfs_rq_clock_task() in * case they are the parent of a throttled hierarchy. */ if (entity_is_task(se)) now = cfs_rq_clock_task(cfs_rq); else now = cfs_rq_clock_task(group_cfs_rq(se)); if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq, cfs_rq->curr == se)) return; contrib_delta = __update_entity_load_avg_contrib(se); utilization_delta = __update_entity_utilization_avg_contrib(se); if (!update_cfs_rq) return; if (se->on_rq) { cfs_rq->runnable_load_avg += contrib_delta; cfs_rq->utilization_load_avg += utilization_delta; } else { subtract_blocked_load_contrib(cfs_rq, -contrib_delta); } } /* * Decay the load contributed by all blocked children and account this so that * their contribution may appropriately discounted when they wake up. */ static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) { u64 now = cfs_rq_clock_task(cfs_rq) >> 20; u64 decays; decays = now - cfs_rq->last_decay; if (!decays && !force_update) return; if (atomic_long_read(&cfs_rq->removed_load)) { unsigned long removed_load; removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); subtract_blocked_load_contrib(cfs_rq, removed_load); } if (decays) { cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, decays); atomic64_add(decays, &cfs_rq->decay_counter); cfs_rq->last_decay = now; } __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); } /* Add the load generated by se into cfs_rq's child load-average */ static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) { /* * We track migrations using entity decay_count <= 0, on a wake-up * migration we use a negative decay count to track the remote decays * accumulated while sleeping. * * Newly forked tasks are enqueued with se->avg.decay_count == 0, they * are seen by enqueue_entity_load_avg() as a migration with an already * constructed load_avg_contrib. */ if (unlikely(se->avg.decay_count <= 0)) { se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); if (se->avg.decay_count) { /* * In a wake-up migration we have to approximate the * time sleeping. This is because we can't synchronize * clock_task between the two cpus, and it is not * guaranteed to be read-safe. Instead, we can * approximate this using our carried decays, which are * explicitly atomically readable. */ se->avg.last_runnable_update -= (-se->avg.decay_count) << 20; update_entity_load_avg(se, 0); /* Indicate that we're now synchronized and on-rq */ se->avg.decay_count = 0; } wakeup = 0; } else { __synchronize_entity_decay(se); } /* migrated tasks did not contribute to our blocked load */ if (wakeup) { subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); update_entity_load_avg(se, 0); } cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib; /* we force update consideration on load-balancer moves */ update_cfs_rq_blocked_load(cfs_rq, !wakeup); } /* * Remove se's load from this cfs_rq child load-average, if the entity is * transitioning to a blocked state we track its projected decay using * blocked_load_avg. */ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) { update_entity_load_avg(se, 1); /* we force update consideration on load-balancer moves */ update_cfs_rq_blocked_load(cfs_rq, !sleep); cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib; if (sleep) { cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); } /* migrations, e.g. sleep=0 leave decay_count == 0 */ } /* * Update the rq's load with the elapsed running time before entering * idle. if the last scheduled task is not a CFS task, idle_enter will * be the only way to update the runnable statistic. */ void idle_enter_fair(struct rq *this_rq) { update_rq_runnable_avg(this_rq, 1); } /* * Update the rq's load with the elapsed idle time before a task is * scheduled. if the newly scheduled task is not a CFS task, idle_exit will * be the only way to update the runnable statistic. */ void idle_exit_fair(struct rq *this_rq) { update_rq_runnable_avg(this_rq, 0); } static int idle_balance(struct rq *this_rq); #else /* CONFIG_SMP */ static inline void update_entity_load_avg(struct sched_entity *se, int update_cfs_rq) {} static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) {} static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) {} static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) {} static inline int idle_balance(struct rq *rq) { return 0; } #endif /* CONFIG_SMP */ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) { #ifdef CONFIG_SCHEDSTATS struct task_struct *tsk = NULL; if (entity_is_task(se)) tsk = task_of(se); if (se->statistics.sleep_start) { u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; if ((s64)delta < 0) delta = 0; if (unlikely(delta > se->statistics.sleep_max)) se->statistics.sleep_max = delta; se->statistics.sleep_start = 0; se->statistics.sum_sleep_runtime += delta; if (tsk) { account_scheduler_latency(tsk, delta >> 10, 1); trace_sched_stat_sleep(tsk, delta); } } if (se->statistics.block_start) { u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; if ((s64)delta < 0) delta = 0; if (unlikely(delta > se->statistics.block_max)) se->statistics.block_max = delta; se->statistics.block_start = 0; se->statistics.sum_sleep_runtime += delta; if (tsk) { if (tsk->in_iowait) { se->statistics.iowait_sum += delta; se->statistics.iowait_count++; trace_sched_stat_iowait(tsk, delta); } trace_sched_stat_blocked(tsk, delta); /* * Blocking time is in units of nanosecs, so shift by * 20 to get a milliseconds-range estimation of the * amount of time that the task spent sleeping: */ if (unlikely(prof_on == SLEEP_PROFILING)) { profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), delta >> 20); } account_scheduler_latency(tsk, delta >> 10, 0); } } #endif } static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) { #ifdef CONFIG_SCHED_DEBUG s64 d = se->vruntime - cfs_rq->min_vruntime; if (d < 0) d = -d; if (d > 3*sysctl_sched_latency) schedstat_inc(cfs_rq, nr_spread_over); #endif } static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) { u64 vruntime = cfs_rq->min_vruntime; /* * The 'current' period is already promised to the current tasks, * however the extra weight of the new task will slow them down a * little, place the new task so that it fits in the slot that * stays open at the end. */ if (initial && sched_feat(START_DEBIT)) vruntime += sched_vslice(cfs_rq, se); /* sleeps up to a single latency don't count. */ if (!initial) { unsigned long thresh = sysctl_sched_latency; /* * Halve their sleep time's effect, to allow * for a gentler effect of sleepers: */ if (sched_feat(GENTLE_FAIR_SLEEPERS)) thresh >>= 1; vruntime -= thresh; } /* ensure we never gain time by being placed backwards. */ se->vruntime = max_vruntime(se->vruntime, vruntime); } static void check_enqueue_throttle(struct cfs_rq *cfs_rq); static void enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { /* * Update the normalized vruntime before updating min_vruntime * through calling update_curr(). */ if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) se->vruntime += cfs_rq->min_vruntime; /* * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); account_entity_enqueue(cfs_rq, se); update_cfs_shares(cfs_rq); if (flags & ENQUEUE_WAKEUP) { place_entity(cfs_rq, se, 0); enqueue_sleeper(cfs_rq, se); } update_stats_enqueue(cfs_rq, se); check_spread(cfs_rq, se); if (se != cfs_rq->curr) __enqueue_entity(cfs_rq, se); se->on_rq = 1; if (cfs_rq->nr_running == 1) { list_add_leaf_cfs_rq(cfs_rq); check_enqueue_throttle(cfs_rq); } } static void __clear_buddies_last(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); if (cfs_rq->last != se) break; cfs_rq->last = NULL; } } static void __clear_buddies_next(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); if (cfs_rq->next != se) break; cfs_rq->next = NULL; } } static void __clear_buddies_skip(struct sched_entity *se) { for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); if (cfs_rq->skip != se) break; cfs_rq->skip = NULL; } } static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) { if (cfs_rq->last == se) __clear_buddies_last(se); if (cfs_rq->next == se) __clear_buddies_next(se); if (cfs_rq->skip == se) __clear_buddies_skip(se); } static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); static void dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { /* * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); update_stats_dequeue(cfs_rq, se); if (flags & DEQUEUE_SLEEP) { #ifdef CONFIG_SCHEDSTATS if (entity_is_task(se)) { struct task_struct *tsk = task_of(se); if (tsk->state & TASK_INTERRUPTIBLE) se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); if (tsk->state & TASK_UNINTERRUPTIBLE) se->statistics.block_start = rq_clock(rq_of(cfs_rq)); } #endif } clear_buddies(cfs_rq, se); if (se != cfs_rq->curr) __dequeue_entity(cfs_rq, se); se->on_rq = 0; account_entity_dequeue(cfs_rq, se); /* * Normalize the entity after updating the min_vruntime because the * update can refer to the ->curr item and we need to reflect this * movement in our normalized position. */ if (!(flags & DEQUEUE_SLEEP)) se->vruntime -= cfs_rq->min_vruntime; /* return excess runtime on last dequeue */ return_cfs_rq_runtime(cfs_rq); update_min_vruntime(cfs_rq); update_cfs_shares(cfs_rq); } /* * Preempt the current task with a newly woken task if needed: */ static void check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) { unsigned long ideal_runtime, delta_exec; struct sched_entity *se; s64 delta; ideal_runtime = sched_slice(cfs_rq, curr); delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; if (delta_exec > ideal_runtime) { resched_curr(rq_of(cfs_rq)); /* * The current task ran long enough, ensure it doesn't get * re-elected due to buddy favours. */ clear_buddies(cfs_rq, curr); return; } /* * Ensure that a task that missed wakeup preemption by a * narrow margin doesn't have to wait for a full slice. * This also mitigates buddy induced latencies under load. */ if (delta_exec < sysctl_sched_min_granularity) return; se = __pick_first_entity(cfs_rq); delta = curr->vruntime - se->vruntime; if (delta < 0) return; if (delta > ideal_runtime) resched_curr(rq_of(cfs_rq)); } static void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { /* 'current' is not kept within the tree. */ if (se->on_rq) { /* * Any task has to be enqueued before it get to execute on * a CPU. So account for the time it spent waiting on the * runqueue. */ update_stats_wait_end(cfs_rq, se); __dequeue_entity(cfs_rq, se); update_entity_load_avg(se, 1); } update_stats_curr_start(cfs_rq, se); cfs_rq->curr = se; #ifdef CONFIG_SCHEDSTATS /* * Track our maximum slice length, if the CPU's load is at * least twice that of our own weight (i.e. dont track it * when there are only lesser-weight tasks around): */ if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { se->statistics.slice_max = max(se->statistics.slice_max, se->sum_exec_runtime - se->prev_sum_exec_runtime); } #endif se->prev_sum_exec_runtime = se->sum_exec_runtime; } static int wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); /* * Pick the next process, keeping these things in mind, in this order: * 1) keep things fair between processes/task groups * 2) pick the "next" process, since someone really wants that to run * 3) pick the "last" process, for cache locality * 4) do not run the "skip" process, if something else is available */ static struct sched_entity * pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) { struct sched_entity *left = __pick_first_entity(cfs_rq); struct sched_entity *se; /* * If curr is set we have to see if its left of the leftmost entity * still in the tree, provided there was anything in the tree at all. */ if (!left || (curr && entity_before(curr, left))) left = curr; se = left; /* ideally we run the leftmost entity */ /* * Avoid running the skip buddy, if running something else can * be done without getting too unfair. */ if (cfs_rq->skip == se) { struct sched_entity *second; if (se == curr) { second = __pick_first_entity(cfs_rq); } else { second = __pick_next_entity(se); if (!second || (curr && entity_before(curr, second))) second = curr; } if (second && wakeup_preempt_entity(second, left) < 1) se = second; } /* * Prefer last buddy, try to return the CPU to a preempted task. */ if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) se = cfs_rq->last; /* * Someone really wants this to run. If it's not unfair, run it. */ if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) se = cfs_rq->next; clear_buddies(cfs_rq, se); return se; } static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) { /* * If still on the runqueue then deactivate_task() * was not called and update_curr() has to be done: */ if (prev->on_rq) update_curr(cfs_rq); /* throttle cfs_rqs exceeding runtime */ check_cfs_rq_runtime(cfs_rq); check_spread(cfs_rq, prev); if (prev->on_rq) { update_stats_wait_start(cfs_rq, prev); /* Put 'current' back into the tree. */ __enqueue_entity(cfs_rq, prev); /* in !on_rq case, update occurred at dequeue */ update_entity_load_avg(prev, 1); } cfs_rq->curr = NULL; } static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) { /* * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); /* * Ensure that runnable average is periodically updated. */ update_entity_load_avg(curr, 1); update_cfs_rq_blocked_load(cfs_rq, 1); update_cfs_shares(cfs_rq); #ifdef CONFIG_SCHED_HRTICK /* * queued ticks are scheduled to match the slice, so don't bother * validating it and just reschedule. */ if (queued) { resched_curr(rq_of(cfs_rq)); return; } /* * don't let the period tick interfere with the hrtick preemption */ if (!sched_feat(DOUBLE_TICK) && hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) return; #endif if (cfs_rq->nr_running > 1) check_preempt_tick(cfs_rq, curr); } /************************************************** * CFS bandwidth control machinery */ #ifdef CONFIG_CFS_BANDWIDTH #ifdef HAVE_JUMP_LABEL static struct static_key __cfs_bandwidth_used; static inline bool cfs_bandwidth_used(void) { return static_key_false(&__cfs_bandwidth_used); } void cfs_bandwidth_usage_inc(void) { static_key_slow_inc(&__cfs_bandwidth_used); } void cfs_bandwidth_usage_dec(void) { static_key_slow_dec(&__cfs_bandwidth_used); } #else /* HAVE_JUMP_LABEL */ static bool cfs_bandwidth_used(void) { return true; } void cfs_bandwidth_usage_inc(void) {} void cfs_bandwidth_usage_dec(void) {} #endif /* HAVE_JUMP_LABEL */ /* * default period for cfs group bandwidth. * default: 0.1s, units: nanoseconds */ static inline u64 default_cfs_period(void) { return 100000000ULL; } static inline u64 sched_cfs_bandwidth_slice(void) { return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; } /* * Replenish runtime according to assigned quota and update expiration time. * We use sched_clock_cpu directly instead of rq->clock to avoid adding * additional synchronization around rq->lock. * * requires cfs_b->lock */ void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) { u64 now; if (cfs_b->quota == RUNTIME_INF) return; now = sched_clock_cpu(smp_processor_id()); cfs_b->runtime = cfs_b->quota; cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); } static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) { return &tg->cfs_bandwidth; } /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) { if (unlikely(cfs_rq->throttle_count)) return cfs_rq->throttled_clock_task; return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; } /* returns 0 on failure to allocate runtime */ static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) { struct task_group *tg = cfs_rq->tg; struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); u64 amount = 0, min_amount, expires; /* note: this is a positive sum as runtime_remaining <= 0 */ min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; raw_spin_lock(&cfs_b->lock); if (cfs_b->quota == RUNTIME_INF) amount = min_amount; else { start_cfs_bandwidth(cfs_b); if (cfs_b->runtime > 0) { amount = min(cfs_b->runtime, min_amount); cfs_b->runtime -= amount; cfs_b->idle = 0; } } expires = cfs_b->runtime_expires; raw_spin_unlock(&cfs_b->lock); cfs_rq->runtime_remaining += amount; /* * we may have advanced our local expiration to account for allowed * spread between our sched_clock and the one on which runtime was * issued. */ if ((s64)(expires - cfs_rq->runtime_expires) > 0) cfs_rq->runtime_expires = expires; return cfs_rq->runtime_remaining > 0; } /* * Note: This depends on the synchronization provided by sched_clock and the * fact that rq->clock snapshots this value. */ static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) { struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); /* if the deadline is ahead of our clock, nothing to do */ if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) return; if (cfs_rq->runtime_remaining < 0) return; /* * If the local deadline has passed we have to consider the * possibility that our sched_clock is 'fast' and the global deadline * has not truly expired. * * Fortunately we can check determine whether this the case by checking * whether the global deadline has advanced. It is valid to compare * cfs_b->runtime_expires without any locks since we only care about * exact equality, so a partial write will still work. */ if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { /* extend local deadline, drift is bounded above by 2 ticks */ cfs_rq->runtime_expires += TICK_NSEC; } else { /* global deadline is ahead, expiration has passed */ cfs_rq->runtime_remaining = 0; } } static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) { /* dock delta_exec before expiring quota (as it could span periods) */ cfs_rq->runtime_remaining -= delta_exec; expire_cfs_rq_runtime(cfs_rq); if (likely(cfs_rq->runtime_remaining > 0)) return; /* * if we're unable to extend our runtime we resched so that the active * hierarchy can be throttled */ if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) resched_curr(rq_of(cfs_rq)); } static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) { if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) return; __account_cfs_rq_runtime(cfs_rq, delta_exec); } static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) { return cfs_bandwidth_used() && cfs_rq->throttled; } /* check whether cfs_rq, or any parent, is throttled */ static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) { return cfs_bandwidth_used() && cfs_rq->throttle_count; } /* * Ensure that neither of the group entities corresponding to src_cpu or * dest_cpu are members of a throttled hierarchy when performing group * load-balance operations. */ static inline int throttled_lb_pair(struct task_group *tg, int src_cpu, int dest_cpu) { struct cfs_rq *src_cfs_rq, *dest_cfs_rq; src_cfs_rq = tg->cfs_rq[src_cpu]; dest_cfs_rq = tg->cfs_rq[dest_cpu]; return throttled_hierarchy(src_cfs_rq) || throttled_hierarchy(dest_cfs_rq); } /* updated child weight may affect parent so we have to do this bottom up */ static int tg_unthrottle_up(struct task_group *tg, void *data) { struct rq *rq = data; struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; cfs_rq->throttle_count--; #ifdef CONFIG_SMP if (!cfs_rq->throttle_count) { /* adjust cfs_rq_clock_task() */ cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - cfs_rq->throttled_clock_task; } #endif return 0; } static int tg_throttle_down(struct task_group *tg, void *data) { struct rq *rq = data; struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; /* group is entering throttled state, stop time */ if (!cfs_rq->throttle_count) cfs_rq->throttled_clock_task = rq_clock_task(rq); cfs_rq->throttle_count++; return 0; } static void throttle_cfs_rq(struct cfs_rq *cfs_rq) { struct rq *rq = rq_of(cfs_rq); struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); struct sched_entity *se; long task_delta, dequeue = 1; bool empty; se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; /* freeze hierarchy runnable averages while throttled */ rcu_read_lock(); walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); rcu_read_unlock(); task_delta = cfs_rq->h_nr_running; for_each_sched_entity(se) { struct cfs_rq *qcfs_rq = cfs_rq_of(se); /* throttled entity or throttle-on-deactivate */ if (!se->on_rq) break; if (dequeue) dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); qcfs_rq->h_nr_running -= task_delta; if (qcfs_rq->load.weight) dequeue = 0; } if (!se) sub_nr_running(rq, task_delta); cfs_rq->throttled = 1; cfs_rq->throttled_clock = rq_clock(rq); raw_spin_lock(&cfs_b->lock); empty = list_empty(&cfs_rq->throttled_list); /* * Add to the _head_ of the list, so that an already-started * distribute_cfs_runtime will not see us */ list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); /* * If we're the first throttled task, make sure the bandwidth * timer is running. */ if (empty) start_cfs_bandwidth(cfs_b); raw_spin_unlock(&cfs_b->lock); } void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) { struct rq *rq = rq_of(cfs_rq); struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); struct sched_entity *se; int enqueue = 1; long task_delta; se = cfs_rq->tg->se[cpu_of(rq)]; cfs_rq->throttled = 0; update_rq_clock(rq); raw_spin_lock(&cfs_b->lock); cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; list_del_rcu(&cfs_rq->throttled_list); raw_spin_unlock(&cfs_b->lock); /* update hierarchical throttle state */ walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); if (!cfs_rq->load.weight) return; task_delta = cfs_rq->h_nr_running; for_each_sched_entity(se) { if (se->on_rq) enqueue = 0; cfs_rq = cfs_rq_of(se); if (enqueue) enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); cfs_rq->h_nr_running += task_delta; if (cfs_rq_throttled(cfs_rq)) break; } if (!se) add_nr_running(rq, task_delta); /* determine whether we need to wake up potentially idle cpu */ if (rq->curr == rq->idle && rq->cfs.nr_running) resched_curr(rq); } static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining, u64 expires) { struct cfs_rq *cfs_rq; u64 runtime; u64 starting_runtime = remaining; rcu_read_lock(); list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, throttled_list) { struct rq *rq = rq_of(cfs_rq); raw_spin_lock(&rq->lock); if (!cfs_rq_throttled(cfs_rq)) goto next; runtime = -cfs_rq->runtime_remaining + 1; if (runtime > remaining) runtime = remaining; remaining -= runtime; cfs_rq->runtime_remaining += runtime; cfs_rq->runtime_expires = expires; /* we check whether we're throttled above */ if (cfs_rq->runtime_remaining > 0) unthrottle_cfs_rq(cfs_rq); next: raw_spin_unlock(&rq->lock); if (!remaining) break; } rcu_read_unlock(); return starting_runtime - remaining; } /* * Responsible for refilling a task_group's bandwidth and unthrottling its * cfs_rqs as appropriate. If there has been no activity within the last * period the timer is deactivated until scheduling resumes; cfs_b->idle is * used to track this state. */ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) { u64 runtime, runtime_expires; int throttled; /* no need to continue the timer with no bandwidth constraint */ if (cfs_b->quota == RUNTIME_INF) goto out_deactivate; throttled = !list_empty(&cfs_b->throttled_cfs_rq); cfs_b->nr_periods += overrun; /* * idle depends on !throttled (for the case of a large deficit), and if * we're going inactive then everything else can be deferred */ if (cfs_b->idle && !throttled) goto out_deactivate; __refill_cfs_bandwidth_runtime(cfs_b); if (!throttled) { /* mark as potentially idle for the upcoming period */ cfs_b->idle = 1; return 0; } /* account preceding periods in which throttling occurred */ cfs_b->nr_throttled += overrun; runtime_expires = cfs_b->runtime_expires; /* * This check is repeated as we are holding onto the new bandwidth while * we unthrottle. This can potentially race with an unthrottled group * trying to acquire new bandwidth from the global pool. This can result * in us over-using our runtime if it is all used during this loop, but * only by limited amounts in that extreme case. */ while (throttled && cfs_b->runtime > 0) { runtime = cfs_b->runtime; raw_spin_unlock(&cfs_b->lock); /* we can't nest cfs_b->lock while distributing bandwidth */ runtime = distribute_cfs_runtime(cfs_b, runtime, runtime_expires); raw_spin_lock(&cfs_b->lock); throttled = !list_empty(&cfs_b->throttled_cfs_rq); cfs_b->runtime -= min(runtime, cfs_b->runtime); } /* * While we are ensured activity in the period following an * unthrottle, this also covers the case in which the new bandwidth is * insufficient to cover the existing bandwidth deficit. (Forcing the * timer to remain active while there are any throttled entities.) */ cfs_b->idle = 0; return 0; out_deactivate: return 1; } /* a cfs_rq won't donate quota below this amount */ static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; /* minimum remaining period time to redistribute slack quota */ static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; /* how long we wait to gather additional slack before distributing */ static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; /* * Are we near the end of the current quota period? * * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the * hrtimer base being cleared by hrtimer_start. In the case of * migrate_hrtimers, base is never cleared, so we are fine. */ static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) { struct hrtimer *refresh_timer = &cfs_b->period_timer; u64 remaining; /* if the call-back is running a quota refresh is already occurring */ if (hrtimer_callback_running(refresh_timer)) return 1; /* is a quota refresh about to occur? */ remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); if (remaining < min_expire) return 1; return 0; } static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) { u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; /* if there's a quota refresh soon don't bother with slack */ if (runtime_refresh_within(cfs_b, min_left)) return; hrtimer_start(&cfs_b->slack_timer, ns_to_ktime(cfs_bandwidth_slack_period), HRTIMER_MODE_REL); } /* we know any runtime found here is valid as update_curr() precedes return */ static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) { struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; if (slack_runtime <= 0) return; raw_spin_lock(&cfs_b->lock); if (cfs_b->quota != RUNTIME_INF && cfs_rq->runtime_expires == cfs_b->runtime_expires) { cfs_b->runtime += slack_runtime; /* we are under rq->lock, defer unthrottling using a timer */ if (cfs_b->runtime > sched_cfs_bandwidth_slice() && !list_empty(&cfs_b->throttled_cfs_rq)) start_cfs_slack_bandwidth(cfs_b); } raw_spin_unlock(&cfs_b->lock); /* even if it's not valid for return we don't want to try again */ cfs_rq->runtime_remaining -= slack_runtime; } static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) { if (!cfs_bandwidth_used()) return; if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) return; __return_cfs_rq_runtime(cfs_rq); } /* * This is done with a timer (instead of inline with bandwidth return) since * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. */ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) { u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); u64 expires; /* confirm we're still not at a refresh boundary */ raw_spin_lock(&cfs_b->lock); if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { raw_spin_unlock(&cfs_b->lock); return; } if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) runtime = cfs_b->runtime; expires = cfs_b->runtime_expires; raw_spin_unlock(&cfs_b->lock); if (!runtime) return; runtime = distribute_cfs_runtime(cfs_b, runtime, expires); raw_spin_lock(&cfs_b->lock); if (expires == cfs_b->runtime_expires) cfs_b->runtime -= min(runtime, cfs_b->runtime); raw_spin_unlock(&cfs_b->lock); } /* * When a group wakes up we want to make sure that its quota is not already * expired/exceeded, otherwise it may be allowed to steal additional ticks of * runtime as update_curr() throttling can not not trigger until it's on-rq. */ static void check_enqueue_throttle(struct cfs_rq *cfs_rq) { if (!cfs_bandwidth_used()) return; /* an active group must be handled by the update_curr()->put() path */ if (!cfs_rq->runtime_enabled || cfs_rq->curr) return; /* ensure the group is not already throttled */ if (cfs_rq_throttled(cfs_rq)) return; /* update runtime allocation */ account_cfs_rq_runtime(cfs_rq, 0); if (cfs_rq->runtime_remaining <= 0) throttle_cfs_rq(cfs_rq); } /* conditionally throttle active cfs_rq's from put_prev_entity() */ static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { if (!cfs_bandwidth_used()) return false; if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) return false; /* * it's possible for a throttled entity to be forced into a running * state (e.g. set_curr_task), in this case we're finished. */ if (cfs_rq_throttled(cfs_rq)) return true; throttle_cfs_rq(cfs_rq); return true; } static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) { struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, slack_timer); do_sched_cfs_slack_timer(cfs_b); return HRTIMER_NORESTART; } static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) { struct cfs_bandwidth *cfs_b = container_of(timer, struct cfs_bandwidth, period_timer); int overrun; int idle = 0; raw_spin_lock(&cfs_b->lock); for (;;) { overrun = hrtimer_forward_now(timer, cfs_b->period); if (!overrun) break; idle = do_sched_cfs_period_timer(cfs_b, overrun); } if (idle) cfs_b->period_active = 0; raw_spin_unlock(&cfs_b->lock); return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; } void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { raw_spin_lock_init(&cfs_b->lock); cfs_b->runtime = 0; cfs_b->quota = RUNTIME_INF; cfs_b->period = ns_to_ktime(default_cfs_period()); INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); cfs_b->period_timer.function = sched_cfs_period_timer; hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cfs_b->slack_timer.function = sched_cfs_slack_timer; } static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) { cfs_rq->runtime_enabled = 0; INIT_LIST_HEAD(&cfs_rq->throttled_list); } void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { lockdep_assert_held(&cfs_b->lock); if (!cfs_b->period_active) { cfs_b->period_active = 1; hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); } } static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { /* init_cfs_bandwidth() was not called */ if (!cfs_b->throttled_cfs_rq.next) return; hrtimer_cancel(&cfs_b->period_timer); hrtimer_cancel(&cfs_b->slack_timer); } static void __maybe_unused update_runtime_enabled(struct rq *rq) { struct cfs_rq *cfs_rq; for_each_leaf_cfs_rq(rq, cfs_rq) { struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; raw_spin_lock(&cfs_b->lock); cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; raw_spin_unlock(&cfs_b->lock); } } static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) { struct cfs_rq *cfs_rq; for_each_leaf_cfs_rq(rq, cfs_rq) { if (!cfs_rq->runtime_enabled) continue; /* * clock_task is not advancing so we just need to make sure * there's some valid quota amount */ cfs_rq->runtime_remaining = 1; /* * Offline rq is schedulable till cpu is completely disabled * in take_cpu_down(), so we prevent new cfs throttling here. */ cfs_rq->runtime_enabled = 0; if (cfs_rq_throttled(cfs_rq)) unthrottle_cfs_rq(cfs_rq); } } #else /* CONFIG_CFS_BANDWIDTH */ static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) { return rq_clock_task(rq_of(cfs_rq)); } static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) { return 0; } static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) { return 0; } static inline int throttled_lb_pair(struct task_group *tg, int src_cpu, int dest_cpu) { return 0; } void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} #ifdef CONFIG_FAIR_GROUP_SCHED static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} #endif static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) { return NULL; } static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} static inline void update_runtime_enabled(struct rq *rq) {} static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} #endif /* CONFIG_CFS_BANDWIDTH */ /************************************************** * CFS operations on tasks: */ #ifdef CONFIG_SCHED_HRTICK static void hrtick_start_fair(struct rq *rq, struct task_struct *p) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq = cfs_rq_of(se); WARN_ON(task_rq(p) != rq); if (cfs_rq->nr_running > 1) { u64 slice = sched_slice(cfs_rq, se); u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; s64 delta = slice - ran; if (delta < 0) { if (rq->curr == p) resched_curr(rq); return; } hrtick_start(rq, delta); } } /* * called from enqueue/dequeue and updates the hrtick when the * current task is from our class and nr_running is low enough * to matter. */ static void hrtick_update(struct rq *rq) { struct task_struct *curr = rq->curr; if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) return; if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) hrtick_start_fair(rq, curr); } #else /* !CONFIG_SCHED_HRTICK */ static inline void hrtick_start_fair(struct rq *rq, struct task_struct *p) { } static inline void hrtick_update(struct rq *rq) { } #endif /* * The enqueue_task method is called before nr_running is * increased. Here we update the fair scheduling stats and * then put the task into the rbtree: */ static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se; for_each_sched_entity(se) { if (se->on_rq) break; cfs_rq = cfs_rq_of(se); enqueue_entity(cfs_rq, se, flags); /* * end evaluation on encountering a throttled cfs_rq * * note: in the case of encountering a throttled cfs_rq we will * post the final h_nr_running increment below. */ if (cfs_rq_throttled(cfs_rq)) break; cfs_rq->h_nr_running++; flags = ENQUEUE_WAKEUP; } for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); cfs_rq->h_nr_running++; if (cfs_rq_throttled(cfs_rq)) break; update_cfs_shares(cfs_rq); update_entity_load_avg(se, 1); } if (!se) { update_rq_runnable_avg(rq, rq->nr_running); add_nr_running(rq, 1); } hrtick_update(rq); } static void set_next_buddy(struct sched_entity *se); /* * The dequeue_task method is called before nr_running is * decreased. We remove the task from the rbtree and * update the fair scheduling stats: */ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se; int task_sleep = flags & DEQUEUE_SLEEP; for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); dequeue_entity(cfs_rq, se, flags); /* * end evaluation on encountering a throttled cfs_rq * * note: in the case of encountering a throttled cfs_rq we will * post the final h_nr_running decrement below. */ if (cfs_rq_throttled(cfs_rq)) break; cfs_rq->h_nr_running--; /* Don't dequeue parent if it has other entities besides us */ if (cfs_rq->load.weight) { /* * Bias pick_next to pick a task from this cfs_rq, as * p is sleeping when it is within its sched_slice. */ if (task_sleep && parent_entity(se)) set_next_buddy(parent_entity(se)); /* avoid re-evaluating load for this entity */ se = parent_entity(se); break; } flags |= DEQUEUE_SLEEP; } for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); cfs_rq->h_nr_running--; if (cfs_rq_throttled(cfs_rq)) break; update_cfs_shares(cfs_rq); update_entity_load_avg(se, 1); } if (!se) { sub_nr_running(rq, 1); update_rq_runnable_avg(rq, 1); } hrtick_update(rq); } #ifdef CONFIG_SMP /* * per rq 'load' arrray crap; XXX kill this. */ /* * The exact cpuload at various idx values, calculated at every tick would be * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load * * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called * on nth tick when cpu may be busy, then we have: * load = ((2^idx - 1) / 2^idx)^(n-1) * load * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load * * decay_load_missed() below does efficient calculation of * load = ((2^idx - 1) / 2^idx)^(n-1) * load * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load * * The calculation is approximated on a 128 point scale. * degrade_zero_ticks is the number of ticks after which load at any * particular idx is approximated to be zero. * degrade_factor is a precomputed table, a row for each load idx. * Each column corresponds to degradation factor for a power of two ticks, * based on 128 point scale. * Example: * row 2, col 3 (=12) says that the degradation at load idx 2 after * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). * * With this power of 2 load factors, we can degrade the load n times * by looking at 1 bits in n and doing as many mult/shift instead of * n mult/shifts needed by the exact degradation. */ #define DEGRADE_SHIFT 7 static const unsigned char degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; static const unsigned char degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { {0, 0, 0, 0, 0, 0, 0, 0}, {64, 32, 8, 0, 0, 0, 0, 0}, {96, 72, 40, 12, 1, 0, 0}, {112, 98, 75, 43, 15, 1, 0}, {120, 112, 98, 76, 45, 16, 2} }; /* * Update cpu_load for any missed ticks, due to tickless idle. The backlog * would be when CPU is idle and so we just decay the old load without * adding any new load. */ static unsigned long decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) { int j = 0; if (!missed_updates) return load; if (missed_updates >= degrade_zero_ticks[idx]) return 0; if (idx == 1) return load >> missed_updates; while (missed_updates) { if (missed_updates % 2) load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; missed_updates >>= 1; j++; } return load; } /* * Update rq->cpu_load[] statistics. This function is usually called every * scheduler tick (TICK_NSEC). With tickless idle this will not be called * every tick. We fix it up based on jiffies. */ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, unsigned long pending_updates) { int i, scale; this_rq->nr_load_updates++; /* Update our load: */ this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { unsigned long old_load, new_load; /* scale is effectively 1 << i now, and >> i divides by scale */ old_load = this_rq->cpu_load[i]; old_load = decay_load_missed(old_load, pending_updates - 1, i); new_load = this_load; /* * Round up the averaging division if load is increasing. This * prevents us from getting stuck on 9 if the load is 10, for * example. */ if (new_load > old_load) new_load += scale - 1; this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; } sched_avg_update(this_rq); } #ifdef CONFIG_NO_HZ_COMMON /* * There is no sane way to deal with nohz on smp when using jiffies because the * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. * * Therefore we cannot use the delta approach from the regular tick since that * would seriously skew the load calculation. However we'll make do for those * updates happening while idle (nohz_idle_balance) or coming out of idle * (tick_nohz_idle_exit). * * This means we might still be one tick off for nohz periods. */ /* * Called from nohz_idle_balance() to update the load ratings before doing the * idle balance. */ static void update_idle_cpu_load(struct rq *this_rq) { unsigned long curr_jiffies = READ_ONCE(jiffies); unsigned long load = this_rq->cfs.runnable_load_avg; unsigned long pending_updates; /* * bail if there's load or we're actually up-to-date. */ if (load || curr_jiffies == this_rq->last_load_update_tick) return; pending_updates = curr_jiffies - this_rq->last_load_update_tick; this_rq->last_load_update_tick = curr_jiffies; __update_cpu_load(this_rq, load, pending_updates); } /* * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. */ void update_cpu_load_nohz(void) { struct rq *this_rq = this_rq(); unsigned long curr_jiffies = READ_ONCE(jiffies); unsigned long pending_updates; if (curr_jiffies == this_rq->last_load_update_tick) return; raw_spin_lock(&this_rq->lock); pending_updates = curr_jiffies - this_rq->last_load_update_tick; if (pending_updates) { this_rq->last_load_update_tick = curr_jiffies; /* * We were idle, this means load 0, the current load might be * !0 due to remote wakeups and the sort. */ __update_cpu_load(this_rq, 0, pending_updates); } raw_spin_unlock(&this_rq->lock); } #endif /* CONFIG_NO_HZ */ /* * Called from scheduler_tick() */ void update_cpu_load_active(struct rq *this_rq) { unsigned long load = this_rq->cfs.runnable_load_avg; /* * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). */ this_rq->last_load_update_tick = jiffies; __update_cpu_load(this_rq, load, 1); } /* Used instead of source_load when we know the type == 0 */ static unsigned long weighted_cpuload(const int cpu) { return cpu_rq(cpu)->cfs.runnable_load_avg; } /* * Return a low guess at the load of a migration-source cpu weighted * according to the scheduling class and "nice" value. * * We want to under-estimate the load of migration sources, to * balance conservatively. */ static unsigned long source_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return min(rq->cpu_load[type-1], total); } /* * Return a high guess at the load of a migration-target cpu weighted * according to the scheduling class and "nice" value. */ static unsigned long target_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return max(rq->cpu_load[type-1], total); } static unsigned long capacity_of(int cpu) { return cpu_rq(cpu)->cpu_capacity; } static unsigned long capacity_orig_of(int cpu) { return cpu_rq(cpu)->cpu_capacity_orig; } static unsigned long cpu_avg_load_per_task(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); unsigned long load_avg = rq->cfs.runnable_load_avg; if (nr_running) return load_avg / nr_running; return 0; } static void record_wakee(struct task_struct *p) { /* * Rough decay (wiping) for cost saving, don't worry * about the boundary, really active task won't care * about the loss. */ if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { current->wakee_flips >>= 1; current->wakee_flip_decay_ts = jiffies; } if (current->last_wakee != p) { current->last_wakee = p; current->wakee_flips++; } } static void task_waking_fair(struct task_struct *p) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq = cfs_rq_of(se); u64 min_vruntime; #ifndef CONFIG_64BIT u64 min_vruntime_copy; do { min_vruntime_copy = cfs_rq->min_vruntime_copy; smp_rmb(); min_vruntime = cfs_rq->min_vruntime; } while (min_vruntime != min_vruntime_copy); #else min_vruntime = cfs_rq->min_vruntime; #endif se->vruntime -= min_vruntime; record_wakee(p); } #ifdef CONFIG_FAIR_GROUP_SCHED /* * effective_load() calculates the load change as seen from the root_task_group * * Adding load to a group doesn't make a group heavier, but can cause movement * of group shares between cpus. Assuming the shares were perfectly aligned one * can calculate the shift in shares. * * Calculate the effective load difference if @wl is added (subtracted) to @tg * on this @cpu and results in a total addition (subtraction) of @wg to the * total group weight. * * Given a runqueue weight distribution (rw_i) we can compute a shares * distribution (s_i) using: * * s_i = rw_i / \Sum rw_j (1) * * Suppose we have 4 CPUs and our @tg is a direct child of the root group and * has 7 equal weight tasks, distributed as below (rw_i), with the resulting * shares distribution (s_i): * * rw_i = { 2, 4, 1, 0 } * s_i = { 2/7, 4/7, 1/7, 0 } * * As per wake_affine() we're interested in the load of two CPUs (the CPU the * task used to run on and the CPU the waker is running on), we need to * compute the effect of waking a task on either CPU and, in case of a sync * wakeup, compute the effect of the current task going to sleep. * * So for a change of @wl to the local @cpu with an overall group weight change * of @wl we can compute the new shares distribution (s'_i) using: * * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) * * Suppose we're interested in CPUs 0 and 1, and want to compute the load * differences in waking a task to CPU 0. The additional task changes the * weight and shares distributions like: * * rw'_i = { 3, 4, 1, 0 } * s'_i = { 3/8, 4/8, 1/8, 0 } * * We can then compute the difference in effective weight by using: * * dw_i = S * (s'_i - s_i) (3) * * Where 'S' is the group weight as seen by its parent. * * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - * 4/7) times the weight of the group. */ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) { struct sched_entity *se = tg->se[cpu]; if (!tg->parent) /* the trivial, non-cgroup case */ return wl; for_each_sched_entity(se) { long w, W; tg = se->my_q->tg; /* * W = @wg + \Sum rw_j */ W = wg + calc_tg_weight(tg, se->my_q); /* * w = rw_i + @wl */ w = se->my_q->load.weight + wl; /* * wl = S * s'_i; see (2) */ if (W > 0 && w < W) wl = (w * (long)tg->shares) / W; else wl = tg->shares; /* * Per the above, wl is the new se->load.weight value; since * those are clipped to [MIN_SHARES, ...) do so now. See * calc_cfs_shares(). */ if (wl < MIN_SHARES) wl = MIN_SHARES; /* * wl = dw_i = S * (s'_i - s_i); see (3) */ wl -= se->load.weight; /* * Recursively apply this logic to all parent groups to compute * the final effective load change on the root group. Since * only the @tg group gets extra weight, all parent groups can * only redistribute existing shares. @wl is the shift in shares * resulting from this level per the above. */ wg = 0; } return wl; } #else static long effective_load(struct task_group *tg, int cpu, long wl, long wg) { return wl; } #endif static int wake_wide(struct task_struct *p) { int factor = this_cpu_read(sd_llc_size); /* * Yeah, it's the switching-frequency, could means many wakee or * rapidly switch, use factor here will just help to automatically * adjust the loose-degree, so bigger node will lead to more pull. */ if (p->wakee_flips > factor) { /* * wakee is somewhat hot, it needs certain amount of cpu * resource, so if waker is far more hot, prefer to leave * it alone. */ if (current->wakee_flips > (factor * p->wakee_flips)) return 1; } return 0; } static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) { s64 this_load, load; s64 this_eff_load, prev_eff_load; int idx, this_cpu, prev_cpu; struct task_group *tg; unsigned long weight; int balanced; /* * If we wake multiple tasks be careful to not bounce * ourselves around too much. */ if (wake_wide(p)) return 0; idx = sd->wake_idx; this_cpu = smp_processor_id(); prev_cpu = task_cpu(p); load = source_load(prev_cpu, idx); this_load = target_load(this_cpu, idx); /* * If sync wakeup then subtract the (maximum possible) * effect of the currently running task from the load * of the current CPU: */ if (sync) { tg = task_group(current); weight = current->se.load.weight; this_load += effective_load(tg, this_cpu, -weight, -weight); load += effective_load(tg, prev_cpu, 0, -weight); } tg = task_group(p); weight = p->se.load.weight; /* * In low-load situations, where prev_cpu is idle and this_cpu is idle * due to the sync cause above having dropped this_load to 0, we'll * always have an imbalance, but there's really nothing you can do * about that, so that's good too. * * Otherwise check if either cpus are near enough in load to allow this * task to be woken on this_cpu. */ this_eff_load = 100; this_eff_load *= capacity_of(prev_cpu); prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; prev_eff_load *= capacity_of(this_cpu); if (this_load > 0) { this_eff_load *= this_load + effective_load(tg, this_cpu, weight, weight); prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); } balanced = this_eff_load <= prev_eff_load; schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); if (!balanced) return 0; schedstat_inc(sd, ttwu_move_affine); schedstat_inc(p, se.statistics.nr_wakeups_affine); return 1; } /* * find_idlest_group finds and returns the least busy CPU group within the * domain. */ static struct sched_group * find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu, int sd_flag) { struct sched_group *idlest = NULL, *group = sd->groups; unsigned long min_load = ULONG_MAX, this_load = 0; int load_idx = sd->forkexec_idx; int imbalance = 100 + (sd->imbalance_pct-100)/2; if (sd_flag & SD_BALANCE_WAKE) load_idx = sd->wake_idx; do { unsigned long load, avg_load; int local_group; int i; /* Skip over this group if it has no CPUs allowed */ if (!cpumask_intersects(sched_group_cpus(group), tsk_cpus_allowed(p))) continue; local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(group)); /* Tally up the load of all CPUs in the group */ avg_load = 0; for_each_cpu(i, sched_group_cpus(group)) { /* Bias balancing toward cpus of our domain */ if (local_group) load = source_load(i, load_idx); else load = target_load(i, load_idx); avg_load += load; } /* Adjust by relative CPU capacity of the group */ avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; if (local_group) { this_load = avg_load; } else if (avg_load < min_load) { min_load = avg_load; idlest = group; } } while (group = group->next, group != sd->groups); if (!idlest || 100*this_load < imbalance*min_load) return NULL; return idlest; } /* * find_idlest_cpu - find the idlest cpu among the cpus in group. */ static int find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) { unsigned long load, min_load = ULONG_MAX; unsigned int min_exit_latency = UINT_MAX; u64 latest_idle_timestamp = 0; int least_loaded_cpu = this_cpu; int shallowest_idle_cpu = -1; int i; /* Traverse only the allowed CPUs */ for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { if (idle_cpu(i)) { struct rq *rq = cpu_rq(i); struct cpuidle_state *idle = idle_get_state(rq); if (idle && idle->exit_latency < min_exit_latency) { /* * We give priority to a CPU whose idle state * has the smallest exit latency irrespective * of any idle timestamp. */ min_exit_latency = idle->exit_latency; latest_idle_timestamp = rq->idle_stamp; shallowest_idle_cpu = i; } else if ((!idle || idle->exit_latency == min_exit_latency) && rq->idle_stamp > latest_idle_timestamp) { /* * If equal or no active idle state, then * the most recently idled CPU might have * a warmer cache. */ latest_idle_timestamp = rq->idle_stamp; shallowest_idle_cpu = i; } } else if (shallowest_idle_cpu == -1) { load = weighted_cpuload(i); if (load < min_load || (load == min_load && i == this_cpu)) { min_load = load; least_loaded_cpu = i; } } } return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; } /* * Try and locate an idle CPU in the sched_domain. */ static int select_idle_sibling(struct task_struct *p, int target) { struct sched_domain *sd; struct sched_group *sg; int i = task_cpu(p); if (idle_cpu(target)) return target; /* * If the prevous cpu is cache affine and idle, don't be stupid. */ if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) return i; /* * Otherwise, iterate the domains and find an elegible idle cpu. */ sd = rcu_dereference(per_cpu(sd_llc, target)); for_each_lower_domain(sd) { sg = sd->groups; do { if (!cpumask_intersects(sched_group_cpus(sg), tsk_cpus_allowed(p))) goto next; for_each_cpu(i, sched_group_cpus(sg)) { if (i == target || !idle_cpu(i)) goto next; } target = cpumask_first_and(sched_group_cpus(sg), tsk_cpus_allowed(p)); goto done; next: sg = sg->next; } while (sg != sd->groups); } done: return target; } /* * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS * tasks. The unit of the return value must be the one of capacity so we can * compare the usage with the capacity of the CPU that is available for CFS * task (ie cpu_capacity). * cfs.utilization_load_avg is the sum of running time of runnable tasks on a * CPU. It represents the amount of utilization of a CPU in the range * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full * capacity of the CPU because it's about the running time on this CPU. * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE * because of unfortunate rounding in avg_period and running_load_avg or just * after migrating tasks until the average stabilizes with the new running * time. So we need to check that the usage stays into the range * [0..cpu_capacity_orig] and cap if necessary. * Without capping the usage, a group could be seen as overloaded (CPU0 usage * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity */ static int get_cpu_usage(int cpu) { unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg; unsigned long capacity = capacity_orig_of(cpu); if (usage >= SCHED_LOAD_SCALE) return capacity; return (usage * capacity) >> SCHED_LOAD_SHIFT; } /* * select_task_rq_fair: Select target runqueue for the waking task in domains * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, * SD_BALANCE_FORK, or SD_BALANCE_EXEC. * * Balances load by selecting the idlest cpu in the idlest group, or under * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. * * Returns the target cpu number. * * preempt must be disabled. */ static int select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; int cpu = smp_processor_id(); int new_cpu = cpu; int want_affine = 0; int sync = wake_flags & WF_SYNC; if (sd_flag & SD_BALANCE_WAKE) want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); rcu_read_lock(); for_each_domain(cpu, tmp) { if (!(tmp->flags & SD_LOAD_BALANCE)) continue; /* * If both cpu and prev_cpu are part of this domain, * cpu is a valid SD_WAKE_AFFINE target. */ if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { affine_sd = tmp; break; } if (tmp->flags & sd_flag) sd = tmp; } if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) prev_cpu = cpu; if (sd_flag & SD_BALANCE_WAKE) { new_cpu = select_idle_sibling(p, prev_cpu); goto unlock; } while (sd) { struct sched_group *group; int weight; if (!(sd->flags & sd_flag)) { sd = sd->child; continue; } group = find_idlest_group(sd, p, cpu, sd_flag); if (!group) { sd = sd->child; continue; } new_cpu = find_idlest_cpu(group, p, cpu); if (new_cpu == -1 || new_cpu == cpu) { /* Now try balancing at a lower domain level of cpu */ sd = sd->child; continue; } /* Now try balancing at a lower domain level of new_cpu */ cpu = new_cpu; weight = sd->span_weight; sd = NULL; for_each_domain(cpu, tmp) { if (weight <= tmp->span_weight) break; if (tmp->flags & sd_flag) sd = tmp; } /* while loop will break here if sd == NULL */ } unlock: rcu_read_unlock(); return new_cpu; } /* * Called immediately before a task is migrated to a new cpu; task_cpu(p) and * cfs_rq_of(p) references at time of call are still valid and identify the * previous cpu. However, the caller only guarantees p->pi_lock is held; no * other assumptions, including the state of rq->lock, should be made. */ static void migrate_task_rq_fair(struct task_struct *p, int next_cpu) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq = cfs_rq_of(se); /* * Load tracking: accumulate removed load so that it can be processed * when we next update owning cfs_rq under rq->lock. Tasks contribute * to blocked load iff they have a positive decay-count. It can never * be negative here since on-rq tasks have decay-count == 0. */ if (se->avg.decay_count) { se->avg.decay_count = -__synchronize_entity_decay(se); atomic_long_add(se->avg.load_avg_contrib, &cfs_rq->removed_load); } /* We have migrated, no longer consider this task hot */ se->exec_start = 0; } #endif /* CONFIG_SMP */ static unsigned long wakeup_gran(struct sched_entity *curr, struct sched_entity *se) { unsigned long gran = sysctl_sched_wakeup_granularity; /* * Since its curr running now, convert the gran from real-time * to virtual-time in his units. * * By using 'se' instead of 'curr' we penalize light tasks, so * they get preempted easier. That is, if 'se' < 'curr' then * the resulting gran will be larger, therefore penalizing the * lighter, if otoh 'se' > 'curr' then the resulting gran will * be smaller, again penalizing the lighter task. * * This is especially important for buddies when the leftmost * task is higher priority than the buddy. */ return calc_delta_fair(gran, se); } /* * Should 'se' preempt 'curr'. * * |s1 * |s2 * |s3 * g * |<--->|c * * w(c, s1) = -1 * w(c, s2) = 0 * w(c, s3) = 1 * */ static int wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) { s64 gran, vdiff = curr->vruntime - se->vruntime; if (vdiff <= 0) return -1; gran = wakeup_gran(curr, se); if (vdiff > gran) return 1; return 0; } static void set_last_buddy(struct sched_entity *se) { if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) return; for_each_sched_entity(se) cfs_rq_of(se)->last = se; } static void set_next_buddy(struct sched_entity *se) { if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) return; for_each_sched_entity(se) cfs_rq_of(se)->next = se; } static void set_skip_buddy(struct sched_entity *se) { for_each_sched_entity(se) cfs_rq_of(se)->skip = se; } /* * Preempt the current task with a newly woken task if needed: */ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) { struct task_struct *curr = rq->curr; struct sched_entity *se = &curr->se, *pse = &p->se; struct cfs_rq *cfs_rq = task_cfs_rq(curr); int scale = cfs_rq->nr_running >= sched_nr_latency; int next_buddy_marked = 0; if (unlikely(se == pse)) return; /* * This is possible from callers such as attach_tasks(), in which we * unconditionally check_prempt_curr() after an enqueue (which may have * lead to a throttle). This both saves work and prevents false * next-buddy nomination below. */ if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) return; if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { set_next_buddy(pse); next_buddy_marked = 1; } /* * We can come here with TIF_NEED_RESCHED already set from new task * wake up path. * * Note: this also catches the edge-case of curr being in a throttled * group (e.g. via set_curr_task), since update_curr() (in the * enqueue of curr) will have resulted in resched being set. This * prevents us from potentially nominating it as a false LAST_BUDDY * below. */ if (test_tsk_need_resched(curr)) return; /* Idle tasks are by definition preempted by non-idle tasks. */ if (unlikely(curr->policy == SCHED_IDLE) && likely(p->policy != SCHED_IDLE)) goto preempt; /* * Batch and idle tasks do not preempt non-idle tasks (their preemption * is driven by the tick): */ if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) return; find_matching_se(&se, &pse); update_curr(cfs_rq_of(se)); BUG_ON(!pse); if (wakeup_preempt_entity(se, pse) == 1) { /* * Bias pick_next to pick the sched entity that is * triggering this preemption. */ if (!next_buddy_marked) set_next_buddy(pse); goto preempt; } return; preempt: resched_curr(rq); /* * Only set the backward buddy when the current task is still * on the rq. This can happen when a wakeup gets interleaved * with schedule on the ->pre_schedule() or idle_balance() * point, either of which can * drop the rq lock. * * Also, during early boot the idle thread is in the fair class, * for obvious reasons its a bad idea to schedule back to it. */ if (unlikely(!se->on_rq || curr == rq->idle)) return; if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) set_last_buddy(se); } static struct task_struct * pick_next_task_fair(struct rq *rq, struct task_struct *prev) { struct cfs_rq *cfs_rq = &rq->cfs; struct sched_entity *se; struct task_struct *p; int new_tasks; again: #ifdef CONFIG_FAIR_GROUP_SCHED if (!cfs_rq->nr_running) goto idle; if (prev->sched_class != &fair_sched_class) goto simple; /* * Because of the set_next_buddy() in dequeue_task_fair() it is rather * likely that a next task is from the same cgroup as the current. * * Therefore attempt to avoid putting and setting the entire cgroup * hierarchy, only change the part that actually changes. */ do { struct sched_entity *curr = cfs_rq->curr; /* * Since we got here without doing put_prev_entity() we also * have to consider cfs_rq->curr. If it is still a runnable * entity, update_curr() will update its vruntime, otherwise * forget we've ever seen it. */ if (curr) { if (curr->on_rq) update_curr(cfs_rq); else curr = NULL; /* * This call to check_cfs_rq_runtime() will do the * throttle and dequeue its entity in the parent(s). * Therefore the 'simple' nr_running test will indeed * be correct. */ if (unlikely(check_cfs_rq_runtime(cfs_rq))) goto simple; } se = pick_next_entity(cfs_rq, curr); cfs_rq = group_cfs_rq(se); } while (cfs_rq); p = task_of(se); /* * Since we haven't yet done put_prev_entity and if the selected task * is a different task than we started out with, try and touch the * least amount of cfs_rqs. */ if (prev != p) { struct sched_entity *pse = &prev->se; while (!(cfs_rq = is_same_group(se, pse))) { int se_depth = se->depth; int pse_depth = pse->depth; if (se_depth <= pse_depth) { put_prev_entity(cfs_rq_of(pse), pse); pse = parent_entity(pse); } if (se_depth >= pse_depth) { set_next_entity(cfs_rq_of(se), se); se = parent_entity(se); } } put_prev_entity(cfs_rq, pse); set_next_entity(cfs_rq, se); } if (hrtick_enabled(rq)) hrtick_start_fair(rq, p); return p; simple: cfs_rq = &rq->cfs; #endif if (!cfs_rq->nr_running) goto idle; put_prev_task(rq, prev); do { se = pick_next_entity(cfs_rq, NULL); set_next_entity(cfs_rq, se); cfs_rq = group_cfs_rq(se); } while (cfs_rq); p = task_of(se); if (hrtick_enabled(rq)) hrtick_start_fair(rq, p); return p; idle: new_tasks = idle_balance(rq); /* * Because idle_balance() releases (and re-acquires) rq->lock, it is * possible for any higher priority task to appear. In that case we * must re-start the pick_next_entity() loop. */ if (new_tasks < 0) return RETRY_TASK; if (new_tasks > 0) goto again; return NULL; } /* * Account for a descheduled task: */ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) { struct sched_entity *se = &prev->se; struct cfs_rq *cfs_rq; for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); put_prev_entity(cfs_rq, se); } } /* * sched_yield() is very simple * * The magic of dealing with the ->skip buddy is in pick_next_entity. */ static void yield_task_fair(struct rq *rq) { struct task_struct *curr = rq->curr; struct cfs_rq *cfs_rq = task_cfs_rq(curr); struct sched_entity *se = &curr->se; /* * Are we the only task in the tree? */ if (unlikely(rq->nr_running == 1)) return; clear_buddies(cfs_rq, se); if (curr->policy != SCHED_BATCH) { update_rq_clock(rq); /* * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); /* * Tell update_rq_clock() that we've just updated, * so we don't do microscopic update in schedule() * and double the fastpath cost. */ rq_clock_skip_update(rq, true); } set_skip_buddy(se); } static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) { struct sched_entity *se = &p->se; /* throttled hierarchies are not runnable */ if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) return false; /* Tell the scheduler that we'd really like pse to run next. */ set_next_buddy(se); yield_task_fair(rq); return true; } #ifdef CONFIG_SMP /************************************************** * Fair scheduling class load-balancing methods. * * BASICS * * The purpose of load-balancing is to achieve the same basic fairness the * per-cpu scheduler provides, namely provide a proportional amount of compute * time to each task. This is expressed in the following equation: * * W_i,n/P_i == W_j,n/P_j for all i,j (1) * * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight * W_i,0 is defined as: * * W_i,0 = \Sum_j w_i,j (2) * * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight * is derived from the nice value as per prio_to_weight[]. * * The weight average is an exponential decay average of the instantaneous * weight: * * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) * * C_i is the compute capacity of cpu i, typically it is the * fraction of 'recent' time available for SCHED_OTHER task execution. But it * can also include other factors [XXX]. * * To achieve this balance we define a measure of imbalance which follows * directly from (1): * * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) * * We them move tasks around to minimize the imbalance. In the continuous * function space it is obvious this converges, in the discrete case we get * a few fun cases generally called infeasible weight scenarios. * * [XXX expand on: * - infeasible weights; * - local vs global optima in the discrete case. ] * * * SCHED DOMAINS * * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) * for all i,j solution, we create a tree of cpus that follows the hardware * topology where each level pairs two lower groups (or better). This results * in O(log n) layers. Furthermore we reduce the number of cpus going up the * tree to only the first of the previous level and we decrease the frequency * of load-balance at each level inv. proportional to the number of cpus in * the groups. * * This yields: * * log_2 n 1 n * \Sum { --- * --- * 2^i } = O(n) (5) * i = 0 2^i 2^i * `- size of each group * | | `- number of cpus doing load-balance * | `- freq * `- sum over all levels * * Coupled with a limit on how many tasks we can migrate every balance pass, * this makes (5) the runtime complexity of the balancer. * * An important property here is that each CPU is still (indirectly) connected * to every other cpu in at most O(log n) steps: * * The adjacency matrix of the resulting graph is given by: * * log_2 n * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) * k = 0 * * And you'll find that: * * A^(log_2 n)_i,j != 0 for all i,j (7) * * Showing there's indeed a path between every cpu in at most O(log n) steps. * The task movement gives a factor of O(m), giving a convergence complexity * of: * * O(nm log n), n := nr_cpus, m := nr_tasks (8) * * * WORK CONSERVING * * In order to avoid CPUs going idle while there's still work to do, new idle * balancing is more aggressive and has the newly idle cpu iterate up the domain * tree itself instead of relying on other CPUs to bring it work. * * This adds some complexity to both (5) and (8) but it reduces the total idle * time. * * [XXX more?] * * * CGROUPS * * Cgroups make a horror show out of (2), instead of a simple sum we get: * * s_k,i * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) * S_k * * Where * * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) * * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. * * The big problem is S_k, its a global sum needed to compute a local (W_i) * property. * * [XXX write more on how we solve this.. _after_ merging pjt's patches that * rewrite all of this once again.] */ static unsigned long __read_mostly max_load_balance_interval = HZ/10; enum fbq_type { regular, remote, all }; #define LBF_ALL_PINNED 0x01 #define LBF_NEED_BREAK 0x02 #define LBF_DST_PINNED 0x04 #define LBF_SOME_PINNED 0x08 struct lb_env { struct sched_domain *sd; struct rq *src_rq; int src_cpu; int dst_cpu; struct rq *dst_rq; struct cpumask *dst_grpmask; int new_dst_cpu; enum cpu_idle_type idle; long imbalance; /* The set of CPUs under consideration for load-balancing */ struct cpumask *cpus; unsigned int flags; unsigned int loop; unsigned int loop_break; unsigned int loop_max; enum fbq_type fbq_type; struct list_head tasks; }; /* * Is this task likely cache-hot: */ static int task_hot(struct task_struct *p, struct lb_env *env) { s64 delta; lockdep_assert_held(&env->src_rq->lock); if (p->sched_class != &fair_sched_class) return 0; if (unlikely(p->policy == SCHED_IDLE)) return 0; /* * Buddy candidates are cache hot: */ if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && (&p->se == cfs_rq_of(&p->se)->next || &p->se == cfs_rq_of(&p->se)->last)) return 1; if (sysctl_sched_migration_cost == -1) return 1; if (sysctl_sched_migration_cost == 0) return 0; delta = rq_clock_task(env->src_rq) - p->se.exec_start; return delta < (s64)sysctl_sched_migration_cost; } #ifdef CONFIG_NUMA_BALANCING /* * Returns true if the destination node is the preferred node. * Needs to match fbq_classify_rq(): if there is a runnable task * that is not on its preferred node, we should identify it. */ static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) { struct numa_group *numa_group = rcu_dereference(p->numa_group); unsigned long src_faults, dst_faults; int src_nid, dst_nid; if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || !(env->sd->flags & SD_NUMA)) { return false; } src_nid = cpu_to_node(env->src_cpu); dst_nid = cpu_to_node(env->dst_cpu); if (src_nid == dst_nid) return false; /* Encourage migration to the preferred node. */ if (dst_nid == p->numa_preferred_nid) return true; /* Migrating away from the preferred node is bad. */ if (src_nid == p->numa_preferred_nid) return false; if (numa_group) { src_faults = group_faults(p, src_nid); dst_faults = group_faults(p, dst_nid); } else { src_faults = task_faults(p, src_nid); dst_faults = task_faults(p, dst_nid); } return dst_faults > src_faults; } static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) { struct numa_group *numa_group = rcu_dereference(p->numa_group); unsigned long src_faults, dst_faults; int src_nid, dst_nid; if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) return false; if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) return false; src_nid = cpu_to_node(env->src_cpu); dst_nid = cpu_to_node(env->dst_cpu); if (src_nid == dst_nid) return false; /* Migrating away from the preferred node is bad. */ if (src_nid == p->numa_preferred_nid) return true; /* Encourage migration to the preferred node. */ if (dst_nid == p->numa_preferred_nid) return false; if (numa_group) { src_faults = group_faults(p, src_nid); dst_faults = group_faults(p, dst_nid); } else { src_faults = task_faults(p, src_nid); dst_faults = task_faults(p, dst_nid); } return dst_faults < src_faults; } #else static inline bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) { return false; } static inline bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) { return false; } #endif /* * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? */ static int can_migrate_task(struct task_struct *p, struct lb_env *env) { int tsk_cache_hot = 0; lockdep_assert_held(&env->src_rq->lock); /* * We do not migrate tasks that are: * 1) throttled_lb_pair, or * 2) cannot be migrated to this CPU due to cpus_allowed, or * 3) running (obviously), or * 4) are cache-hot on their current CPU. */ if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) return 0; if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { int cpu; schedstat_inc(p, se.statistics.nr_failed_migrations_affine); env->flags |= LBF_SOME_PINNED; /* * Remember if this task can be migrated to any other cpu in * our sched_group. We may want to revisit it if we couldn't * meet load balance goals by pulling other tasks on src_cpu. * * Also avoid computing new_dst_cpu if we have already computed * one in current iteration. */ if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) return 0; /* Prevent to re-select dst_cpu via env's cpus */ for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { env->flags |= LBF_DST_PINNED; env->new_dst_cpu = cpu; break; } } return 0; } /* Record that we found atleast one task that could run on dst_cpu */ env->flags &= ~LBF_ALL_PINNED; if (task_running(env->src_rq, p)) { schedstat_inc(p, se.statistics.nr_failed_migrations_running); return 0; } /* * Aggressive migration if: * 1) destination numa is preferred * 2) task is cache cold, or * 3) too many balance attempts have failed. */ tsk_cache_hot = task_hot(p, env); if (!tsk_cache_hot) tsk_cache_hot = migrate_degrades_locality(p, env); if (migrate_improves_locality(p, env) || !tsk_cache_hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { if (tsk_cache_hot) { schedstat_inc(env->sd, lb_hot_gained[env->idle]); schedstat_inc(p, se.statistics.nr_forced_migrations); } return 1; } schedstat_inc(p, se.statistics.nr_failed_migrations_hot); return 0; } /* * detach_task() -- detach the task for the migration specified in env */ static void detach_task(struct task_struct *p, struct lb_env *env) { lockdep_assert_held(&env->src_rq->lock); deactivate_task(env->src_rq, p, 0); p->on_rq = TASK_ON_RQ_MIGRATING; set_task_cpu(p, env->dst_cpu); } /* * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as * part of active balancing operations within "domain". * * Returns a task if successful and NULL otherwise. */ static struct task_struct *detach_one_task(struct lb_env *env) { struct task_struct *p, *n; lockdep_assert_held(&env->src_rq->lock); list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { if (!can_migrate_task(p, env)) continue; detach_task(p, env); /* * Right now, this is only the second place where * lb_gained[env->idle] is updated (other is detach_tasks) * so we can safely collect stats here rather than * inside detach_tasks(). */ schedstat_inc(env->sd, lb_gained[env->idle]); return p; } return NULL; } static const unsigned int sched_nr_migrate_break = 32; /* * detach_tasks() -- tries to detach up to imbalance weighted load from * busiest_rq, as part of a balancing operation within domain "sd". * * Returns number of detached tasks if successful and 0 otherwise. */ static int detach_tasks(struct lb_env *env) { struct list_head *tasks = &env->src_rq->cfs_tasks; struct task_struct *p; unsigned long load; int detached = 0; lockdep_assert_held(&env->src_rq->lock); if (env->imbalance <= 0) return 0; while (!list_empty(tasks)) { p = list_first_entry(tasks, struct task_struct, se.group_node); env->loop++; /* We've more or less seen every task there is, call it quits */ if (env->loop > env->loop_max) break; /* take a breather every nr_migrate tasks */ if (env->loop > env->loop_break) { env->loop_break += sched_nr_migrate_break; env->flags |= LBF_NEED_BREAK; break; } if (!can_migrate_task(p, env)) goto next; load = task_h_load(p); if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) goto next; if ((load / 2) > env->imbalance) goto next; detach_task(p, env); list_add(&p->se.group_node, &env->tasks); detached++; env->imbalance -= load; #ifdef CONFIG_PREEMPT /* * NEWIDLE balancing is a source of latency, so preemptible * kernels will stop after the first task is detached to minimize * the critical section. */ if (env->idle == CPU_NEWLY_IDLE) break; #endif /* * We only want to steal up to the prescribed amount of * weighted load. */ if (env->imbalance <= 0) break; continue; next: list_move_tail(&p->se.group_node, tasks); } /* * Right now, this is one of only two places we collect this stat * so we can safely collect detach_one_task() stats here rather * than inside detach_one_task(). */ schedstat_add(env->sd, lb_gained[env->idle], detached); return detached; } /* * attach_task() -- attach the task detached by detach_task() to its new rq. */ static void attach_task(struct rq *rq, struct task_struct *p) { lockdep_assert_held(&rq->lock); BUG_ON(task_rq(p) != rq); p->on_rq = TASK_ON_RQ_QUEUED; activate_task(rq, p, 0); check_preempt_curr(rq, p, 0); } /* * attach_one_task() -- attaches the task returned from detach_one_task() to * its new rq. */ static void attach_one_task(struct rq *rq, struct task_struct *p) { raw_spin_lock(&rq->lock); attach_task(rq, p); raw_spin_unlock(&rq->lock); } /* * attach_tasks() -- attaches all tasks detached by detach_tasks() to their * new rq. */ static void attach_tasks(struct lb_env *env) { struct list_head *tasks = &env->tasks; struct task_struct *p; raw_spin_lock(&env->dst_rq->lock); while (!list_empty(tasks)) { p = list_first_entry(tasks, struct task_struct, se.group_node); list_del_init(&p->se.group_node); attach_task(env->dst_rq, p); } raw_spin_unlock(&env->dst_rq->lock); } #ifdef CONFIG_FAIR_GROUP_SCHED /* * update tg->load_weight by folding this cpu's load_avg */ static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) { struct sched_entity *se = tg->se[cpu]; struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; /* throttled entities do not contribute to load */ if (throttled_hierarchy(cfs_rq)) return; update_cfs_rq_blocked_load(cfs_rq, 1); if (se) { update_entity_load_avg(se, 1); /* * We pivot on our runnable average having decayed to zero for * list removal. This generally implies that all our children * have also been removed (modulo rounding error or bandwidth * control); however, such cases are rare and we can fix these * at enqueue. * * TODO: fix up out-of-order children on enqueue. */ if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) list_del_leaf_cfs_rq(cfs_rq); } else { struct rq *rq = rq_of(cfs_rq); update_rq_runnable_avg(rq, rq->nr_running); } } static void update_blocked_averages(int cpu) { struct rq *rq = cpu_rq(cpu); struct cfs_rq *cfs_rq; unsigned long flags; raw_spin_lock_irqsave(&rq->lock, flags); update_rq_clock(rq); /* * Iterates the task_group tree in a bottom up fashion, see * list_add_leaf_cfs_rq() for details. */ for_each_leaf_cfs_rq(rq, cfs_rq) { /* * Note: We may want to consider periodically releasing * rq->lock about these updates so that creating many task * groups does not result in continually extending hold time. */ __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); } raw_spin_unlock_irqrestore(&rq->lock, flags); } /* * Compute the hierarchical load factor for cfs_rq and all its ascendants. * This needs to be done in a top-down fashion because the load of a child * group is a fraction of its parents load. */ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) { struct rq *rq = rq_of(cfs_rq); struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; unsigned long now = jiffies; unsigned long load; if (cfs_rq->last_h_load_update == now) return; cfs_rq->h_load_next = NULL; for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); cfs_rq->h_load_next = se; if (cfs_rq->last_h_load_update == now) break; } if (!se) { cfs_rq->h_load = cfs_rq->runnable_load_avg; cfs_rq->last_h_load_update = now; } while ((se = cfs_rq->h_load_next) != NULL) { load = cfs_rq->h_load; load = div64_ul(load * se->avg.load_avg_contrib, cfs_rq->runnable_load_avg + 1); cfs_rq = group_cfs_rq(se); cfs_rq->h_load = load; cfs_rq->last_h_load_update = now; } } static unsigned long task_h_load(struct task_struct *p) { struct cfs_rq *cfs_rq = task_cfs_rq(p); update_cfs_rq_h_load(cfs_rq); return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, cfs_rq->runnable_load_avg + 1); } #else static inline void update_blocked_averages(int cpu) { } static unsigned long task_h_load(struct task_struct *p) { return p->se.avg.load_avg_contrib; } #endif /********** Helpers for find_busiest_group ************************/ enum group_type { group_other = 0, group_imbalanced, group_overloaded, }; /* * sg_lb_stats - stats of a sched_group required for load_balancing */ struct sg_lb_stats { unsigned long avg_load; /*Avg load across the CPUs of the group */ unsigned long group_load; /* Total load over the CPUs of the group */ unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long load_per_task; unsigned long group_capacity; unsigned long group_usage; /* Total usage of the group */ unsigned int sum_nr_running; /* Nr tasks running in the group */ unsigned int idle_cpus; unsigned int group_weight; enum group_type group_type; int group_no_capacity; #ifdef CONFIG_NUMA_BALANCING unsigned int nr_numa_running; unsigned int nr_preferred_running; #endif }; /* * sd_lb_stats - Structure to store the statistics of a sched_domain * during load balancing. */ struct sd_lb_stats { struct sched_group *busiest; /* Busiest group in this sd */ struct sched_group *local; /* Local group in this sd */ unsigned long total_load; /* Total load of all groups in sd */ unsigned long total_capacity; /* Total capacity of all groups in sd */ unsigned long avg_load; /* Average load across all groups in sd */ struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ struct sg_lb_stats local_stat; /* Statistics of the local group */ }; static inline void init_sd_lb_stats(struct sd_lb_stats *sds) { /* * Skimp on the clearing to avoid duplicate work. We can avoid clearing * local_stat because update_sg_lb_stats() does a full clear/assignment. * We must however clear busiest_stat::avg_load because * update_sd_pick_busiest() reads this before assignment. */ *sds = (struct sd_lb_stats){ .busiest = NULL, .local = NULL, .total_load = 0UL, .total_capacity = 0UL, .busiest_stat = { .avg_load = 0UL, .sum_nr_running = 0, .group_type = group_other, }, }; } /** * get_sd_load_idx - Obtain the load index for a given sched domain. * @sd: The sched_domain whose load_idx is to be obtained. * @idle: The idle status of the CPU for whose sd load_idx is obtained. * * Return: The load index. */ static inline int get_sd_load_idx(struct sched_domain *sd, enum cpu_idle_type idle) { int load_idx; switch (idle) { case CPU_NOT_IDLE: load_idx = sd->busy_idx; break; case CPU_NEWLY_IDLE: load_idx = sd->newidle_idx; break; default: load_idx = sd->idle_idx; break; } return load_idx; } static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) { if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) return sd->smt_gain / sd->span_weight; return SCHED_CAPACITY_SCALE; } unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) { return default_scale_cpu_capacity(sd, cpu); } static unsigned long scale_rt_capacity(int cpu) { struct rq *rq = cpu_rq(cpu); u64 total, used, age_stamp, avg; s64 delta; /* * Since we're reading these variables without serialization make sure * we read them once before doing sanity checks on them. */ age_stamp = READ_ONCE(rq->age_stamp); avg = READ_ONCE(rq->rt_avg); delta = __rq_clock_broken(rq) - age_stamp; if (unlikely(delta < 0)) delta = 0; total = sched_avg_period() + delta; used = div_u64(avg, total); if (likely(used < SCHED_CAPACITY_SCALE)) return SCHED_CAPACITY_SCALE - used; return 1; } static void update_cpu_capacity(struct sched_domain *sd, int cpu) { unsigned long capacity = SCHED_CAPACITY_SCALE; struct sched_group *sdg = sd->groups; if (sched_feat(ARCH_CAPACITY)) capacity *= arch_scale_cpu_capacity(sd, cpu); else capacity *= default_scale_cpu_capacity(sd, cpu); capacity >>= SCHED_CAPACITY_SHIFT; cpu_rq(cpu)->cpu_capacity_orig = capacity; capacity *= scale_rt_capacity(cpu); capacity >>= SCHED_CAPACITY_SHIFT; if (!capacity) capacity = 1; cpu_rq(cpu)->cpu_capacity = capacity; sdg->sgc->capacity = capacity; } void update_group_capacity(struct sched_domain *sd, int cpu) { struct sched_domain *child = sd->child; struct sched_group *group, *sdg = sd->groups; unsigned long capacity; unsigned long interval; interval = msecs_to_jiffies(sd->balance_interval); interval = clamp(interval, 1UL, max_load_balance_interval); sdg->sgc->next_update = jiffies + interval; if (!child) { update_cpu_capacity(sd, cpu); return; } capacity = 0; if (child->flags & SD_OVERLAP) { /* * SD_OVERLAP domains cannot assume that child groups * span the current group. */ for_each_cpu(cpu, sched_group_cpus(sdg)) { struct sched_group_capacity *sgc; struct rq *rq = cpu_rq(cpu); /* * build_sched_domains() -> init_sched_groups_capacity() * gets here before we've attached the domains to the * runqueues. * * Use capacity_of(), which is set irrespective of domains * in update_cpu_capacity(). * * This avoids capacity from being 0 and * causing divide-by-zero issues on boot. */ if (unlikely(!rq->sd)) { capacity += capacity_of(cpu); continue; } sgc = rq->sd->groups->sgc; capacity += sgc->capacity; } } else { /* * !SD_OVERLAP domains can assume that child groups * span the current group. */ group = child->groups; do { capacity += group->sgc->capacity; group = group->next; } while (group != child->groups); } sdg->sgc->capacity = capacity; } /* * Check whether the capacity of the rq has been noticeably reduced by side * activity. The imbalance_pct is used for the threshold. * Return true is the capacity is reduced */ static inline int check_cpu_capacity(struct rq *rq, struct sched_domain *sd) { return ((rq->cpu_capacity * sd->imbalance_pct) < (rq->cpu_capacity_orig * 100)); } /* * Group imbalance indicates (and tries to solve) the problem where balancing * groups is inadequate due to tsk_cpus_allowed() constraints. * * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a * cpumask covering 1 cpu of the first group and 3 cpus of the second group. * Something like: * * { 0 1 2 3 } { 4 5 6 7 } * * * * * * * If we were to balance group-wise we'd place two tasks in the first group and * two tasks in the second group. Clearly this is undesired as it will overload * cpu 3 and leave one of the cpus in the second group unused. * * The current solution to this issue is detecting the skew in the first group * by noticing the lower domain failed to reach balance and had difficulty * moving tasks due to affinity constraints. * * When this is so detected; this group becomes a candidate for busiest; see * update_sd_pick_busiest(). And calculate_imbalance() and * find_busiest_group() avoid some of the usual balance conditions to allow it * to create an effective group imbalance. * * This is a somewhat tricky proposition since the next run might not find the * group imbalance and decide the groups need to be balanced again. A most * subtle and fragile situation. */ static inline int sg_imbalanced(struct sched_group *group) { return group->sgc->imbalance; } /* * group_has_capacity returns true if the group has spare capacity that could * be used by some tasks. * We consider that a group has spare capacity if the * number of task is * smaller than the number of CPUs or if the usage is lower than the available * capacity for CFS tasks. * For the latter, we use a threshold to stabilize the state, to take into * account the variance of the tasks' load and to return true if the available * capacity in meaningful for the load balancer. * As an example, an available capacity of 1% can appear but it doesn't make * any benefit for the load balance. */ static inline bool group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) { if (sgs->sum_nr_running < sgs->group_weight) return true; if ((sgs->group_capacity * 100) > (sgs->group_usage * env->sd->imbalance_pct)) return true; return false; } /* * group_is_overloaded returns true if the group has more tasks than it can * handle. * group_is_overloaded is not equals to !group_has_capacity because a group * with the exact right number of tasks, has no more spare capacity but is not * overloaded so both group_has_capacity and group_is_overloaded return * false. */ static inline bool group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) { if (sgs->sum_nr_running <= sgs->group_weight) return false; if ((sgs->group_capacity * 100) < (sgs->group_usage * env->sd->imbalance_pct)) return true; return false; } static enum group_type group_classify(struct lb_env *env, struct sched_group *group, struct sg_lb_stats *sgs) { if (sgs->group_no_capacity) return group_overloaded; if (sg_imbalanced(group)) return group_imbalanced; return group_other; } /** * update_sg_lb_stats - Update sched_group's statistics for load balancing. * @env: The load balancing environment. * @group: sched_group whose statistics are to be updated. * @load_idx: Load index of sched_domain of this_cpu for load calc. * @local_group: Does group contain this_cpu. * @sgs: variable to hold the statistics for this group. * @overload: Indicate more than one runnable task for any CPU. */ static inline void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, int load_idx, int local_group, struct sg_lb_stats *sgs, bool *overload) { unsigned long load; int i; memset(sgs, 0, sizeof(*sgs)); for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { struct rq *rq = cpu_rq(i); /* Bias balancing toward cpus of our domain */ if (local_group) load = target_load(i, load_idx); else load = source_load(i, load_idx); sgs->group_load += load; sgs->group_usage += get_cpu_usage(i); sgs->sum_nr_running += rq->cfs.h_nr_running; if (rq->nr_running > 1) *overload = true; #ifdef CONFIG_NUMA_BALANCING sgs->nr_numa_running += rq->nr_numa_running; sgs->nr_preferred_running += rq->nr_preferred_running; #endif sgs->sum_weighted_load += weighted_cpuload(i); if (idle_cpu(i)) sgs->idle_cpus++; } /* Adjust by relative CPU capacity of the group */ sgs->group_capacity = group->sgc->capacity; sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; if (sgs->sum_nr_running) sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; sgs->group_weight = group->group_weight; sgs->group_no_capacity = group_is_overloaded(env, sgs); sgs->group_type = group_classify(env, group, sgs); } /** * update_sd_pick_busiest - return 1 on busiest group * @env: The load balancing environment. * @sds: sched_domain statistics * @sg: sched_group candidate to be checked for being the busiest * @sgs: sched_group statistics * * Determine if @sg is a busier group than the previously selected * busiest group. * * Return: %true if @sg is a busier group than the previously selected * busiest group. %false otherwise. */ static bool update_sd_pick_busiest(struct lb_env *env, struct sd_lb_stats *sds, struct sched_group *sg, struct sg_lb_stats *sgs) { struct sg_lb_stats *busiest = &sds->busiest_stat; if (sgs->group_type > busiest->group_type) return true; if (sgs->group_type < busiest->group_type) return false; if (sgs->avg_load <= busiest->avg_load) return false; /* This is the busiest node in its class. */ if (!(env->sd->flags & SD_ASYM_PACKING)) return true; /* * ASYM_PACKING needs to move all the work to the lowest * numbered CPUs in the group, therefore mark all groups * higher than ourself as busy. */ if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { if (!sds->busiest) return true; if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) return true; } return false; } #ifdef CONFIG_NUMA_BALANCING static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) { if (sgs->sum_nr_running > sgs->nr_numa_running) return regular; if (sgs->sum_nr_running > sgs->nr_preferred_running) return remote; return all; } static inline enum fbq_type fbq_classify_rq(struct rq *rq) { if (rq->nr_running > rq->nr_numa_running) return regular; if (rq->nr_running > rq->nr_preferred_running) return remote; return all; } #else static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) { return all; } static inline enum fbq_type fbq_classify_rq(struct rq *rq) { return regular; } #endif /* CONFIG_NUMA_BALANCING */ /** * update_sd_lb_stats - Update sched_domain's statistics for load balancing. * @env: The load balancing environment. * @sds: variable to hold the statistics for this sched_domain. */ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) { struct sched_domain *child = env->sd->child; struct sched_group *sg = env->sd->groups; struct sg_lb_stats tmp_sgs; int load_idx, prefer_sibling = 0; bool overload = false; if (child && child->flags & SD_PREFER_SIBLING) prefer_sibling = 1; load_idx = get_sd_load_idx(env->sd, env->idle); do { struct sg_lb_stats *sgs = &tmp_sgs; int local_group; local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); if (local_group) { sds->local = sg; sgs = &sds->local_stat; if (env->idle != CPU_NEWLY_IDLE || time_after_eq(jiffies, sg->sgc->next_update)) update_group_capacity(env->sd, env->dst_cpu); } update_sg_lb_stats(env, sg, load_idx, local_group, sgs, &overload); if (local_group) goto next_group; /* * In case the child domain prefers tasks go to siblings * first, lower the sg capacity so that we'll try * and move all the excess tasks away. We lower the capacity * of a group only if the local group has the capacity to fit * these excess tasks. The extra check prevents the case where * you always pull from the heaviest group when it is already * under-utilized (possible with a large weight task outweighs * the tasks on the system). */ if (prefer_sibling && sds->local && group_has_capacity(env, &sds->local_stat) && (sgs->sum_nr_running > 1)) { sgs->group_no_capacity = 1; sgs->group_type = group_overloaded; } if (update_sd_pick_busiest(env, sds, sg, sgs)) { sds->busiest = sg; sds->busiest_stat = *sgs; } next_group: /* Now, start updating sd_lb_stats */ sds->total_load += sgs->group_load; sds->total_capacity += sgs->group_capacity; sg = sg->next; } while (sg != env->sd->groups); if (env->sd->flags & SD_NUMA) env->fbq_type = fbq_classify_group(&sds->busiest_stat); if (!env->sd->parent) { /* update overload indicator if we are at root domain */ if (env->dst_rq->rd->overload != overload) env->dst_rq->rd->overload = overload; } } /** * check_asym_packing - Check to see if the group is packed into the * sched doman. * * This is primarily intended to used at the sibling level. Some * cores like POWER7 prefer to use lower numbered SMT threads. In the * case of POWER7, it can move to lower SMT modes only when higher * threads are idle. When in lower SMT modes, the threads will * perform better since they share less core resources. Hence when we * have idle threads, we want them to be the higher ones. * * This packing function is run on idle threads. It checks to see if * the busiest CPU in this domain (core in the P7 case) has a higher * CPU number than the packing function is being run on. Here we are * assuming lower CPU number will be equivalent to lower a SMT thread * number. * * Return: 1 when packing is required and a task should be moved to * this CPU. The amount of the imbalance is returned in *imbalance. * * @env: The load balancing environment. * @sds: Statistics of the sched_domain which is to be packed */ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) { int busiest_cpu; if (!(env->sd->flags & SD_ASYM_PACKING)) return 0; if (!sds->busiest) return 0; busiest_cpu = group_first_cpu(sds->busiest); if (env->dst_cpu > busiest_cpu) return 0; env->imbalance = DIV_ROUND_CLOSEST( sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, SCHED_CAPACITY_SCALE); return 1; } /** * fix_small_imbalance - Calculate the minor imbalance that exists * amongst the groups of a sched_domain, during * load balancing. * @env: The load balancing environment. * @sds: Statistics of the sched_domain whose imbalance is to be calculated. */ static inline void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) { unsigned long tmp, capa_now = 0, capa_move = 0; unsigned int imbn = 2; unsigned long scaled_busy_load_per_task; struct sg_lb_stats *local, *busiest; local = &sds->local_stat; busiest = &sds->busiest_stat; if (!local->sum_nr_running) local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); else if (busiest->load_per_task > local->load_per_task) imbn = 1; scaled_busy_load_per_task = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / busiest->group_capacity; if (busiest->avg_load + scaled_busy_load_per_task >= local->avg_load + (scaled_busy_load_per_task * imbn)) { env->imbalance = busiest->load_per_task; return; } /* * OK, we don't have enough imbalance to justify moving tasks, * however we may be able to increase total CPU capacity used by * moving them. */ capa_now += busiest->group_capacity * min(busiest->load_per_task, busiest->avg_load); capa_now += local->group_capacity * min(local->load_per_task, local->avg_load); capa_now /= SCHED_CAPACITY_SCALE; /* Amount of load we'd subtract */ if (busiest->avg_load > scaled_busy_load_per_task) { capa_move += busiest->group_capacity * min(busiest->load_per_task, busiest->avg_load - scaled_busy_load_per_task); } /* Amount of load we'd add */ if (busiest->avg_load * busiest->group_capacity < busiest->load_per_task * SCHED_CAPACITY_SCALE) { tmp = (busiest->avg_load * busiest->group_capacity) / local->group_capacity; } else { tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / local->group_capacity; } capa_move += local->group_capacity * min(local->load_per_task, local->avg_load + tmp); capa_move /= SCHED_CAPACITY_SCALE; /* Move if we gain throughput */ if (capa_move > capa_now) env->imbalance = busiest->load_per_task; } /** * calculate_imbalance - Calculate the amount of imbalance present within the * groups of a given sched_domain during load balance. * @env: load balance environment * @sds: statistics of the sched_domain whose imbalance is to be calculated. */ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) { unsigned long max_pull, load_above_capacity = ~0UL; struct sg_lb_stats *local, *busiest; local = &sds->local_stat; busiest = &sds->busiest_stat; if (busiest->group_type == group_imbalanced) { /* * In the group_imb case we cannot rely on group-wide averages * to ensure cpu-load equilibrium, look at wider averages. XXX */ busiest->load_per_task = min(busiest->load_per_task, sds->avg_load); } /* * In the presence of smp nice balancing, certain scenarios can have * max load less than avg load(as we skip the groups at or below * its cpu_capacity, while calculating max_load..) */ if (busiest->avg_load <= sds->avg_load || local->avg_load >= sds->avg_load) { env->imbalance = 0; return fix_small_imbalance(env, sds); } /* * If there aren't any idle cpus, avoid creating some. */ if (busiest->group_type == group_overloaded && local->group_type == group_overloaded) { load_above_capacity = busiest->sum_nr_running * SCHED_LOAD_SCALE; if (load_above_capacity > busiest->group_capacity) load_above_capacity -= busiest->group_capacity; else load_above_capacity = ~0UL; } /* * We're trying to get all the cpus to the average_load, so we don't * want to push ourselves above the average load, nor do we wish to * reduce the max loaded cpu below the average load. At the same time, * we also don't want to reduce the group load below the group capacity * (so that we can implement power-savings policies etc). Thus we look * for the minimum possible imbalance. */ max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); /* How much load to actually move to equalise the imbalance */ env->imbalance = min( max_pull * busiest->group_capacity, (sds->avg_load - local->avg_load) * local->group_capacity ) / SCHED_CAPACITY_SCALE; /* * if *imbalance is less than the average load per runnable task * there is no guarantee that any tasks will be moved so we'll have * a think about bumping its value to force at least one task to be * moved */ if (env->imbalance < busiest->load_per_task) return fix_small_imbalance(env, sds); } /******* find_busiest_group() helpers end here *********************/ /** * find_busiest_group - Returns the busiest group within the sched_domain * if there is an imbalance. If there isn't an imbalance, and * the user has opted for power-savings, it returns a group whose * CPUs can be put to idle by rebalancing those tasks elsewhere, if * such a group exists. * * Also calculates the amount of weighted load which should be moved * to restore balance. * * @env: The load balancing environment. * * Return: - The busiest group if imbalance exists. * - If no imbalance and user has opted for power-savings balance, * return the least loaded group whose CPUs can be * put to idle by rebalancing its tasks onto our group. */ static struct sched_group *find_busiest_group(struct lb_env *env) { struct sg_lb_stats *local, *busiest; struct sd_lb_stats sds; init_sd_lb_stats(&sds); /* * Compute the various statistics relavent for load balancing at * this level. */ update_sd_lb_stats(env, &sds); local = &sds.local_stat; busiest = &sds.busiest_stat; /* ASYM feature bypasses nice load balance check */ if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && check_asym_packing(env, &sds)) return sds.busiest; /* There is no busy sibling group to pull tasks from */ if (!sds.busiest || busiest->sum_nr_running == 0) goto out_balanced; sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) / sds.total_capacity; /* * If the busiest group is imbalanced the below checks don't * work because they assume all things are equal, which typically * isn't true due to cpus_allowed constraints and the like. */ if (busiest->group_type == group_imbalanced) goto force_balance; /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && busiest->group_no_capacity) goto force_balance; /* * If the local group is busier than the selected busiest group * don't try and pull any tasks. */ if (local->avg_load >= busiest->avg_load) goto out_balanced; /* * Don't pull any tasks if this group is already above the domain * average load. */ if (local->avg_load >= sds.avg_load) goto out_balanced; if (env->idle == CPU_IDLE) { /* * This cpu is idle. If the busiest group is not overloaded * and there is no imbalance between this and busiest group * wrt idle cpus, it is balanced. The imbalance becomes * significant if the diff is greater than 1 otherwise we * might end up to just move the imbalance on another group */ if ((busiest->group_type != group_overloaded) && (local->idle_cpus <= (busiest->idle_cpus + 1))) goto out_balanced; } else { /* * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use * imbalance_pct to be conservative. */ if (100 * busiest->avg_load <= env->sd->imbalance_pct * local->avg_load) goto out_balanced; } force_balance: /* Looks like there is an imbalance. Compute it */ calculate_imbalance(env, &sds); return sds.busiest; out_balanced: env->imbalance = 0; return NULL; } /* * find_busiest_queue - find the busiest runqueue among the cpus in group. */ static struct rq *find_busiest_queue(struct lb_env *env, struct sched_group *group) { struct rq *busiest = NULL, *rq; unsigned long busiest_load = 0, busiest_capacity = 1; int i; for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { unsigned long capacity, wl; enum fbq_type rt; rq = cpu_rq(i); rt = fbq_classify_rq(rq); /* * We classify groups/runqueues into three groups: * - regular: there are !numa tasks * - remote: there are numa tasks that run on the 'wrong' node * - all: there is no distinction * * In order to avoid migrating ideally placed numa tasks, * ignore those when there's better options. * * If we ignore the actual busiest queue to migrate another * task, the next balance pass can still reduce the busiest * queue by moving tasks around inside the node. * * If we cannot move enough load due to this classification * the next pass will adjust the group classification and * allow migration of more tasks. * * Both cases only affect the total convergence complexity. */ if (rt > env->fbq_type) continue; capacity = capacity_of(i); wl = weighted_cpuload(i); /* * When comparing with imbalance, use weighted_cpuload() * which is not scaled with the cpu capacity. */ if (rq->nr_running == 1 && wl > env->imbalance && !check_cpu_capacity(rq, env->sd)) continue; /* * For the load comparisons with the other cpu's, consider * the weighted_cpuload() scaled with the cpu capacity, so * that the load can be moved away from the cpu that is * potentially running at a lower capacity. * * Thus we're looking for max(wl_i / capacity_i), crosswise * multiplication to rid ourselves of the division works out * to: wl_i * capacity_j > wl_j * capacity_i; where j is * our previous maximum. */ if (wl * busiest_capacity > busiest_load * capacity) { busiest_load = wl; busiest_capacity = capacity; busiest = rq; } } return busiest; } /* * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but * so long as it is large enough. */ #define MAX_PINNED_INTERVAL 512 /* Working cpumask for load_balance and load_balance_newidle. */ DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); static int need_active_balance(struct lb_env *env) { struct sched_domain *sd = env->sd; if (env->idle == CPU_NEWLY_IDLE) { /* * ASYM_PACKING needs to force migrate tasks from busy but * higher numbered CPUs in order to pack all tasks in the * lowest numbered CPUs. */ if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) return 1; } /* * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. * It's worth migrating the task if the src_cpu's capacity is reduced * because of other sched_class or IRQs if more capacity stays * available on dst_cpu. */ if ((env->idle != CPU_NOT_IDLE) && (env->src_rq->cfs.h_nr_running == 1)) { if ((check_cpu_capacity(env->src_rq, sd)) && (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) return 1; } return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); } static int active_load_balance_cpu_stop(void *data); static int should_we_balance(struct lb_env *env) { struct sched_group *sg = env->sd->groups; struct cpumask *sg_cpus, *sg_mask; int cpu, balance_cpu = -1; /* * In the newly idle case, we will allow all the cpu's * to do the newly idle load balance. */ if (env->idle == CPU_NEWLY_IDLE) return 1; sg_cpus = sched_group_cpus(sg); sg_mask = sched_group_mask(sg); /* Try to find first idle cpu */ for_each_cpu_and(cpu, sg_cpus, env->cpus) { if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) continue; balance_cpu = cpu; break; } if (balance_cpu == -1) balance_cpu = group_balance_cpu(sg); /* * First idle cpu or the first cpu(busiest) in this sched group * is eligible for doing load balancing at this and above domains. */ return balance_cpu == env->dst_cpu; } /* * Check this_cpu to ensure it is balanced within domain. Attempt to move * tasks if there is an imbalance. */ static int load_balance(int this_cpu, struct rq *this_rq, struct sched_domain *sd, enum cpu_idle_type idle, int *continue_balancing) { int ld_moved, cur_ld_moved, active_balance = 0; struct sched_domain *sd_parent = sd->parent; struct sched_group *group; struct rq *busiest; unsigned long flags; struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); struct lb_env env = { .sd = sd, .dst_cpu = this_cpu, .dst_rq = this_rq, .dst_grpmask = sched_group_cpus(sd->groups), .idle = idle, .loop_break = sched_nr_migrate_break, .cpus = cpus, .fbq_type = all, .tasks = LIST_HEAD_INIT(env.tasks), }; /* * For NEWLY_IDLE load_balancing, we don't need to consider * other cpus in our group */ if (idle == CPU_NEWLY_IDLE) env.dst_grpmask = NULL; cpumask_copy(cpus, cpu_active_mask); schedstat_inc(sd, lb_count[idle]); redo: if (!should_we_balance(&env)) { *continue_balancing = 0; goto out_balanced; } group = find_busiest_group(&env); if (!group) { schedstat_inc(sd, lb_nobusyg[idle]); goto out_balanced; } busiest = find_busiest_queue(&env, group); if (!busiest) { schedstat_inc(sd, lb_nobusyq[idle]); goto out_balanced; } BUG_ON(busiest == env.dst_rq); schedstat_add(sd, lb_imbalance[idle], env.imbalance); env.src_cpu = busiest->cpu; env.src_rq = busiest; ld_moved = 0; if (busiest->nr_running > 1) { /* * Attempt to move tasks. If find_busiest_group has found * an imbalance but busiest->nr_running <= 1, the group is * still unbalanced. ld_moved simply stays zero, so it is * correctly treated as an imbalance. */ env.flags |= LBF_ALL_PINNED; env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); more_balance: raw_spin_lock_irqsave(&busiest->lock, flags); /* * cur_ld_moved - load moved in current iteration * ld_moved - cumulative load moved across iterations */ cur_ld_moved = detach_tasks(&env); /* * We've detached some tasks from busiest_rq. Every * task is masked "TASK_ON_RQ_MIGRATING", so we can safely * unlock busiest->lock, and we are able to be sure * that nobody can manipulate the tasks in parallel. * See task_rq_lock() family for the details. */ raw_spin_unlock(&busiest->lock); if (cur_ld_moved) { attach_tasks(&env); ld_moved += cur_ld_moved; } local_irq_restore(flags); if (env.flags & LBF_NEED_BREAK) { env.flags &= ~LBF_NEED_BREAK; goto more_balance; } /* * Revisit (affine) tasks on src_cpu that couldn't be moved to * us and move them to an alternate dst_cpu in our sched_group * where they can run. The upper limit on how many times we * iterate on same src_cpu is dependent on number of cpus in our * sched_group. * * This changes load balance semantics a bit on who can move * load to a given_cpu. In addition to the given_cpu itself * (or a ilb_cpu acting on its behalf where given_cpu is * nohz-idle), we now have balance_cpu in a position to move * load to given_cpu. In rare situations, this may cause * conflicts (balance_cpu and given_cpu/ilb_cpu deciding * _independently_ and at _same_ time to move some load to * given_cpu) causing exceess load to be moved to given_cpu. * This however should not happen so much in practice and * moreover subsequent load balance cycles should correct the * excess load moved. */ if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { /* Prevent to re-select dst_cpu via env's cpus */ cpumask_clear_cpu(env.dst_cpu, env.cpus); env.dst_rq = cpu_rq(env.new_dst_cpu); env.dst_cpu = env.new_dst_cpu; env.flags &= ~LBF_DST_PINNED; env.loop = 0; env.loop_break = sched_nr_migrate_break; /* * Go back to "more_balance" rather than "redo" since we * need to continue with same src_cpu. */ goto more_balance; } /* * We failed to reach balance because of affinity. */ if (sd_parent) { int *group_imbalance = &sd_parent->groups->sgc->imbalance; if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) *group_imbalance = 1; } /* All tasks on this runqueue were pinned by CPU affinity */ if (unlikely(env.flags & LBF_ALL_PINNED)) { cpumask_clear_cpu(cpu_of(busiest), cpus); if (!cpumask_empty(cpus)) { env.loop = 0; env.loop_break = sched_nr_migrate_break; goto redo; } goto out_all_pinned; } } if (!ld_moved) { schedstat_inc(sd, lb_failed[idle]); /* * Increment the failure counter only on periodic balance. * We do not want newidle balance, which can be very * frequent, pollute the failure counter causing * excessive cache_hot migrations and active balances. */ if (idle != CPU_NEWLY_IDLE) sd->nr_balance_failed++; if (need_active_balance(&env)) { raw_spin_lock_irqsave(&busiest->lock, flags); /* don't kick the active_load_balance_cpu_stop, * if the curr task on busiest cpu can't be * moved to this_cpu */ if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(busiest->curr))) { raw_spin_unlock_irqrestore(&busiest->lock, flags); env.flags |= LBF_ALL_PINNED; goto out_one_pinned; } /* * ->active_balance synchronizes accesses to * ->active_balance_work. Once set, it's cleared * only after active load balance is finished. */ if (!busiest->active_balance) { busiest->active_balance = 1; busiest->push_cpu = this_cpu; active_balance = 1; } raw_spin_unlock_irqrestore(&busiest->lock, flags); if (active_balance) { stop_one_cpu_nowait(cpu_of(busiest), active_load_balance_cpu_stop, busiest, &busiest->active_balance_work); } /* * We've kicked active balancing, reset the failure * counter. */ sd->nr_balance_failed = sd->cache_nice_tries+1; } } else sd->nr_balance_failed = 0; if (likely(!active_balance)) { /* We were unbalanced, so reset the balancing interval */ sd->balance_interval = sd->min_interval; } else { /* * If we've begun active balancing, start to back off. This * case may not be covered by the all_pinned logic if there * is only 1 task on the busy runqueue (because we don't call * detach_tasks). */ if (sd->balance_interval < sd->max_interval) sd->balance_interval *= 2; } goto out; out_balanced: /* * We reach balance although we may have faced some affinity * constraints. Clear the imbalance flag if it was set. */ if (sd_parent) { int *group_imbalance = &sd_parent->groups->sgc->imbalance; if (*group_imbalance) *group_imbalance = 0; } out_all_pinned: /* * We reach balance because all tasks are pinned at this level so * we can't migrate them. Let the imbalance flag set so parent level * can try to migrate them. */ schedstat_inc(sd, lb_balanced[idle]); sd->nr_balance_failed = 0; out_one_pinned: /* tune up the balancing interval */ if (((env.flags & LBF_ALL_PINNED) && sd->balance_interval < MAX_PINNED_INTERVAL) || (sd->balance_interval < sd->max_interval)) sd->balance_interval *= 2; ld_moved = 0; out: return ld_moved; } static inline unsigned long get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) { unsigned long interval = sd->balance_interval; if (cpu_busy) interval *= sd->busy_factor; /* scale ms to jiffies */ interval = msecs_to_jiffies(interval); interval = clamp(interval, 1UL, max_load_balance_interval); return interval; } static inline void update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) { unsigned long interval, next; interval = get_sd_balance_interval(sd, cpu_busy); next = sd->last_balance + interval; if (time_after(*next_balance, next)) *next_balance = next; } /* * idle_balance is called by schedule() if this_cpu is about to become * idle. Attempts to pull tasks from other CPUs. */ static int idle_balance(struct rq *this_rq) { unsigned long next_balance = jiffies + HZ; int this_cpu = this_rq->cpu; struct sched_domain *sd; int pulled_task = 0; u64 curr_cost = 0; idle_enter_fair(this_rq); /* * We must set idle_stamp _before_ calling idle_balance(), such that we * measure the duration of idle_balance() as idle time. */ this_rq->idle_stamp = rq_clock(this_rq); if (this_rq->avg_idle < sysctl_sched_migration_cost || !this_rq->rd->overload) { rcu_read_lock(); sd = rcu_dereference_check_sched_domain(this_rq->sd); if (sd) update_next_balance(sd, 0, &next_balance); rcu_read_unlock(); goto out; } /* * Drop the rq->lock, but keep IRQ/preempt disabled. */ raw_spin_unlock(&this_rq->lock); update_blocked_averages(this_cpu); rcu_read_lock(); for_each_domain(this_cpu, sd) { int continue_balancing = 1; u64 t0, domain_cost; if (!(sd->flags & SD_LOAD_BALANCE)) continue; if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { update_next_balance(sd, 0, &next_balance); break; } if (sd->flags & SD_BALANCE_NEWIDLE) { t0 = sched_clock_cpu(this_cpu); pulled_task = load_balance(this_cpu, this_rq, sd, CPU_NEWLY_IDLE, &continue_balancing); domain_cost = sched_clock_cpu(this_cpu) - t0; if (domain_cost > sd->max_newidle_lb_cost) sd->max_newidle_lb_cost = domain_cost; curr_cost += domain_cost; } update_next_balance(sd, 0, &next_balance); /* * Stop searching for tasks to pull if there are * now runnable tasks on this rq. */ if (pulled_task || this_rq->nr_running > 0) break; } rcu_read_unlock(); raw_spin_lock(&this_rq->lock); if (curr_cost > this_rq->max_idle_balance_cost) this_rq->max_idle_balance_cost = curr_cost; /* * While browsing the domains, we released the rq lock, a task could * have been enqueued in the meantime. Since we're not going idle, * pretend we pulled a task. */ if (this_rq->cfs.h_nr_running && !pulled_task) pulled_task = 1; out: /* Move the next balance forward */ if (time_after(this_rq->next_balance, next_balance)) this_rq->next_balance = next_balance; /* Is there a task of a high priority class? */ if (this_rq->nr_running != this_rq->cfs.h_nr_running) pulled_task = -1; if (pulled_task) { idle_exit_fair(this_rq); this_rq->idle_stamp = 0; } return pulled_task; } /* * active_load_balance_cpu_stop is run by cpu stopper. It pushes * running tasks off the busiest CPU onto idle CPUs. It requires at * least 1 task to be running on each physical CPU where possible, and * avoids physical / logical imbalances. */ static int active_load_balance_cpu_stop(void *data) { struct rq *busiest_rq = data; int busiest_cpu = cpu_of(busiest_rq); int target_cpu = busiest_rq->push_cpu; struct rq *target_rq = cpu_rq(target_cpu); struct sched_domain *sd; struct task_struct *p = NULL; raw_spin_lock_irq(&busiest_rq->lock); /* make sure the requested cpu hasn't gone down in the meantime */ if (unlikely(busiest_cpu != smp_processor_id() || !busiest_rq->active_balance)) goto out_unlock; /* Is there any task to move? */ if (busiest_rq->nr_running <= 1) goto out_unlock; /* * This condition is "impossible", if it occurs * we need to fix it. Originally reported by * Bjorn Helgaas on a 128-cpu setup. */ BUG_ON(busiest_rq == target_rq); /* Search for an sd spanning us and the target CPU. */ rcu_read_lock(); for_each_domain(target_cpu, sd) { if ((sd->flags & SD_LOAD_BALANCE) && cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) break; } if (likely(sd)) { struct lb_env env = { .sd = sd, .dst_cpu = target_cpu, .dst_rq = target_rq, .src_cpu = busiest_rq->cpu, .src_rq = busiest_rq, .idle = CPU_IDLE, }; schedstat_inc(sd, alb_count); p = detach_one_task(&env); if (p) schedstat_inc(sd, alb_pushed); else schedstat_inc(sd, alb_failed); } rcu_read_unlock(); out_unlock: busiest_rq->active_balance = 0; raw_spin_unlock(&busiest_rq->lock); if (p) attach_one_task(target_rq, p); local_irq_enable(); return 0; } static inline int on_null_domain(struct rq *rq) { return unlikely(!rcu_dereference_sched(rq->sd)); } #ifdef CONFIG_NO_HZ_COMMON /* * idle load balancing details * - When one of the busy CPUs notice that there may be an idle rebalancing * needed, they will kick the idle load balancer, which then does idle * load balancing for all the idle CPUs. */ static struct { cpumask_var_t idle_cpus_mask; atomic_t nr_cpus; unsigned long next_balance; /* in jiffy units */ } nohz ____cacheline_aligned; static inline int find_new_ilb(void) { int ilb = cpumask_first(nohz.idle_cpus_mask); if (ilb < nr_cpu_ids && idle_cpu(ilb)) return ilb; return nr_cpu_ids; } /* * Kick a CPU to do the nohz balancing, if it is time for it. We pick the * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle * CPU (if there is one). */ static void nohz_balancer_kick(void) { int ilb_cpu; nohz.next_balance++; ilb_cpu = find_new_ilb(); if (ilb_cpu >= nr_cpu_ids) return; if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) return; /* * Use smp_send_reschedule() instead of resched_cpu(). * This way we generate a sched IPI on the target cpu which * is idle. And the softirq performing nohz idle load balance * will be run before returning from the IPI. */ smp_send_reschedule(ilb_cpu); return; } static inline void nohz_balance_exit_idle(int cpu) { if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { /* * Completely isolated CPUs don't ever set, so we must test. */ if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); atomic_dec(&nohz.nr_cpus); } clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); } } static inline void set_cpu_sd_state_busy(void) { struct sched_domain *sd; int cpu = smp_processor_id(); rcu_read_lock(); sd = rcu_dereference(per_cpu(sd_busy, cpu)); if (!sd || !sd->nohz_idle) goto unlock; sd->nohz_idle = 0; atomic_inc(&sd->groups->sgc->nr_busy_cpus); unlock: rcu_read_unlock(); } void set_cpu_sd_state_idle(void) { struct sched_domain *sd; int cpu = smp_processor_id(); rcu_read_lock(); sd = rcu_dereference(per_cpu(sd_busy, cpu)); if (!sd || sd->nohz_idle) goto unlock; sd->nohz_idle = 1; atomic_dec(&sd->groups->sgc->nr_busy_cpus); unlock: rcu_read_unlock(); } /* * This routine will record that the cpu is going idle with tick stopped. * This info will be used in performing idle load balancing in the future. */ void nohz_balance_enter_idle(int cpu) { /* * If this cpu is going down, then nothing needs to be done. */ if (!cpu_active(cpu)) return; if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) return; /* * If we're a completely isolated CPU, we don't play. */ if (on_null_domain(cpu_rq(cpu))) return; cpumask_set_cpu(cpu, nohz.idle_cpus_mask); atomic_inc(&nohz.nr_cpus); set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); } static int sched_ilb_notifier(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action & ~CPU_TASKS_FROZEN) { case CPU_DYING: nohz_balance_exit_idle(smp_processor_id()); return NOTIFY_OK; default: return NOTIFY_DONE; } } #endif static DEFINE_SPINLOCK(balancing); /* * Scale the max load_balance interval with the number of CPUs in the system. * This trades load-balance latency on larger machines for less cross talk. */ void update_max_interval(void) { max_load_balance_interval = HZ*num_online_cpus()/10; } /* * It checks each scheduling domain to see if it is due to be balanced, * and initiates a balancing operation if so. * * Balancing parameters are set up in init_sched_domains. */ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) { int continue_balancing = 1; int cpu = rq->cpu; unsigned long interval; struct sched_domain *sd; /* Earliest time when we have to do rebalance again */ unsigned long next_balance = jiffies + 60*HZ; int update_next_balance = 0; int need_serialize, need_decay = 0; u64 max_cost = 0; update_blocked_averages(cpu); rcu_read_lock(); for_each_domain(cpu, sd) { /* * Decay the newidle max times here because this is a regular * visit to all the domains. Decay ~1% per second. */ if (time_after(jiffies, sd->next_decay_max_lb_cost)) { sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; sd->next_decay_max_lb_cost = jiffies + HZ; need_decay = 1; } max_cost += sd->max_newidle_lb_cost; if (!(sd->flags & SD_LOAD_BALANCE)) continue; /* * Stop the load balance at this level. There is another * CPU in our sched group which is doing load balancing more * actively. */ if (!continue_balancing) { if (need_decay) continue; break; } interval = get_sd_balance_interval(sd, idle != CPU_IDLE); need_serialize = sd->flags & SD_SERIALIZE; if (need_serialize) { if (!spin_trylock(&balancing)) goto out; } if (time_after_eq(jiffies, sd->last_balance + interval)) { if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { /* * The LBF_DST_PINNED logic could have changed * env->dst_cpu, so we can't know our idle * state even if we migrated tasks. Update it. */ idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; } sd->last_balance = jiffies; interval = get_sd_balance_interval(sd, idle != CPU_IDLE); } if (need_serialize) spin_unlock(&balancing); out: if (time_after(next_balance, sd->last_balance + interval)) { next_balance = sd->last_balance + interval; update_next_balance = 1; } } if (need_decay) { /* * Ensure the rq-wide value also decays but keep it at a * reasonable floor to avoid funnies with rq->avg_idle. */ rq->max_idle_balance_cost = max((u64)sysctl_sched_migration_cost, max_cost); } rcu_read_unlock(); /* * next_balance will be updated only when there is a need. * When the cpu is attached to null domain for ex, it will not be * updated. */ if (likely(update_next_balance)) rq->next_balance = next_balance; } #ifdef CONFIG_NO_HZ_COMMON /* * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the * rebalancing for all the cpus for whom scheduler ticks are stopped. */ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { int this_cpu = this_rq->cpu; struct rq *rq; int balance_cpu; if (idle != CPU_IDLE || !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) goto end; for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) continue; /* * If this cpu gets work to do, stop the load balancing * work being done for other cpus. Next load * balancing owner will pick it up. */ if (need_resched()) break; rq = cpu_rq(balance_cpu); /* * If time for next balance is due, * do the balance. */ if (time_after_eq(jiffies, rq->next_balance)) { raw_spin_lock_irq(&rq->lock); update_rq_clock(rq); update_idle_cpu_load(rq); raw_spin_unlock_irq(&rq->lock); rebalance_domains(rq, CPU_IDLE); } if (time_after(this_rq->next_balance, rq->next_balance)) this_rq->next_balance = rq->next_balance; } nohz.next_balance = this_rq->next_balance; end: clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); } /* * Current heuristic for kicking the idle load balancer in the presence * of an idle cpu in the system. * - This rq has more than one task. * - This rq has at least one CFS task and the capacity of the CPU is * significantly reduced because of RT tasks or IRQs. * - At parent of LLC scheduler domain level, this cpu's scheduler group has * multiple busy cpu. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler * domain span are idle. */ static inline bool nohz_kick_needed(struct rq *rq) { unsigned long now = jiffies; struct sched_domain *sd; struct sched_group_capacity *sgc; int nr_busy, cpu = rq->cpu; bool kick = false; if (unlikely(rq->idle_balance)) return false; /* * We may be recently in ticked or tickless idle mode. At the first * busy tick after returning from idle, we will update the busy stats. */ set_cpu_sd_state_busy(); nohz_balance_exit_idle(cpu); /* * None are in tickless mode and hence no need for NOHZ idle load * balancing. */ if (likely(!atomic_read(&nohz.nr_cpus))) return false; if (time_before(now, nohz.next_balance)) return false; if (rq->nr_running >= 2) return true; rcu_read_lock(); sd = rcu_dereference(per_cpu(sd_busy, cpu)); if (sd) { sgc = sd->groups->sgc; nr_busy = atomic_read(&sgc->nr_busy_cpus); if (nr_busy > 1) { kick = true; goto unlock; } } sd = rcu_dereference(rq->sd); if (sd) { if ((rq->cfs.h_nr_running >= 1) && check_cpu_capacity(rq, sd)) { kick = true; goto unlock; } } sd = rcu_dereference(per_cpu(sd_asym, cpu)); if (sd && (cpumask_first_and(nohz.idle_cpus_mask, sched_domain_span(sd)) < cpu)) { kick = true; goto unlock; } unlock: rcu_read_unlock(); return kick; } #else static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } #endif /* * run_rebalance_domains is triggered when needed from the scheduler tick. * Also triggered for nohz idle balancing (with nohz_balancing_kick set). */ static void run_rebalance_domains(struct softirq_action *h) { struct rq *this_rq = this_rq(); enum cpu_idle_type idle = this_rq->idle_balance ? CPU_IDLE : CPU_NOT_IDLE; /* * If this cpu has a pending nohz_balance_kick, then do the * balancing on behalf of the other idle cpus whose ticks are * stopped. Do nohz_idle_balance *before* rebalance_domains to * give the idle cpus a chance to load balance. Else we may * load balance only within the local sched_domain hierarchy * and abort nohz_idle_balance altogether if we pull some load. */ nohz_idle_balance(this_rq, idle); rebalance_domains(this_rq, idle); } /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. */ void trigger_load_balance(struct rq *rq) { /* Don't need to rebalance while attached to NULL domain */ if (unlikely(on_null_domain(rq))) return; if (time_after_eq(jiffies, rq->next_balance)) raise_softirq(SCHED_SOFTIRQ); #ifdef CONFIG_NO_HZ_COMMON if (nohz_kick_needed(rq)) nohz_balancer_kick(); #endif } static void rq_online_fair(struct rq *rq) { update_sysctl(); update_runtime_enabled(rq); } static void rq_offline_fair(struct rq *rq) { update_sysctl(); /* Ensure any throttled groups are reachable by pick_next_task */ unthrottle_offline_cfs_rqs(rq); } #endif /* CONFIG_SMP */ /* * scheduler tick hitting a task of our scheduling class: */ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) { struct cfs_rq *cfs_rq; struct sched_entity *se = &curr->se; for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); entity_tick(cfs_rq, se, queued); } if (numabalancing_enabled) task_tick_numa(rq, curr); update_rq_runnable_avg(rq, 1); } /* * called on fork with the child task as argument from the parent's context * - child not yet on the tasklist * - preemption disabled */ static void task_fork_fair(struct task_struct *p) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se, *curr; int this_cpu = smp_processor_id(); struct rq *rq = this_rq(); unsigned long flags; raw_spin_lock_irqsave(&rq->lock, flags); update_rq_clock(rq); cfs_rq = task_cfs_rq(current); curr = cfs_rq->curr; /* * Not only the cpu but also the task_group of the parent might have * been changed after parent->se.parent,cfs_rq were copied to * child->se.parent,cfs_rq. So call __set_task_cpu() to make those * of child point to valid ones. */ rcu_read_lock(); __set_task_cpu(p, this_cpu); rcu_read_unlock(); update_curr(cfs_rq); if (curr) se->vruntime = curr->vruntime; place_entity(cfs_rq, se, 1); if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { /* * Upon rescheduling, sched_class::put_prev_task() will place * 'current' within the tree based on its new key value. */ swap(curr->vruntime, se->vruntime); resched_curr(rq); } se->vruntime -= cfs_rq->min_vruntime; raw_spin_unlock_irqrestore(&rq->lock, flags); } /* * Priority of the task has changed. Check to see if we preempt * the current task. */ static void prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) { if (!task_on_rq_queued(p)) return; /* * Reschedule if we are currently running on this runqueue and * our priority decreased, or if we are not currently running on * this runqueue and our priority is higher than the current's */ if (rq->curr == p) { if (p->prio > oldprio) resched_curr(rq); } else check_preempt_curr(rq, p, 0); } static void switched_from_fair(struct rq *rq, struct task_struct *p) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq = cfs_rq_of(se); /* * Ensure the task's vruntime is normalized, so that when it's * switched back to the fair class the enqueue_entity(.flags=0) will * do the right thing. * * If it's queued, then the dequeue_entity(.flags=0) will already * have normalized the vruntime, if it's !queued, then only when * the task is sleeping will it still have non-normalized vruntime. */ if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { /* * Fix up our vruntime so that the current sleep doesn't * cause 'unlimited' sleep bonus. */ place_entity(cfs_rq, se, 0); se->vruntime -= cfs_rq->min_vruntime; } #ifdef CONFIG_SMP /* * Remove our load from contribution when we leave sched_fair * and ensure we don't carry in an old decay_count if we * switch back. */ if (se->avg.decay_count) { __synchronize_entity_decay(se); subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); } #endif } /* * We switched to the sched_fair class. */ static void switched_to_fair(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity *se = &p->se; /* * Since the real-depth could have been changed (only FAIR * class maintain depth value), reset depth properly. */ se->depth = se->parent ? se->parent->depth + 1 : 0; #endif if (!task_on_rq_queued(p)) return; /* * We were most likely switched from sched_rt, so * kick off the schedule if running, otherwise just see * if we can still preempt the current task. */ if (rq->curr == p) resched_curr(rq); else check_preempt_curr(rq, p, 0); } /* Account for a task changing its policy or group. * * This routine is mostly called to set cfs_rq->curr field when a task * migrates between groups/classes. */ static void set_curr_task_fair(struct rq *rq) { struct sched_entity *se = &rq->curr->se; for_each_sched_entity(se) { struct cfs_rq *cfs_rq = cfs_rq_of(se); set_next_entity(cfs_rq, se); /* ensure bandwidth has been allocated on our new cfs_rq */ account_cfs_rq_runtime(cfs_rq, 0); } } void init_cfs_rq(struct cfs_rq *cfs_rq) { cfs_rq->tasks_timeline = RB_ROOT; cfs_rq->min_vruntime = (u64)(-(1LL << 20)); #ifndef CONFIG_64BIT cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; #endif #ifdef CONFIG_SMP atomic64_set(&cfs_rq->decay_counter, 1); atomic_long_set(&cfs_rq->removed_load, 0); #endif } #ifdef CONFIG_FAIR_GROUP_SCHED static void task_move_group_fair(struct task_struct *p, int queued) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq; /* * If the task was not on the rq at the time of this cgroup movement * it must have been asleep, sleeping tasks keep their ->vruntime * absolute on their old rq until wakeup (needed for the fair sleeper * bonus in place_entity()). * * If it was on the rq, we've just 'preempted' it, which does convert * ->vruntime to a relative base. * * Make sure both cases convert their relative position when migrating * to another cgroup's rq. This does somewhat interfere with the * fair sleeper stuff for the first placement, but who cares. */ /* * When !queued, vruntime of the task has usually NOT been normalized. * But there are some cases where it has already been normalized: * * - Moving a forked child which is waiting for being woken up by * wake_up_new_task(). * - Moving a task which has been woken up by try_to_wake_up() and * waiting for actually being woken up by sched_ttwu_pending(). * * To prevent boost or penalty in the new cfs_rq caused by delta * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. */ if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) queued = 1; if (!queued) se->vruntime -= cfs_rq_of(se)->min_vruntime; set_task_rq(p, task_cpu(p)); se->depth = se->parent ? se->parent->depth + 1 : 0; if (!queued) { cfs_rq = cfs_rq_of(se); se->vruntime += cfs_rq->min_vruntime; #ifdef CONFIG_SMP /* * migrate_task_rq_fair() will have removed our previous * contribution, but we must synchronize for ongoing future * decay. */ se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; #endif } } void free_fair_sched_group(struct task_group *tg) { int i; destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); for_each_possible_cpu(i) { if (tg->cfs_rq) kfree(tg->cfs_rq[i]); if (tg->se) kfree(tg->se[i]); } kfree(tg->cfs_rq); kfree(tg->se); } int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { struct cfs_rq *cfs_rq; struct sched_entity *se; int i; tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); if (!tg->cfs_rq) goto err; tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); if (!tg->se) goto err; tg->shares = NICE_0_LOAD; init_cfs_bandwidth(tg_cfs_bandwidth(tg)); for_each_possible_cpu(i) { cfs_rq = kzalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, cpu_to_node(i)); if (!cfs_rq) goto err; se = kzalloc_node(sizeof(struct sched_entity), GFP_KERNEL, cpu_to_node(i)); if (!se) goto err_free_rq; init_cfs_rq(cfs_rq); init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); } return 1; err_free_rq: kfree(cfs_rq); err: return 0; } void unregister_fair_sched_group(struct task_group *tg, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; /* * Only empty task groups can be destroyed; so we can speculatively * check on_list without danger of it being re-added. */ if (!tg->cfs_rq[cpu]->on_list) return; raw_spin_lock_irqsave(&rq->lock, flags); list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); raw_spin_unlock_irqrestore(&rq->lock, flags); } void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent) { struct rq *rq = cpu_rq(cpu); cfs_rq->tg = tg; cfs_rq->rq = rq; init_cfs_rq_runtime(cfs_rq); tg->cfs_rq[cpu] = cfs_rq; tg->se[cpu] = se; /* se could be NULL for root_task_group */ if (!se) return; if (!parent) { se->cfs_rq = &rq->cfs; se->depth = 0; } else { se->cfs_rq = parent->my_q; se->depth = parent->depth + 1; } se->my_q = cfs_rq; /* guarantee group entities always have weight */ update_load_set(&se->load, NICE_0_LOAD); se->parent = parent; } static DEFINE_MUTEX(shares_mutex); int sched_group_set_shares(struct task_group *tg, unsigned long shares) { int i; unsigned long flags; /* * We can't change the weight of the root cgroup. */ if (!tg->se[0]) return -EINVAL; shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); mutex_lock(&shares_mutex); if (tg->shares == shares) goto done; tg->shares = shares; for_each_possible_cpu(i) { struct rq *rq = cpu_rq(i); struct sched_entity *se; se = tg->se[i]; /* Propagate contribution to hierarchy */ raw_spin_lock_irqsave(&rq->lock, flags); /* Possible calls to update_curr() need rq clock */ update_rq_clock(rq); for_each_sched_entity(se) update_cfs_shares(group_cfs_rq(se)); raw_spin_unlock_irqrestore(&rq->lock, flags); } done: mutex_unlock(&shares_mutex); return 0; } #else /* CONFIG_FAIR_GROUP_SCHED */ void free_fair_sched_group(struct task_group *tg) { } int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { return 1; } void unregister_fair_sched_group(struct task_group *tg, int cpu) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) { struct sched_entity *se = &task->se; unsigned int rr_interval = 0; /* * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise * idle runqueue: */ if (rq->cfs.load.weight) rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); return rr_interval; } /* * All the scheduling class methods: */ const struct sched_class fair_sched_class = { .next = &idle_sched_class, .enqueue_task = enqueue_task_fair, .dequeue_task = dequeue_task_fair, .yield_task = yield_task_fair, .yield_to_task = yield_to_task_fair, .check_preempt_curr = check_preempt_wakeup, .pick_next_task = pick_next_task_fair, .put_prev_task = put_prev_task_fair, #ifdef CONFIG_SMP .select_task_rq = select_task_rq_fair, .migrate_task_rq = migrate_task_rq_fair, .rq_online = rq_online_fair, .rq_offline = rq_offline_fair, .task_waking = task_waking_fair, #endif .set_curr_task = set_curr_task_fair, .task_tick = task_tick_fair, .task_fork = task_fork_fair, .prio_changed = prio_changed_fair, .switched_from = switched_from_fair, .switched_to = switched_to_fair, .get_rr_interval = get_rr_interval_fair, .update_curr = update_curr_fair, #ifdef CONFIG_FAIR_GROUP_SCHED .task_move_group = task_move_group_fair, #endif }; #ifdef CONFIG_SCHED_DEBUG void print_cfs_stats(struct seq_file *m, int cpu) { struct cfs_rq *cfs_rq; rcu_read_lock(); for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) print_cfs_rq(m, cpu, cfs_rq); rcu_read_unlock(); } #ifdef CONFIG_NUMA_BALANCING void show_numa_stats(struct task_struct *p, struct seq_file *m) { int node; unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; for_each_online_node(node) { if (p->numa_faults) { tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; } if (p->numa_group) { gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; } print_numa_stats(m, node, tsf, tpf, gsf, gpf); } } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_SCHED_DEBUG */ __init void init_sched_fair_class(void) { #ifdef CONFIG_SMP open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); #ifdef CONFIG_NO_HZ_COMMON nohz.next_balance = jiffies; zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); cpu_notifier(sched_ilb_notifier, 0); #endif #endif /* SMP */ }