/* * Read-Copy Update module-based torture test facility * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2005, 2006 * * Authors: Paul E. McKenney <paulmck@us.ibm.com> * Josh Triplett <josh@freedesktop.org> * * See also: Documentation/RCU/torture.txt */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/completion.h> #include <linux/moduleparam.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/freezer.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/stat.h> #include <linux/srcu.h> #include <linux/slab.h> #include <asm/byteorder.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " "Josh Triplett <josh@freedesktop.org>"); static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ static int nfakewriters = 4; /* # fake writer threads */ static int stat_interval; /* Interval between stats, in seconds. */ /* Defaults to "only at end of test". */ static bool verbose; /* Print more debug info. */ static bool test_no_idle_hz; /* Test RCU's support for tickless idle CPUs. */ static int shuffle_interval = 3; /* Interval between shuffles (in sec)*/ static int stutter = 5; /* Start/stop testing interval (in sec) */ static int irqreader = 1; /* RCU readers from irq (timers). */ static int fqs_duration; /* Duration of bursts (us), 0 to disable. */ static int fqs_holdoff; /* Hold time within burst (us). */ static int fqs_stutter = 3; /* Wait time between bursts (s). */ static int n_barrier_cbs; /* Number of callbacks to test RCU barriers. */ static int onoff_interval; /* Wait time between CPU hotplugs, 0=disable. */ static int onoff_holdoff; /* Seconds after boot before CPU hotplugs. */ static int shutdown_secs; /* Shutdown time (s). <=0 for no shutdown. */ static int stall_cpu; /* CPU-stall duration (s). 0 for no stall. */ static int stall_cpu_holdoff = 10; /* Time to wait until stall (s). */ static int test_boost = 1; /* Test RCU prio boost: 0=no, 1=maybe, 2=yes. */ static int test_boost_interval = 7; /* Interval between boost tests, seconds. */ static int test_boost_duration = 4; /* Duration of each boost test, seconds. */ static char *torture_type = "rcu"; /* What RCU implementation to torture. */ module_param(nreaders, int, 0444); MODULE_PARM_DESC(nreaders, "Number of RCU reader threads"); module_param(nfakewriters, int, 0444); MODULE_PARM_DESC(nfakewriters, "Number of RCU fake writer threads"); module_param(stat_interval, int, 0644); MODULE_PARM_DESC(stat_interval, "Number of seconds between stats printk()s"); module_param(verbose, bool, 0444); MODULE_PARM_DESC(verbose, "Enable verbose debugging printk()s"); module_param(test_no_idle_hz, bool, 0444); MODULE_PARM_DESC(test_no_idle_hz, "Test support for tickless idle CPUs"); module_param(shuffle_interval, int, 0444); MODULE_PARM_DESC(shuffle_interval, "Number of seconds between shuffles"); module_param(stutter, int, 0444); MODULE_PARM_DESC(stutter, "Number of seconds to run/halt test"); module_param(irqreader, int, 0444); MODULE_PARM_DESC(irqreader, "Allow RCU readers from irq handlers"); module_param(fqs_duration, int, 0444); MODULE_PARM_DESC(fqs_duration, "Duration of fqs bursts (us)"); module_param(fqs_holdoff, int, 0444); MODULE_PARM_DESC(fqs_holdoff, "Holdoff time within fqs bursts (us)"); module_param(fqs_stutter, int, 0444); MODULE_PARM_DESC(fqs_stutter, "Wait time between fqs bursts (s)"); module_param(n_barrier_cbs, int, 0444); MODULE_PARM_DESC(n_barrier_cbs, "# of callbacks/kthreads for barrier testing"); module_param(onoff_interval, int, 0444); MODULE_PARM_DESC(onoff_interval, "Time between CPU hotplugs (s), 0=disable"); module_param(onoff_holdoff, int, 0444); MODULE_PARM_DESC(onoff_holdoff, "Time after boot before CPU hotplugs (s)"); module_param(shutdown_secs, int, 0444); MODULE_PARM_DESC(shutdown_secs, "Shutdown time (s), zero to disable."); module_param(stall_cpu, int, 0444); MODULE_PARM_DESC(stall_cpu, "Stall duration (s), zero to disable."); module_param(stall_cpu_holdoff, int, 0444); MODULE_PARM_DESC(stall_cpu_holdoff, "Time to wait before starting stall (s)."); module_param(test_boost, int, 0444); MODULE_PARM_DESC(test_boost, "Test RCU prio boost: 0=no, 1=maybe, 2=yes."); module_param(test_boost_interval, int, 0444); MODULE_PARM_DESC(test_boost_interval, "Interval between boost tests, seconds."); module_param(test_boost_duration, int, 0444); MODULE_PARM_DESC(test_boost_duration, "Duration of each boost test, seconds."); module_param(torture_type, charp, 0444); MODULE_PARM_DESC(torture_type, "Type of RCU to torture (rcu, rcu_bh, srcu)"); #define TORTURE_FLAG "-torture:" #define PRINTK_STRING(s) \ do { printk(KERN_ALERT "%s" TORTURE_FLAG s "\n", torture_type); } while (0) #define VERBOSE_PRINTK_STRING(s) \ do { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG s "\n", torture_type); } while (0) #define VERBOSE_PRINTK_ERRSTRING(s) \ do { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "!!! " s "\n", torture_type); } while (0) static char printk_buf[4096]; static int nrealreaders; static struct task_struct *writer_task; static struct task_struct **fakewriter_tasks; static struct task_struct **reader_tasks; static struct task_struct *stats_task; static struct task_struct *shuffler_task; static struct task_struct *stutter_task; static struct task_struct *fqs_task; static struct task_struct *boost_tasks[NR_CPUS]; static struct task_struct *shutdown_task; #ifdef CONFIG_HOTPLUG_CPU static struct task_struct *onoff_task; #endif /* #ifdef CONFIG_HOTPLUG_CPU */ static struct task_struct *stall_task; static struct task_struct **barrier_cbs_tasks; static struct task_struct *barrier_task; #define RCU_TORTURE_PIPE_LEN 10 struct rcu_torture { struct rcu_head rtort_rcu; int rtort_pipe_count; struct list_head rtort_free; int rtort_mbtest; }; static LIST_HEAD(rcu_torture_freelist); static struct rcu_torture __rcu *rcu_torture_current; static unsigned long rcu_torture_current_version; static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; static DEFINE_SPINLOCK(rcu_torture_lock); static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = { 0 }; static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_batch) = { 0 }; static atomic_t rcu_torture_wcount[RCU_TORTURE_PIPE_LEN + 1]; static atomic_t n_rcu_torture_alloc; static atomic_t n_rcu_torture_alloc_fail; static atomic_t n_rcu_torture_free; static atomic_t n_rcu_torture_mberror; static atomic_t n_rcu_torture_error; static long n_rcu_torture_barrier_error; static long n_rcu_torture_boost_ktrerror; static long n_rcu_torture_boost_rterror; static long n_rcu_torture_boost_failure; static long n_rcu_torture_boosts; static long n_rcu_torture_timers; static long n_offline_attempts; static long n_offline_successes; static long n_online_attempts; static long n_online_successes; static long n_barrier_attempts; static long n_barrier_successes; static struct list_head rcu_torture_removed; static cpumask_var_t shuffle_tmp_mask; static int stutter_pause_test; #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) #define RCUTORTURE_RUNNABLE_INIT 1 #else #define RCUTORTURE_RUNNABLE_INIT 0 #endif int rcutorture_runnable = RCUTORTURE_RUNNABLE_INIT; module_param(rcutorture_runnable, int, 0444); MODULE_PARM_DESC(rcutorture_runnable, "Start rcutorture at boot"); #if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU) #define rcu_can_boost() 1 #else /* #if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU) */ #define rcu_can_boost() 0 #endif /* #else #if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU) */ static unsigned long shutdown_time; /* jiffies to system shutdown. */ static unsigned long boost_starttime; /* jiffies of next boost test start. */ DEFINE_MUTEX(boost_mutex); /* protect setting boost_starttime */ /* and boost task create/destroy. */ static atomic_t barrier_cbs_count; /* Barrier callbacks registered. */ static atomic_t barrier_cbs_invoked; /* Barrier callbacks invoked. */ static wait_queue_head_t *barrier_cbs_wq; /* Coordinate barrier testing. */ static DECLARE_WAIT_QUEUE_HEAD(barrier_wq); /* Mediate rmmod and system shutdown. Concurrent rmmod & shutdown illegal! */ #define FULLSTOP_DONTSTOP 0 /* Normal operation. */ #define FULLSTOP_SHUTDOWN 1 /* System shutdown with rcutorture running. */ #define FULLSTOP_RMMOD 2 /* Normal rmmod of rcutorture. */ static int fullstop = FULLSTOP_RMMOD; /* * Protect fullstop transitions and spawning of kthreads. */ static DEFINE_MUTEX(fullstop_mutex); /* Forward reference. */ static void rcu_torture_cleanup(void); /* * Detect and respond to a system shutdown. */ static int rcutorture_shutdown_notify(struct notifier_block *unused1, unsigned long unused2, void *unused3) { mutex_lock(&fullstop_mutex); if (fullstop == FULLSTOP_DONTSTOP) fullstop = FULLSTOP_SHUTDOWN; else printk(KERN_WARNING /* but going down anyway, so... */ "Concurrent 'rmmod rcutorture' and shutdown illegal!\n"); mutex_unlock(&fullstop_mutex); return NOTIFY_DONE; } /* * Absorb kthreads into a kernel function that won't return, so that * they won't ever access module text or data again. */ static void rcutorture_shutdown_absorb(char *title) { if (ACCESS_ONCE(fullstop) == FULLSTOP_SHUTDOWN) { printk(KERN_NOTICE "rcutorture thread %s parking due to system shutdown\n", title); schedule_timeout_uninterruptible(MAX_SCHEDULE_TIMEOUT); } } /* * Allocate an element from the rcu_tortures pool. */ static struct rcu_torture * rcu_torture_alloc(void) { struct list_head *p; spin_lock_bh(&rcu_torture_lock); if (list_empty(&rcu_torture_freelist)) { atomic_inc(&n_rcu_torture_alloc_fail); spin_unlock_bh(&rcu_torture_lock); return NULL; } atomic_inc(&n_rcu_torture_alloc); p = rcu_torture_freelist.next; list_del_init(p); spin_unlock_bh(&rcu_torture_lock); return container_of(p, struct rcu_torture, rtort_free); } /* * Free an element to the rcu_tortures pool. */ static void rcu_torture_free(struct rcu_torture *p) { atomic_inc(&n_rcu_torture_free); spin_lock_bh(&rcu_torture_lock); list_add_tail(&p->rtort_free, &rcu_torture_freelist); spin_unlock_bh(&rcu_torture_lock); } struct rcu_random_state { unsigned long rrs_state; long rrs_count; }; #define RCU_RANDOM_MULT 39916801 /* prime */ #define RCU_RANDOM_ADD 479001701 /* prime */ #define RCU_RANDOM_REFRESH 10000 #define DEFINE_RCU_RANDOM(name) struct rcu_random_state name = { 0, 0 } /* * Crude but fast random-number generator. Uses a linear congruential * generator, with occasional help from cpu_clock(). */ static unsigned long rcu_random(struct rcu_random_state *rrsp) { if (--rrsp->rrs_count < 0) { rrsp->rrs_state += (unsigned long)local_clock(); rrsp->rrs_count = RCU_RANDOM_REFRESH; } rrsp->rrs_state = rrsp->rrs_state * RCU_RANDOM_MULT + RCU_RANDOM_ADD; return swahw32(rrsp->rrs_state); } static void rcu_stutter_wait(char *title) { while (stutter_pause_test || !rcutorture_runnable) { if (rcutorture_runnable) schedule_timeout_interruptible(1); else schedule_timeout_interruptible(round_jiffies_relative(HZ)); rcutorture_shutdown_absorb(title); } } /* * Operations vector for selecting different types of tests. */ struct rcu_torture_ops { void (*init)(void); void (*cleanup)(void); int (*readlock)(void); void (*read_delay)(struct rcu_random_state *rrsp); void (*readunlock)(int idx); int (*completed)(void); void (*deferred_free)(struct rcu_torture *p); void (*sync)(void); void (*call)(struct rcu_head *head, void (*func)(struct rcu_head *rcu)); void (*cb_barrier)(void); void (*fqs)(void); int (*stats)(char *page); int irq_capable; int can_boost; char *name; }; static struct rcu_torture_ops *cur_ops; /* * Definitions for rcu torture testing. */ static int rcu_torture_read_lock(void) __acquires(RCU) { rcu_read_lock(); return 0; } static void rcu_read_delay(struct rcu_random_state *rrsp) { const unsigned long shortdelay_us = 200; const unsigned long longdelay_ms = 50; /* We want a short delay sometimes to make a reader delay the grace * period, and we want a long delay occasionally to trigger * force_quiescent_state. */ if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) mdelay(longdelay_ms); if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) udelay(shortdelay_us); #ifdef CONFIG_PREEMPT if (!preempt_count() && !(rcu_random(rrsp) % (nrealreaders * 20000))) preempt_schedule(); /* No QS if preempt_disable() in effect */ #endif } static void rcu_torture_read_unlock(int idx) __releases(RCU) { rcu_read_unlock(); } static int rcu_torture_completed(void) { return rcu_batches_completed(); } static void rcu_torture_cb(struct rcu_head *p) { int i; struct rcu_torture *rp = container_of(p, struct rcu_torture, rtort_rcu); if (fullstop != FULLSTOP_DONTSTOP) { /* Test is ending, just drop callbacks on the floor. */ /* The next initialization will pick up the pieces. */ return; } i = rp->rtort_pipe_count; if (i > RCU_TORTURE_PIPE_LEN) i = RCU_TORTURE_PIPE_LEN; atomic_inc(&rcu_torture_wcount[i]); if (++rp->rtort_pipe_count >= RCU_TORTURE_PIPE_LEN) { rp->rtort_mbtest = 0; rcu_torture_free(rp); } else cur_ops->deferred_free(rp); } static int rcu_no_completed(void) { return 0; } static void rcu_torture_deferred_free(struct rcu_torture *p) { call_rcu(&p->rtort_rcu, rcu_torture_cb); } static struct rcu_torture_ops rcu_ops = { .init = NULL, .cleanup = NULL, .readlock = rcu_torture_read_lock, .read_delay = rcu_read_delay, .readunlock = rcu_torture_read_unlock, .completed = rcu_torture_completed, .deferred_free = rcu_torture_deferred_free, .sync = synchronize_rcu, .call = call_rcu, .cb_barrier = rcu_barrier, .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .can_boost = rcu_can_boost(), .name = "rcu" }; static void rcu_sync_torture_deferred_free(struct rcu_torture *p) { int i; struct rcu_torture *rp; struct rcu_torture *rp1; cur_ops->sync(); list_add(&p->rtort_free, &rcu_torture_removed); list_for_each_entry_safe(rp, rp1, &rcu_torture_removed, rtort_free) { i = rp->rtort_pipe_count; if (i > RCU_TORTURE_PIPE_LEN) i = RCU_TORTURE_PIPE_LEN; atomic_inc(&rcu_torture_wcount[i]); if (++rp->rtort_pipe_count >= RCU_TORTURE_PIPE_LEN) { rp->rtort_mbtest = 0; list_del(&rp->rtort_free); rcu_torture_free(rp); } } } static void rcu_sync_torture_init(void) { INIT_LIST_HEAD(&rcu_torture_removed); } static struct rcu_torture_ops rcu_sync_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = rcu_torture_read_lock, .read_delay = rcu_read_delay, .readunlock = rcu_torture_read_unlock, .completed = rcu_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu, .call = NULL, .cb_barrier = NULL, .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .can_boost = rcu_can_boost(), .name = "rcu_sync" }; static struct rcu_torture_ops rcu_expedited_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = rcu_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = rcu_torture_read_unlock, .completed = rcu_no_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu_expedited, .call = NULL, .cb_barrier = NULL, .fqs = rcu_force_quiescent_state, .stats = NULL, .irq_capable = 1, .can_boost = rcu_can_boost(), .name = "rcu_expedited" }; /* * Definitions for rcu_bh torture testing. */ static int rcu_bh_torture_read_lock(void) __acquires(RCU_BH) { rcu_read_lock_bh(); return 0; } static void rcu_bh_torture_read_unlock(int idx) __releases(RCU_BH) { rcu_read_unlock_bh(); } static int rcu_bh_torture_completed(void) { return rcu_batches_completed_bh(); } static void rcu_bh_torture_deferred_free(struct rcu_torture *p) { call_rcu_bh(&p->rtort_rcu, rcu_torture_cb); } static struct rcu_torture_ops rcu_bh_ops = { .init = NULL, .cleanup = NULL, .readlock = rcu_bh_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = rcu_bh_torture_read_unlock, .completed = rcu_bh_torture_completed, .deferred_free = rcu_bh_torture_deferred_free, .sync = synchronize_rcu_bh, .call = call_rcu_bh, .cb_barrier = rcu_barrier_bh, .fqs = rcu_bh_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_bh" }; static struct rcu_torture_ops rcu_bh_sync_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = rcu_bh_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = rcu_bh_torture_read_unlock, .completed = rcu_bh_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu_bh, .call = NULL, .cb_barrier = NULL, .fqs = rcu_bh_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_bh_sync" }; static struct rcu_torture_ops rcu_bh_expedited_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = rcu_bh_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = rcu_bh_torture_read_unlock, .completed = rcu_bh_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_rcu_bh_expedited, .call = NULL, .cb_barrier = NULL, .fqs = rcu_bh_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "rcu_bh_expedited" }; /* * Definitions for srcu torture testing. */ static struct srcu_struct srcu_ctl; static void srcu_torture_init(void) { init_srcu_struct(&srcu_ctl); rcu_sync_torture_init(); } static void srcu_torture_cleanup(void) { synchronize_srcu(&srcu_ctl); cleanup_srcu_struct(&srcu_ctl); } static int srcu_torture_read_lock(void) __acquires(&srcu_ctl) { return srcu_read_lock(&srcu_ctl); } static void srcu_read_delay(struct rcu_random_state *rrsp) { long delay; const long uspertick = 1000000 / HZ; const long longdelay = 10; /* We want there to be long-running readers, but not all the time. */ delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay * uspertick); if (!delay) schedule_timeout_interruptible(longdelay); else rcu_read_delay(rrsp); } static void srcu_torture_read_unlock(int idx) __releases(&srcu_ctl) { srcu_read_unlock(&srcu_ctl, idx); } static int srcu_torture_completed(void) { return srcu_batches_completed(&srcu_ctl); } static void srcu_torture_deferred_free(struct rcu_torture *rp) { call_srcu(&srcu_ctl, &rp->rtort_rcu, rcu_torture_cb); } static void srcu_torture_synchronize(void) { synchronize_srcu(&srcu_ctl); } static int srcu_torture_stats(char *page) { int cnt = 0; int cpu; int idx = srcu_ctl.completed & 0x1; cnt += sprintf(&page[cnt], "%s%s per-CPU(idx=%d):", torture_type, TORTURE_FLAG, idx); for_each_possible_cpu(cpu) { cnt += sprintf(&page[cnt], " %d(%lu,%lu)", cpu, per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[!idx], per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[idx]); } cnt += sprintf(&page[cnt], "\n"); return cnt; } static struct rcu_torture_ops srcu_ops = { .init = srcu_torture_init, .cleanup = srcu_torture_cleanup, .readlock = srcu_torture_read_lock, .read_delay = srcu_read_delay, .readunlock = srcu_torture_read_unlock, .completed = srcu_torture_completed, .deferred_free = srcu_torture_deferred_free, .sync = srcu_torture_synchronize, .call = NULL, .cb_barrier = NULL, .stats = srcu_torture_stats, .name = "srcu" }; static struct rcu_torture_ops srcu_sync_ops = { .init = srcu_torture_init, .cleanup = srcu_torture_cleanup, .readlock = srcu_torture_read_lock, .read_delay = srcu_read_delay, .readunlock = srcu_torture_read_unlock, .completed = srcu_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = srcu_torture_synchronize, .call = NULL, .cb_barrier = NULL, .stats = srcu_torture_stats, .name = "srcu_sync" }; static int srcu_torture_read_lock_raw(void) __acquires(&srcu_ctl) { return srcu_read_lock_raw(&srcu_ctl); } static void srcu_torture_read_unlock_raw(int idx) __releases(&srcu_ctl) { srcu_read_unlock_raw(&srcu_ctl, idx); } static struct rcu_torture_ops srcu_raw_ops = { .init = srcu_torture_init, .cleanup = srcu_torture_cleanup, .readlock = srcu_torture_read_lock_raw, .read_delay = srcu_read_delay, .readunlock = srcu_torture_read_unlock_raw, .completed = srcu_torture_completed, .deferred_free = srcu_torture_deferred_free, .sync = srcu_torture_synchronize, .call = NULL, .cb_barrier = NULL, .stats = srcu_torture_stats, .name = "srcu_raw" }; static struct rcu_torture_ops srcu_raw_sync_ops = { .init = srcu_torture_init, .cleanup = srcu_torture_cleanup, .readlock = srcu_torture_read_lock_raw, .read_delay = srcu_read_delay, .readunlock = srcu_torture_read_unlock_raw, .completed = srcu_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = srcu_torture_synchronize, .call = NULL, .cb_barrier = NULL, .stats = srcu_torture_stats, .name = "srcu_raw_sync" }; static void srcu_torture_synchronize_expedited(void) { synchronize_srcu_expedited(&srcu_ctl); } static struct rcu_torture_ops srcu_expedited_ops = { .init = srcu_torture_init, .cleanup = srcu_torture_cleanup, .readlock = srcu_torture_read_lock, .read_delay = srcu_read_delay, .readunlock = srcu_torture_read_unlock, .completed = srcu_torture_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = srcu_torture_synchronize_expedited, .call = NULL, .cb_barrier = NULL, .stats = srcu_torture_stats, .name = "srcu_expedited" }; /* * Definitions for sched torture testing. */ static int sched_torture_read_lock(void) { preempt_disable(); return 0; } static void sched_torture_read_unlock(int idx) { preempt_enable(); } static void rcu_sched_torture_deferred_free(struct rcu_torture *p) { call_rcu_sched(&p->rtort_rcu, rcu_torture_cb); } static struct rcu_torture_ops sched_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = sched_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = sched_torture_read_unlock, .completed = rcu_no_completed, .deferred_free = rcu_sched_torture_deferred_free, .sync = synchronize_sched, .cb_barrier = rcu_barrier_sched, .fqs = rcu_sched_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "sched" }; static struct rcu_torture_ops sched_sync_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = sched_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = sched_torture_read_unlock, .completed = rcu_no_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_sched, .cb_barrier = NULL, .fqs = rcu_sched_force_quiescent_state, .stats = NULL, .name = "sched_sync" }; static struct rcu_torture_ops sched_expedited_ops = { .init = rcu_sync_torture_init, .cleanup = NULL, .readlock = sched_torture_read_lock, .read_delay = rcu_read_delay, /* just reuse rcu's version. */ .readunlock = sched_torture_read_unlock, .completed = rcu_no_completed, .deferred_free = rcu_sync_torture_deferred_free, .sync = synchronize_sched_expedited, .cb_barrier = NULL, .fqs = rcu_sched_force_quiescent_state, .stats = NULL, .irq_capable = 1, .name = "sched_expedited" }; /* * RCU torture priority-boost testing. Runs one real-time thread per * CPU for moderate bursts, repeatedly registering RCU callbacks and * spinning waiting for them to be invoked. If a given callback takes * too long to be invoked, we assume that priority inversion has occurred. */ struct rcu_boost_inflight { struct rcu_head rcu; int inflight; }; static void rcu_torture_boost_cb(struct rcu_head *head) { struct rcu_boost_inflight *rbip = container_of(head, struct rcu_boost_inflight, rcu); smp_mb(); /* Ensure RCU-core accesses precede clearing ->inflight */ rbip->inflight = 0; } static int rcu_torture_boost(void *arg) { unsigned long call_rcu_time; unsigned long endtime; unsigned long oldstarttime; struct rcu_boost_inflight rbi = { .inflight = 0 }; struct sched_param sp; VERBOSE_PRINTK_STRING("rcu_torture_boost started"); /* Set real-time priority. */ sp.sched_priority = 1; if (sched_setscheduler(current, SCHED_FIFO, &sp) < 0) { VERBOSE_PRINTK_STRING("rcu_torture_boost RT prio failed!"); n_rcu_torture_boost_rterror++; } init_rcu_head_on_stack(&rbi.rcu); /* Each pass through the following loop does one boost-test cycle. */ do { /* Wait for the next test interval. */ oldstarttime = boost_starttime; while (ULONG_CMP_LT(jiffies, oldstarttime)) { schedule_timeout_uninterruptible(1); rcu_stutter_wait("rcu_torture_boost"); if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP) goto checkwait; } /* Do one boost-test interval. */ endtime = oldstarttime + test_boost_duration * HZ; call_rcu_time = jiffies; while (ULONG_CMP_LT(jiffies, endtime)) { /* If we don't have a callback in flight, post one. */ if (!rbi.inflight) { smp_mb(); /* RCU core before ->inflight = 1. */ rbi.inflight = 1; call_rcu(&rbi.rcu, rcu_torture_boost_cb); if (jiffies - call_rcu_time > test_boost_duration * HZ - HZ / 2) { VERBOSE_PRINTK_STRING("rcu_torture_boost boosting failed"); n_rcu_torture_boost_failure++; } call_rcu_time = jiffies; } cond_resched(); rcu_stutter_wait("rcu_torture_boost"); if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP) goto checkwait; } /* * Set the start time of the next test interval. * Yes, this is vulnerable to long delays, but such * delays simply cause a false negative for the next * interval. Besides, we are running at RT priority, * so delays should be relatively rare. */ while (oldstarttime == boost_starttime && !kthread_should_stop()) { if (mutex_trylock(&boost_mutex)) { boost_starttime = jiffies + test_boost_interval * HZ; n_rcu_torture_boosts++; mutex_unlock(&boost_mutex); break; } schedule_timeout_uninterruptible(1); } /* Go do the stutter. */ checkwait: rcu_stutter_wait("rcu_torture_boost"); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); /* Clean up and exit. */ VERBOSE_PRINTK_STRING("rcu_torture_boost task stopping"); rcutorture_shutdown_absorb("rcu_torture_boost"); while (!kthread_should_stop() || rbi.inflight) schedule_timeout_uninterruptible(1); smp_mb(); /* order accesses to ->inflight before stack-frame death. */ destroy_rcu_head_on_stack(&rbi.rcu); return 0; } /* * RCU torture force-quiescent-state kthread. Repeatedly induces * bursts of calls to force_quiescent_state(), increasing the probability * of occurrence of some important types of race conditions. */ static int rcu_torture_fqs(void *arg) { unsigned long fqs_resume_time; int fqs_burst_remaining; VERBOSE_PRINTK_STRING("rcu_torture_fqs task started"); do { fqs_resume_time = jiffies + fqs_stutter * HZ; while (ULONG_CMP_LT(jiffies, fqs_resume_time) && !kthread_should_stop()) { schedule_timeout_interruptible(1); } fqs_burst_remaining = fqs_duration; while (fqs_burst_remaining > 0 && !kthread_should_stop()) { cur_ops->fqs(); udelay(fqs_holdoff); fqs_burst_remaining -= fqs_holdoff; } rcu_stutter_wait("rcu_torture_fqs"); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_fqs task stopping"); rcutorture_shutdown_absorb("rcu_torture_fqs"); while (!kthread_should_stop()) schedule_timeout_uninterruptible(1); return 0; } /* * RCU torture writer kthread. Repeatedly substitutes a new structure * for that pointed to by rcu_torture_current, freeing the old structure * after a series of grace periods (the "pipeline"). */ static int rcu_torture_writer(void *arg) { int i; long oldbatch = rcu_batches_completed(); struct rcu_torture *rp; struct rcu_torture *old_rp; static DEFINE_RCU_RANDOM(rand); VERBOSE_PRINTK_STRING("rcu_torture_writer task started"); set_user_nice(current, 19); do { schedule_timeout_uninterruptible(1); rp = rcu_torture_alloc(); if (rp == NULL) continue; rp->rtort_pipe_count = 0; udelay(rcu_random(&rand) & 0x3ff); old_rp = rcu_dereference_check(rcu_torture_current, current == writer_task); rp->rtort_mbtest = 1; rcu_assign_pointer(rcu_torture_current, rp); smp_wmb(); /* Mods to old_rp must follow rcu_assign_pointer() */ if (old_rp) { i = old_rp->rtort_pipe_count; if (i > RCU_TORTURE_PIPE_LEN) i = RCU_TORTURE_PIPE_LEN; atomic_inc(&rcu_torture_wcount[i]); old_rp->rtort_pipe_count++; cur_ops->deferred_free(old_rp); } rcutorture_record_progress(++rcu_torture_current_version); oldbatch = cur_ops->completed(); rcu_stutter_wait("rcu_torture_writer"); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_writer task stopping"); rcutorture_shutdown_absorb("rcu_torture_writer"); while (!kthread_should_stop()) schedule_timeout_uninterruptible(1); return 0; } /* * RCU torture fake writer kthread. Repeatedly calls sync, with a random * delay between calls. */ static int rcu_torture_fakewriter(void *arg) { DEFINE_RCU_RANDOM(rand); VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task started"); set_user_nice(current, 19); do { schedule_timeout_uninterruptible(1 + rcu_random(&rand)%10); udelay(rcu_random(&rand) & 0x3ff); cur_ops->sync(); rcu_stutter_wait("rcu_torture_fakewriter"); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task stopping"); rcutorture_shutdown_absorb("rcu_torture_fakewriter"); while (!kthread_should_stop()) schedule_timeout_uninterruptible(1); return 0; } void rcutorture_trace_dump(void) { static atomic_t beenhere = ATOMIC_INIT(0); if (atomic_read(&beenhere)) return; if (atomic_xchg(&beenhere, 1) != 0) return; do_trace_rcu_torture_read(cur_ops->name, (struct rcu_head *)~0UL); ftrace_dump(DUMP_ALL); } /* * RCU torture reader from timer handler. Dereferences rcu_torture_current, * incrementing the corresponding element of the pipeline array. The * counter in the element should never be greater than 1, otherwise, the * RCU implementation is broken. */ static void rcu_torture_timer(unsigned long unused) { int idx; int completed; static DEFINE_RCU_RANDOM(rand); static DEFINE_SPINLOCK(rand_lock); struct rcu_torture *p; int pipe_count; idx = cur_ops->readlock(); completed = cur_ops->completed(); p = rcu_dereference_check(rcu_torture_current, rcu_read_lock_bh_held() || rcu_read_lock_sched_held() || srcu_read_lock_held(&srcu_ctl)); if (p == NULL) { /* Leave because rcu_torture_writer is not yet underway */ cur_ops->readunlock(idx); return; } do_trace_rcu_torture_read(cur_ops->name, &p->rtort_rcu); if (p->rtort_mbtest == 0) atomic_inc(&n_rcu_torture_mberror); spin_lock(&rand_lock); cur_ops->read_delay(&rand); n_rcu_torture_timers++; spin_unlock(&rand_lock); preempt_disable(); pipe_count = p->rtort_pipe_count; if (pipe_count > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ pipe_count = RCU_TORTURE_PIPE_LEN; } if (pipe_count > 1) rcutorture_trace_dump(); __this_cpu_inc(rcu_torture_count[pipe_count]); completed = cur_ops->completed() - completed; if (completed > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ completed = RCU_TORTURE_PIPE_LEN; } __this_cpu_inc(rcu_torture_batch[completed]); preempt_enable(); cur_ops->readunlock(idx); } /* * RCU torture reader kthread. Repeatedly dereferences rcu_torture_current, * incrementing the corresponding element of the pipeline array. The * counter in the element should never be greater than 1, otherwise, the * RCU implementation is broken. */ static int rcu_torture_reader(void *arg) { int completed; int idx; DEFINE_RCU_RANDOM(rand); struct rcu_torture *p; int pipe_count; struct timer_list t; VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); set_user_nice(current, 19); if (irqreader && cur_ops->irq_capable) setup_timer_on_stack(&t, rcu_torture_timer, 0); do { if (irqreader && cur_ops->irq_capable) { if (!timer_pending(&t)) mod_timer(&t, jiffies + 1); } idx = cur_ops->readlock(); completed = cur_ops->completed(); p = rcu_dereference_check(rcu_torture_current, rcu_read_lock_bh_held() || rcu_read_lock_sched_held() || srcu_read_lock_held(&srcu_ctl)); if (p == NULL) { /* Wait for rcu_torture_writer to get underway */ cur_ops->readunlock(idx); schedule_timeout_interruptible(HZ); continue; } do_trace_rcu_torture_read(cur_ops->name, &p->rtort_rcu); if (p->rtort_mbtest == 0) atomic_inc(&n_rcu_torture_mberror); cur_ops->read_delay(&rand); preempt_disable(); pipe_count = p->rtort_pipe_count; if (pipe_count > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ pipe_count = RCU_TORTURE_PIPE_LEN; } if (pipe_count > 1) rcutorture_trace_dump(); __this_cpu_inc(rcu_torture_count[pipe_count]); completed = cur_ops->completed() - completed; if (completed > RCU_TORTURE_PIPE_LEN) { /* Should not happen, but... */ completed = RCU_TORTURE_PIPE_LEN; } __this_cpu_inc(rcu_torture_batch[completed]); preempt_enable(); cur_ops->readunlock(idx); schedule(); rcu_stutter_wait("rcu_torture_reader"); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); rcutorture_shutdown_absorb("rcu_torture_reader"); if (irqreader && cur_ops->irq_capable) del_timer_sync(&t); while (!kthread_should_stop()) schedule_timeout_uninterruptible(1); return 0; } /* * Create an RCU-torture statistics message in the specified buffer. */ static int rcu_torture_printk(char *page) { int cnt = 0; int cpu; int i; long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; long batchsummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; for_each_possible_cpu(cpu) { for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { pipesummary[i] += per_cpu(rcu_torture_count, cpu)[i]; batchsummary[i] += per_cpu(rcu_torture_batch, cpu)[i]; } } for (i = RCU_TORTURE_PIPE_LEN - 1; i >= 0; i--) { if (pipesummary[i] != 0) break; } cnt += sprintf(&page[cnt], "%s%s ", torture_type, TORTURE_FLAG); cnt += sprintf(&page[cnt], "rtc: %p ver: %lu tfle: %d rta: %d rtaf: %d rtf: %d " "rtmbe: %d rtbke: %ld rtbre: %ld " "rtbf: %ld rtb: %ld nt: %ld " "onoff: %ld/%ld:%ld/%ld " "barrier: %ld/%ld:%ld", rcu_torture_current, rcu_torture_current_version, list_empty(&rcu_torture_freelist), atomic_read(&n_rcu_torture_alloc), atomic_read(&n_rcu_torture_alloc_fail), atomic_read(&n_rcu_torture_free), atomic_read(&n_rcu_torture_mberror), n_rcu_torture_boost_ktrerror, n_rcu_torture_boost_rterror, n_rcu_torture_boost_failure, n_rcu_torture_boosts, n_rcu_torture_timers, n_online_successes, n_online_attempts, n_offline_successes, n_offline_attempts, n_barrier_successes, n_barrier_attempts, n_rcu_torture_barrier_error); cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG); if (atomic_read(&n_rcu_torture_mberror) != 0 || n_rcu_torture_barrier_error != 0 || n_rcu_torture_boost_ktrerror != 0 || n_rcu_torture_boost_rterror != 0 || n_rcu_torture_boost_failure != 0 || i > 1) { cnt += sprintf(&page[cnt], "!!! "); atomic_inc(&n_rcu_torture_error); WARN_ON_ONCE(1); } cnt += sprintf(&page[cnt], "Reader Pipe: "); for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) cnt += sprintf(&page[cnt], " %ld", pipesummary[i]); cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG); cnt += sprintf(&page[cnt], "Reader Batch: "); for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) cnt += sprintf(&page[cnt], " %ld", batchsummary[i]); cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG); cnt += sprintf(&page[cnt], "Free-Block Circulation: "); for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { cnt += sprintf(&page[cnt], " %d", atomic_read(&rcu_torture_wcount[i])); } cnt += sprintf(&page[cnt], "\n"); if (cur_ops->stats) cnt += cur_ops->stats(&page[cnt]); return cnt; } /* * Print torture statistics. Caller must ensure that there is only * one call to this function at a given time!!! This is normally * accomplished by relying on the module system to only have one copy * of the module loaded, and then by giving the rcu_torture_stats * kthread full control (or the init/cleanup functions when rcu_torture_stats * thread is not running). */ static void rcu_torture_stats_print(void) { int cnt; cnt = rcu_torture_printk(printk_buf); printk(KERN_ALERT "%s", printk_buf); } /* * Periodically prints torture statistics, if periodic statistics printing * was specified via the stat_interval module parameter. * * No need to worry about fullstop here, since this one doesn't reference * volatile state or register callbacks. */ static int rcu_torture_stats(void *arg) { VERBOSE_PRINTK_STRING("rcu_torture_stats task started"); do { schedule_timeout_interruptible(stat_interval * HZ); rcu_torture_stats_print(); rcutorture_shutdown_absorb("rcu_torture_stats"); } while (!kthread_should_stop()); VERBOSE_PRINTK_STRING("rcu_torture_stats task stopping"); return 0; } static int rcu_idle_cpu; /* Force all torture tasks off this CPU */ /* Shuffle tasks such that we allow @rcu_idle_cpu to become idle. A special case * is when @rcu_idle_cpu = -1, when we allow the tasks to run on all CPUs. */ static void rcu_torture_shuffle_tasks(void) { int i; cpumask_setall(shuffle_tmp_mask); get_online_cpus(); /* No point in shuffling if there is only one online CPU (ex: UP) */ if (num_online_cpus() == 1) { put_online_cpus(); return; } if (rcu_idle_cpu != -1) cpumask_clear_cpu(rcu_idle_cpu, shuffle_tmp_mask); set_cpus_allowed_ptr(current, shuffle_tmp_mask); if (reader_tasks) { for (i = 0; i < nrealreaders; i++) if (reader_tasks[i]) set_cpus_allowed_ptr(reader_tasks[i], shuffle_tmp_mask); } if (fakewriter_tasks) { for (i = 0; i < nfakewriters; i++) if (fakewriter_tasks[i]) set_cpus_allowed_ptr(fakewriter_tasks[i], shuffle_tmp_mask); } if (writer_task) set_cpus_allowed_ptr(writer_task, shuffle_tmp_mask); if (stats_task) set_cpus_allowed_ptr(stats_task, shuffle_tmp_mask); if (rcu_idle_cpu == -1) rcu_idle_cpu = num_online_cpus() - 1; else rcu_idle_cpu--; put_online_cpus(); } /* Shuffle tasks across CPUs, with the intent of allowing each CPU in the * system to become idle at a time and cut off its timer ticks. This is meant * to test the support for such tickless idle CPU in RCU. */ static int rcu_torture_shuffle(void *arg) { VERBOSE_PRINTK_STRING("rcu_torture_shuffle task started"); do { schedule_timeout_interruptible(shuffle_interval * HZ); rcu_torture_shuffle_tasks(); rcutorture_shutdown_absorb("rcu_torture_shuffle"); } while (!kthread_should_stop()); VERBOSE_PRINTK_STRING("rcu_torture_shuffle task stopping"); return 0; } /* Cause the rcutorture test to "stutter", starting and stopping all * threads periodically. */ static int rcu_torture_stutter(void *arg) { VERBOSE_PRINTK_STRING("rcu_torture_stutter task started"); do { schedule_timeout_interruptible(stutter * HZ); stutter_pause_test = 1; if (!kthread_should_stop()) schedule_timeout_interruptible(stutter * HZ); stutter_pause_test = 0; rcutorture_shutdown_absorb("rcu_torture_stutter"); } while (!kthread_should_stop()); VERBOSE_PRINTK_STRING("rcu_torture_stutter task stopping"); return 0; } static inline void rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, char *tag) { printk(KERN_ALERT "%s" TORTURE_FLAG "--- %s: nreaders=%d nfakewriters=%d " "stat_interval=%d verbose=%d test_no_idle_hz=%d " "shuffle_interval=%d stutter=%d irqreader=%d " "fqs_duration=%d fqs_holdoff=%d fqs_stutter=%d " "test_boost=%d/%d test_boost_interval=%d " "test_boost_duration=%d shutdown_secs=%d " "onoff_interval=%d onoff_holdoff=%d\n", torture_type, tag, nrealreaders, nfakewriters, stat_interval, verbose, test_no_idle_hz, shuffle_interval, stutter, irqreader, fqs_duration, fqs_holdoff, fqs_stutter, test_boost, cur_ops->can_boost, test_boost_interval, test_boost_duration, shutdown_secs, onoff_interval, onoff_holdoff); } static struct notifier_block rcutorture_shutdown_nb = { .notifier_call = rcutorture_shutdown_notify, }; static void rcutorture_booster_cleanup(int cpu) { struct task_struct *t; if (boost_tasks[cpu] == NULL) return; mutex_lock(&boost_mutex); VERBOSE_PRINTK_STRING("Stopping rcu_torture_boost task"); t = boost_tasks[cpu]; boost_tasks[cpu] = NULL; mutex_unlock(&boost_mutex); /* This must be outside of the mutex, otherwise deadlock! */ kthread_stop(t); boost_tasks[cpu] = NULL; } static int rcutorture_booster_init(int cpu) { int retval; if (boost_tasks[cpu] != NULL) return 0; /* Already created, nothing more to do. */ /* Don't allow time recalculation while creating a new task. */ mutex_lock(&boost_mutex); VERBOSE_PRINTK_STRING("Creating rcu_torture_boost task"); boost_tasks[cpu] = kthread_create_on_node(rcu_torture_boost, NULL, cpu_to_node(cpu), "rcu_torture_boost"); if (IS_ERR(boost_tasks[cpu])) { retval = PTR_ERR(boost_tasks[cpu]); VERBOSE_PRINTK_STRING("rcu_torture_boost task create failed"); n_rcu_torture_boost_ktrerror++; boost_tasks[cpu] = NULL; mutex_unlock(&boost_mutex); return retval; } kthread_bind(boost_tasks[cpu], cpu); wake_up_process(boost_tasks[cpu]); mutex_unlock(&boost_mutex); return 0; } /* * Cause the rcutorture test to shutdown the system after the test has * run for the time specified by the shutdown_secs module parameter. */ static int rcu_torture_shutdown(void *arg) { long delta; unsigned long jiffies_snap; VERBOSE_PRINTK_STRING("rcu_torture_shutdown task started"); jiffies_snap = ACCESS_ONCE(jiffies); while (ULONG_CMP_LT(jiffies_snap, shutdown_time) && !kthread_should_stop()) { delta = shutdown_time - jiffies_snap; if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "rcu_torture_shutdown task: %lu " "jiffies remaining\n", torture_type, delta); schedule_timeout_interruptible(delta); jiffies_snap = ACCESS_ONCE(jiffies); } if (kthread_should_stop()) { VERBOSE_PRINTK_STRING("rcu_torture_shutdown task stopping"); return 0; } /* OK, shut down the system. */ VERBOSE_PRINTK_STRING("rcu_torture_shutdown task shutting down system"); shutdown_task = NULL; /* Avoid self-kill deadlock. */ rcu_torture_cleanup(); /* Get the success/failure message. */ kernel_power_off(); /* Shut down the system. */ return 0; } #ifdef CONFIG_HOTPLUG_CPU /* * Execute random CPU-hotplug operations at the interval specified * by the onoff_interval. */ static int __cpuinit rcu_torture_onoff(void *arg) { int cpu; int maxcpu = -1; DEFINE_RCU_RANDOM(rand); VERBOSE_PRINTK_STRING("rcu_torture_onoff task started"); for_each_online_cpu(cpu) maxcpu = cpu; WARN_ON(maxcpu < 0); if (onoff_holdoff > 0) { VERBOSE_PRINTK_STRING("rcu_torture_onoff begin holdoff"); schedule_timeout_interruptible(onoff_holdoff * HZ); VERBOSE_PRINTK_STRING("rcu_torture_onoff end holdoff"); } while (!kthread_should_stop()) { cpu = (rcu_random(&rand) >> 4) % (maxcpu + 1); if (cpu_online(cpu) && cpu_is_hotpluggable(cpu)) { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "rcu_torture_onoff task: offlining %d\n", torture_type, cpu); n_offline_attempts++; if (cpu_down(cpu) == 0) { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "rcu_torture_onoff task: " "offlined %d\n", torture_type, cpu); n_offline_successes++; } } else if (cpu_is_hotpluggable(cpu)) { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "rcu_torture_onoff task: onlining %d\n", torture_type, cpu); n_online_attempts++; if (cpu_up(cpu) == 0) { if (verbose) printk(KERN_ALERT "%s" TORTURE_FLAG "rcu_torture_onoff task: " "onlined %d\n", torture_type, cpu); n_online_successes++; } } schedule_timeout_interruptible(onoff_interval * HZ); } VERBOSE_PRINTK_STRING("rcu_torture_onoff task stopping"); return 0; } static int __cpuinit rcu_torture_onoff_init(void) { int ret; if (onoff_interval <= 0) return 0; onoff_task = kthread_run(rcu_torture_onoff, NULL, "rcu_torture_onoff"); if (IS_ERR(onoff_task)) { ret = PTR_ERR(onoff_task); onoff_task = NULL; return ret; } return 0; } static void rcu_torture_onoff_cleanup(void) { if (onoff_task == NULL) return; VERBOSE_PRINTK_STRING("Stopping rcu_torture_onoff task"); kthread_stop(onoff_task); onoff_task = NULL; } #else /* #ifdef CONFIG_HOTPLUG_CPU */ static int rcu_torture_onoff_init(void) { return 0; } static void rcu_torture_onoff_cleanup(void) { } #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ /* * CPU-stall kthread. It waits as specified by stall_cpu_holdoff, then * induces a CPU stall for the time specified by stall_cpu. */ static int __cpuinit rcu_torture_stall(void *args) { unsigned long stop_at; VERBOSE_PRINTK_STRING("rcu_torture_stall task started"); if (stall_cpu_holdoff > 0) { VERBOSE_PRINTK_STRING("rcu_torture_stall begin holdoff"); schedule_timeout_interruptible(stall_cpu_holdoff * HZ); VERBOSE_PRINTK_STRING("rcu_torture_stall end holdoff"); } if (!kthread_should_stop()) { stop_at = get_seconds() + stall_cpu; /* RCU CPU stall is expected behavior in following code. */ printk(KERN_ALERT "rcu_torture_stall start.\n"); rcu_read_lock(); preempt_disable(); while (ULONG_CMP_LT(get_seconds(), stop_at)) continue; /* Induce RCU CPU stall warning. */ preempt_enable(); rcu_read_unlock(); printk(KERN_ALERT "rcu_torture_stall end.\n"); } rcutorture_shutdown_absorb("rcu_torture_stall"); while (!kthread_should_stop()) schedule_timeout_interruptible(10 * HZ); return 0; } /* Spawn CPU-stall kthread, if stall_cpu specified. */ static int __init rcu_torture_stall_init(void) { int ret; if (stall_cpu <= 0) return 0; stall_task = kthread_run(rcu_torture_stall, NULL, "rcu_torture_stall"); if (IS_ERR(stall_task)) { ret = PTR_ERR(stall_task); stall_task = NULL; return ret; } return 0; } /* Clean up after the CPU-stall kthread, if one was spawned. */ static void rcu_torture_stall_cleanup(void) { if (stall_task == NULL) return; VERBOSE_PRINTK_STRING("Stopping rcu_torture_stall_task."); kthread_stop(stall_task); stall_task = NULL; } /* Callback function for RCU barrier testing. */ void rcu_torture_barrier_cbf(struct rcu_head *rcu) { atomic_inc(&barrier_cbs_invoked); } /* kthread function to register callbacks used to test RCU barriers. */ static int rcu_torture_barrier_cbs(void *arg) { long myid = (long)arg; struct rcu_head rcu; init_rcu_head_on_stack(&rcu); VERBOSE_PRINTK_STRING("rcu_torture_barrier_cbs task started"); set_user_nice(current, 19); do { wait_event(barrier_cbs_wq[myid], atomic_read(&barrier_cbs_count) == n_barrier_cbs || kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP); if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP) break; cur_ops->call(&rcu, rcu_torture_barrier_cbf); if (atomic_dec_and_test(&barrier_cbs_count)) wake_up(&barrier_wq); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_barrier_cbs task stopping"); rcutorture_shutdown_absorb("rcu_torture_barrier_cbs"); while (!kthread_should_stop()) schedule_timeout_interruptible(1); cur_ops->cb_barrier(); destroy_rcu_head_on_stack(&rcu); return 0; } /* kthread function to drive and coordinate RCU barrier testing. */ static int rcu_torture_barrier(void *arg) { int i; VERBOSE_PRINTK_STRING("rcu_torture_barrier task starting"); do { atomic_set(&barrier_cbs_invoked, 0); atomic_set(&barrier_cbs_count, n_barrier_cbs); /* wake_up() path contains the required barriers. */ for (i = 0; i < n_barrier_cbs; i++) wake_up(&barrier_cbs_wq[i]); wait_event(barrier_wq, atomic_read(&barrier_cbs_count) == 0 || kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP); if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP) break; n_barrier_attempts++; cur_ops->cb_barrier(); if (atomic_read(&barrier_cbs_invoked) != n_barrier_cbs) { n_rcu_torture_barrier_error++; WARN_ON_ONCE(1); } n_barrier_successes++; schedule_timeout_interruptible(HZ / 10); } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); VERBOSE_PRINTK_STRING("rcu_torture_barrier task stopping"); rcutorture_shutdown_absorb("rcu_torture_barrier_cbs"); while (!kthread_should_stop()) schedule_timeout_interruptible(1); return 0; } /* Initialize RCU barrier testing. */ static int rcu_torture_barrier_init(void) { int i; int ret; if (n_barrier_cbs == 0) return 0; if (cur_ops->call == NULL || cur_ops->cb_barrier == NULL) { printk(KERN_ALERT "%s" TORTURE_FLAG " Call or barrier ops missing for %s,\n", torture_type, cur_ops->name); printk(KERN_ALERT "%s" TORTURE_FLAG " RCU barrier testing omitted from run.\n", torture_type); return 0; } atomic_set(&barrier_cbs_count, 0); atomic_set(&barrier_cbs_invoked, 0); barrier_cbs_tasks = kzalloc(n_barrier_cbs * sizeof(barrier_cbs_tasks[0]), GFP_KERNEL); barrier_cbs_wq = kzalloc(n_barrier_cbs * sizeof(barrier_cbs_wq[0]), GFP_KERNEL); if (barrier_cbs_tasks == NULL || barrier_cbs_wq == 0) return -ENOMEM; for (i = 0; i < n_barrier_cbs; i++) { init_waitqueue_head(&barrier_cbs_wq[i]); barrier_cbs_tasks[i] = kthread_run(rcu_torture_barrier_cbs, (void *)(long)i, "rcu_torture_barrier_cbs"); if (IS_ERR(barrier_cbs_tasks[i])) { ret = PTR_ERR(barrier_cbs_tasks[i]); VERBOSE_PRINTK_ERRSTRING("Failed to create rcu_torture_barrier_cbs"); barrier_cbs_tasks[i] = NULL; return ret; } } barrier_task = kthread_run(rcu_torture_barrier, NULL, "rcu_torture_barrier"); if (IS_ERR(barrier_task)) { ret = PTR_ERR(barrier_task); VERBOSE_PRINTK_ERRSTRING("Failed to create rcu_torture_barrier"); barrier_task = NULL; } return 0; } /* Clean up after RCU barrier testing. */ static void rcu_torture_barrier_cleanup(void) { int i; if (barrier_task != NULL) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_barrier task"); kthread_stop(barrier_task); barrier_task = NULL; } if (barrier_cbs_tasks != NULL) { for (i = 0; i < n_barrier_cbs; i++) { if (barrier_cbs_tasks[i] != NULL) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_barrier_cbs task"); kthread_stop(barrier_cbs_tasks[i]); barrier_cbs_tasks[i] = NULL; } } kfree(barrier_cbs_tasks); barrier_cbs_tasks = NULL; } if (barrier_cbs_wq != NULL) { kfree(barrier_cbs_wq); barrier_cbs_wq = NULL; } } static int rcutorture_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: (void)rcutorture_booster_init(cpu); break; case CPU_DOWN_PREPARE: rcutorture_booster_cleanup(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block rcutorture_cpu_nb = { .notifier_call = rcutorture_cpu_notify, }; static void rcu_torture_cleanup(void) { int i; mutex_lock(&fullstop_mutex); rcutorture_record_test_transition(); if (fullstop == FULLSTOP_SHUTDOWN) { printk(KERN_WARNING /* but going down anyway, so... */ "Concurrent 'rmmod rcutorture' and shutdown illegal!\n"); mutex_unlock(&fullstop_mutex); schedule_timeout_uninterruptible(10); if (cur_ops->cb_barrier != NULL) cur_ops->cb_barrier(); return; } fullstop = FULLSTOP_RMMOD; mutex_unlock(&fullstop_mutex); unregister_reboot_notifier(&rcutorture_shutdown_nb); rcu_torture_barrier_cleanup(); rcu_torture_stall_cleanup(); if (stutter_task) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_stutter task"); kthread_stop(stutter_task); } stutter_task = NULL; if (shuffler_task) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); kthread_stop(shuffler_task); free_cpumask_var(shuffle_tmp_mask); } shuffler_task = NULL; if (writer_task) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task"); kthread_stop(writer_task); } writer_task = NULL; if (reader_tasks) { for (i = 0; i < nrealreaders; i++) { if (reader_tasks[i]) { VERBOSE_PRINTK_STRING( "Stopping rcu_torture_reader task"); kthread_stop(reader_tasks[i]); } reader_tasks[i] = NULL; } kfree(reader_tasks); reader_tasks = NULL; } rcu_torture_current = NULL; if (fakewriter_tasks) { for (i = 0; i < nfakewriters; i++) { if (fakewriter_tasks[i]) { VERBOSE_PRINTK_STRING( "Stopping rcu_torture_fakewriter task"); kthread_stop(fakewriter_tasks[i]); } fakewriter_tasks[i] = NULL; } kfree(fakewriter_tasks); fakewriter_tasks = NULL; } if (stats_task) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task"); kthread_stop(stats_task); } stats_task = NULL; if (fqs_task) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_fqs task"); kthread_stop(fqs_task); } fqs_task = NULL; if ((test_boost == 1 && cur_ops->can_boost) || test_boost == 2) { unregister_cpu_notifier(&rcutorture_cpu_nb); for_each_possible_cpu(i) rcutorture_booster_cleanup(i); } if (shutdown_task != NULL) { VERBOSE_PRINTK_STRING("Stopping rcu_torture_shutdown task"); kthread_stop(shutdown_task); } shutdown_task = NULL; rcu_torture_onoff_cleanup(); /* Wait for all RCU callbacks to fire. */ if (cur_ops->cb_barrier != NULL) cur_ops->cb_barrier(); rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ if (cur_ops->cleanup) cur_ops->cleanup(); if (atomic_read(&n_rcu_torture_error) || n_rcu_torture_barrier_error) rcu_torture_print_module_parms(cur_ops, "End of test: FAILURE"); else if (n_online_successes != n_online_attempts || n_offline_successes != n_offline_attempts) rcu_torture_print_module_parms(cur_ops, "End of test: RCU_HOTPLUG"); else rcu_torture_print_module_parms(cur_ops, "End of test: SUCCESS"); } static int __init rcu_torture_init(void) { int i; int cpu; int firsterr = 0; int retval; static struct rcu_torture_ops *torture_ops[] = { &rcu_ops, &rcu_sync_ops, &rcu_expedited_ops, &rcu_bh_ops, &rcu_bh_sync_ops, &rcu_bh_expedited_ops, &srcu_ops, &srcu_sync_ops, &srcu_raw_ops, &srcu_raw_sync_ops, &srcu_expedited_ops, &sched_ops, &sched_sync_ops, &sched_expedited_ops, }; mutex_lock(&fullstop_mutex); /* Process args and tell the world that the torturer is on the job. */ for (i = 0; i < ARRAY_SIZE(torture_ops); i++) { cur_ops = torture_ops[i]; if (strcmp(torture_type, cur_ops->name) == 0) break; } if (i == ARRAY_SIZE(torture_ops)) { printk(KERN_ALERT "rcu-torture: invalid torture type: \"%s\"\n", torture_type); printk(KERN_ALERT "rcu-torture types:"); for (i = 0; i < ARRAY_SIZE(torture_ops); i++) printk(KERN_ALERT " %s", torture_ops[i]->name); printk(KERN_ALERT "\n"); mutex_unlock(&fullstop_mutex); return -EINVAL; } if (cur_ops->fqs == NULL && fqs_duration != 0) { printk(KERN_ALERT "rcu-torture: ->fqs NULL and non-zero " "fqs_duration, fqs disabled.\n"); fqs_duration = 0; } if (cur_ops->init) cur_ops->init(); /* no "goto unwind" prior to this point!!! */ if (nreaders >= 0) nrealreaders = nreaders; else nrealreaders = 2 * num_online_cpus(); rcu_torture_print_module_parms(cur_ops, "Start of test"); fullstop = FULLSTOP_DONTSTOP; /* Set up the freelist. */ INIT_LIST_HEAD(&rcu_torture_freelist); for (i = 0; i < ARRAY_SIZE(rcu_tortures); i++) { rcu_tortures[i].rtort_mbtest = 0; list_add_tail(&rcu_tortures[i].rtort_free, &rcu_torture_freelist); } /* Initialize the statistics so that each run gets its own numbers. */ rcu_torture_current = NULL; rcu_torture_current_version = 0; atomic_set(&n_rcu_torture_alloc, 0); atomic_set(&n_rcu_torture_alloc_fail, 0); atomic_set(&n_rcu_torture_free, 0); atomic_set(&n_rcu_torture_mberror, 0); atomic_set(&n_rcu_torture_error, 0); n_rcu_torture_barrier_error = 0; n_rcu_torture_boost_ktrerror = 0; n_rcu_torture_boost_rterror = 0; n_rcu_torture_boost_failure = 0; n_rcu_torture_boosts = 0; for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) atomic_set(&rcu_torture_wcount[i], 0); for_each_possible_cpu(cpu) { for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { per_cpu(rcu_torture_count, cpu)[i] = 0; per_cpu(rcu_torture_batch, cpu)[i] = 0; } } /* Start up the kthreads. */ VERBOSE_PRINTK_STRING("Creating rcu_torture_writer task"); writer_task = kthread_run(rcu_torture_writer, NULL, "rcu_torture_writer"); if (IS_ERR(writer_task)) { firsterr = PTR_ERR(writer_task); VERBOSE_PRINTK_ERRSTRING("Failed to create writer"); writer_task = NULL; goto unwind; } fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), GFP_KERNEL); if (fakewriter_tasks == NULL) { VERBOSE_PRINTK_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nfakewriters; i++) { VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, "rcu_torture_fakewriter"); if (IS_ERR(fakewriter_tasks[i])) { firsterr = PTR_ERR(fakewriter_tasks[i]); VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); fakewriter_tasks[i] = NULL; goto unwind; } } reader_tasks = kzalloc(nrealreaders * sizeof(reader_tasks[0]), GFP_KERNEL); if (reader_tasks == NULL) { VERBOSE_PRINTK_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nrealreaders; i++) { VERBOSE_PRINTK_STRING("Creating rcu_torture_reader task"); reader_tasks[i] = kthread_run(rcu_torture_reader, NULL, "rcu_torture_reader"); if (IS_ERR(reader_tasks[i])) { firsterr = PTR_ERR(reader_tasks[i]); VERBOSE_PRINTK_ERRSTRING("Failed to create reader"); reader_tasks[i] = NULL; goto unwind; } } if (stat_interval > 0) { VERBOSE_PRINTK_STRING("Creating rcu_torture_stats task"); stats_task = kthread_run(rcu_torture_stats, NULL, "rcu_torture_stats"); if (IS_ERR(stats_task)) { firsterr = PTR_ERR(stats_task); VERBOSE_PRINTK_ERRSTRING("Failed to create stats"); stats_task = NULL; goto unwind; } } if (test_no_idle_hz) { rcu_idle_cpu = num_online_cpus() - 1; if (!alloc_cpumask_var(&shuffle_tmp_mask, GFP_KERNEL)) { firsterr = -ENOMEM; VERBOSE_PRINTK_ERRSTRING("Failed to alloc mask"); goto unwind; } /* Create the shuffler thread */ shuffler_task = kthread_run(rcu_torture_shuffle, NULL, "rcu_torture_shuffle"); if (IS_ERR(shuffler_task)) { free_cpumask_var(shuffle_tmp_mask); firsterr = PTR_ERR(shuffler_task); VERBOSE_PRINTK_ERRSTRING("Failed to create shuffler"); shuffler_task = NULL; goto unwind; } } if (stutter < 0) stutter = 0; if (stutter) { /* Create the stutter thread */ stutter_task = kthread_run(rcu_torture_stutter, NULL, "rcu_torture_stutter"); if (IS_ERR(stutter_task)) { firsterr = PTR_ERR(stutter_task); VERBOSE_PRINTK_ERRSTRING("Failed to create stutter"); stutter_task = NULL; goto unwind; } } if (fqs_duration < 0) fqs_duration = 0; if (fqs_duration) { /* Create the stutter thread */ fqs_task = kthread_run(rcu_torture_fqs, NULL, "rcu_torture_fqs"); if (IS_ERR(fqs_task)) { firsterr = PTR_ERR(fqs_task); VERBOSE_PRINTK_ERRSTRING("Failed to create fqs"); fqs_task = NULL; goto unwind; } } if (test_boost_interval < 1) test_boost_interval = 1; if (test_boost_duration < 2) test_boost_duration = 2; if ((test_boost == 1 && cur_ops->can_boost) || test_boost == 2) { boost_starttime = jiffies + test_boost_interval * HZ; register_cpu_notifier(&rcutorture_cpu_nb); for_each_possible_cpu(i) { if (cpu_is_offline(i)) continue; /* Heuristic: CPU can go offline. */ retval = rcutorture_booster_init(i); if (retval < 0) { firsterr = retval; goto unwind; } } } if (shutdown_secs > 0) { shutdown_time = jiffies + shutdown_secs * HZ; shutdown_task = kthread_run(rcu_torture_shutdown, NULL, "rcu_torture_shutdown"); if (IS_ERR(shutdown_task)) { firsterr = PTR_ERR(shutdown_task); VERBOSE_PRINTK_ERRSTRING("Failed to create shutdown"); shutdown_task = NULL; goto unwind; } } i = rcu_torture_onoff_init(); if (i != 0) { firsterr = i; goto unwind; } register_reboot_notifier(&rcutorture_shutdown_nb); i = rcu_torture_stall_init(); if (i != 0) { firsterr = i; goto unwind; } retval = rcu_torture_barrier_init(); if (retval != 0) { firsterr = retval; goto unwind; } rcutorture_record_test_transition(); mutex_unlock(&fullstop_mutex); return 0; unwind: mutex_unlock(&fullstop_mutex); rcu_torture_cleanup(); return firsterr; } module_init(rcu_torture_init); module_exit(rcu_torture_cleanup);