/* * linux/kernel/irq/chip.c * * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006, Thomas Gleixner, Russell King * * This file contains the core interrupt handling code, for irq-chip * based architectures. * * Detailed information is available in Documentation/DocBook/genericirq */ #include #include #include #include #include #include "internals.h" /** * irq_set_chip - set the irq chip for an irq * @irq: irq number * @chip: pointer to irq chip description structure */ int irq_set_chip(unsigned int irq, struct irq_chip *chip) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) { WARN(1, KERN_ERR "Trying to install chip for IRQ%d\n", irq); return -EINVAL; } if (!chip) chip = &no_irq_chip; raw_spin_lock_irqsave(&desc->lock, flags); irq_chip_set_defaults(chip); desc->irq_data.chip = chip; raw_spin_unlock_irqrestore(&desc->lock, flags); return 0; } EXPORT_SYMBOL(irq_set_chip); /** * irq_set_type - set the irq trigger type for an irq * @irq: irq number * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h */ int irq_set_irq_type(unsigned int irq, unsigned int type) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; int ret = -ENXIO; if (!desc) { printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq); return -ENODEV; } type &= IRQ_TYPE_SENSE_MASK; if (type == IRQ_TYPE_NONE) return 0; chip_bus_lock(desc); raw_spin_lock_irqsave(&desc->lock, flags); ret = __irq_set_trigger(desc, irq, type); raw_spin_unlock_irqrestore(&desc->lock, flags); chip_bus_sync_unlock(desc); return ret; } EXPORT_SYMBOL(irq_set_irq_type); /** * irq_set_handler_data - set irq handler data for an irq * @irq: Interrupt number * @data: Pointer to interrupt specific data * * Set the hardware irq controller data for an irq */ int irq_set_handler_data(unsigned int irq, void *data) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) { printk(KERN_ERR "Trying to install controller data for IRQ%d\n", irq); return -EINVAL; } raw_spin_lock_irqsave(&desc->lock, flags); desc->irq_data.handler_data = data; raw_spin_unlock_irqrestore(&desc->lock, flags); return 0; } EXPORT_SYMBOL(irq_set_handler_data); /** * irq_set_msi_desc - set MSI descriptor data for an irq * @irq: Interrupt number * @entry: Pointer to MSI descriptor data * * Set the MSI descriptor entry for an irq */ int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) { printk(KERN_ERR "Trying to install msi data for IRQ%d\n", irq); return -EINVAL; } raw_spin_lock_irqsave(&desc->lock, flags); desc->irq_data.msi_desc = entry; if (entry) entry->irq = irq; raw_spin_unlock_irqrestore(&desc->lock, flags); return 0; } /** * irq_set_chip_data - set irq chip data for an irq * @irq: Interrupt number * @data: Pointer to chip specific data * * Set the hardware irq chip data for an irq */ int irq_set_chip_data(unsigned int irq, void *data) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) { printk(KERN_ERR "Trying to install chip data for IRQ%d\n", irq); return -EINVAL; } if (!desc->irq_data.chip) { printk(KERN_ERR "BUG: bad set_irq_chip_data(IRQ#%d)\n", irq); return -EINVAL; } raw_spin_lock_irqsave(&desc->lock, flags); desc->irq_data.chip_data = data; raw_spin_unlock_irqrestore(&desc->lock, flags); return 0; } EXPORT_SYMBOL(irq_set_chip_data); struct irq_data *irq_get_irq_data(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); return desc ? &desc->irq_data : NULL; } EXPORT_SYMBOL_GPL(irq_get_irq_data); int irq_startup(struct irq_desc *desc) { desc->status &= ~IRQ_DISABLED; desc->depth = 0; if (desc->irq_data.chip->irq_startup) { int ret = desc->irq_data.chip->irq_startup(&desc->irq_data); desc->status &= ~IRQ_MASKED; return ret; } irq_enable(desc); return 0; } void irq_shutdown(struct irq_desc *desc) { desc->status |= IRQ_DISABLED; desc->depth = 1; if (desc->irq_data.chip->irq_shutdown) desc->irq_data.chip->irq_shutdown(&desc->irq_data); if (desc->irq_data.chip->irq_disable) desc->irq_data.chip->irq_disable(&desc->irq_data); else desc->irq_data.chip->irq_mask(&desc->irq_data); desc->status |= IRQ_MASKED; } void irq_enable(struct irq_desc *desc) { desc->status &= ~IRQ_DISABLED; if (desc->irq_data.chip->irq_enable) desc->irq_data.chip->irq_enable(&desc->irq_data); else desc->irq_data.chip->irq_unmask(&desc->irq_data); desc->status &= ~IRQ_MASKED; } void irq_disable(struct irq_desc *desc) { desc->status |= IRQ_DISABLED; if (desc->irq_data.chip->irq_disable) { desc->irq_data.chip->irq_disable(&desc->irq_data); desc->status |= IRQ_MASKED; } } #ifndef CONFIG_GENERIC_HARDIRQS_NO_DEPRECATED /* Temporary migration helpers */ static void compat_irq_mask(struct irq_data *data) { data->chip->mask(data->irq); } static void compat_irq_unmask(struct irq_data *data) { data->chip->unmask(data->irq); } static void compat_irq_ack(struct irq_data *data) { data->chip->ack(data->irq); } static void compat_irq_mask_ack(struct irq_data *data) { data->chip->mask_ack(data->irq); } static void compat_irq_eoi(struct irq_data *data) { data->chip->eoi(data->irq); } static void compat_irq_enable(struct irq_data *data) { data->chip->enable(data->irq); } static void compat_irq_disable(struct irq_data *data) { data->chip->disable(data->irq); } static void compat_irq_shutdown(struct irq_data *data) { data->chip->shutdown(data->irq); } static unsigned int compat_irq_startup(struct irq_data *data) { return data->chip->startup(data->irq); } static int compat_irq_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { return data->chip->set_affinity(data->irq, dest); } static int compat_irq_set_type(struct irq_data *data, unsigned int type) { return data->chip->set_type(data->irq, type); } static int compat_irq_set_wake(struct irq_data *data, unsigned int on) { return data->chip->set_wake(data->irq, on); } static int compat_irq_retrigger(struct irq_data *data) { return data->chip->retrigger(data->irq); } static void compat_bus_lock(struct irq_data *data) { data->chip->bus_lock(data->irq); } static void compat_bus_sync_unlock(struct irq_data *data) { data->chip->bus_sync_unlock(data->irq); } #endif /* * Fixup enable/disable function pointers */ void irq_chip_set_defaults(struct irq_chip *chip) { #ifndef CONFIG_GENERIC_HARDIRQS_NO_DEPRECATED if (chip->enable) chip->irq_enable = compat_irq_enable; if (chip->disable) chip->irq_disable = compat_irq_disable; if (chip->shutdown) chip->irq_shutdown = compat_irq_shutdown; if (chip->startup) chip->irq_startup = compat_irq_startup; if (!chip->end) chip->end = dummy_irq_chip.end; if (chip->bus_lock) chip->irq_bus_lock = compat_bus_lock; if (chip->bus_sync_unlock) chip->irq_bus_sync_unlock = compat_bus_sync_unlock; if (chip->mask) chip->irq_mask = compat_irq_mask; if (chip->unmask) chip->irq_unmask = compat_irq_unmask; if (chip->ack) chip->irq_ack = compat_irq_ack; if (chip->mask_ack) chip->irq_mask_ack = compat_irq_mask_ack; if (chip->eoi) chip->irq_eoi = compat_irq_eoi; if (chip->set_affinity) chip->irq_set_affinity = compat_irq_set_affinity; if (chip->set_type) chip->irq_set_type = compat_irq_set_type; if (chip->set_wake) chip->irq_set_wake = compat_irq_set_wake; if (chip->retrigger) chip->irq_retrigger = compat_irq_retrigger; #endif } static inline void mask_ack_irq(struct irq_desc *desc) { if (desc->irq_data.chip->irq_mask_ack) desc->irq_data.chip->irq_mask_ack(&desc->irq_data); else { desc->irq_data.chip->irq_mask(&desc->irq_data); if (desc->irq_data.chip->irq_ack) desc->irq_data.chip->irq_ack(&desc->irq_data); } desc->status |= IRQ_MASKED; } static inline void mask_irq(struct irq_desc *desc) { if (desc->irq_data.chip->irq_mask) { desc->irq_data.chip->irq_mask(&desc->irq_data); desc->status |= IRQ_MASKED; } } static inline void unmask_irq(struct irq_desc *desc) { if (desc->irq_data.chip->irq_unmask) { desc->irq_data.chip->irq_unmask(&desc->irq_data); desc->status &= ~IRQ_MASKED; } } /* * handle_nested_irq - Handle a nested irq from a irq thread * @irq: the interrupt number * * Handle interrupts which are nested into a threaded interrupt * handler. The handler function is called inside the calling * threads context. */ void handle_nested_irq(unsigned int irq) { struct irq_desc *desc = irq_to_desc(irq); struct irqaction *action; irqreturn_t action_ret; might_sleep(); raw_spin_lock_irq(&desc->lock); kstat_incr_irqs_this_cpu(irq, desc); action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; irq_compat_set_progress(desc); desc->istate |= IRQS_INPROGRESS; raw_spin_unlock_irq(&desc->lock); action_ret = action->thread_fn(action->irq, action->dev_id); if (!noirqdebug) note_interrupt(irq, desc, action_ret); raw_spin_lock_irq(&desc->lock); desc->istate &= ~IRQS_INPROGRESS; irq_compat_clr_progress(desc); out_unlock: raw_spin_unlock_irq(&desc->lock); } EXPORT_SYMBOL_GPL(handle_nested_irq); static bool irq_check_poll(struct irq_desc *desc) { if (!(desc->istate & IRQS_POLL_INPROGRESS)) return false; return irq_wait_for_poll(desc); } /** * handle_simple_irq - Simple and software-decoded IRQs. * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Simple interrupts are either sent from a demultiplexing interrupt * handler or come from hardware, where no interrupt hardware control * is necessary. * * Note: The caller is expected to handle the ack, clear, mask and * unmask issues if necessary. */ void handle_simple_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (unlikely(desc->istate & IRQS_INPROGRESS)) if (!irq_check_poll(desc)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); if (unlikely(!desc->action || (desc->status & IRQ_DISABLED))) goto out_unlock; handle_irq_event(desc); out_unlock: raw_spin_unlock(&desc->lock); } /** * handle_level_irq - Level type irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Level type interrupts are active as long as the hardware line has * the active level. This may require to mask the interrupt and unmask * it after the associated handler has acknowledged the device, so the * interrupt line is back to inactive. */ void handle_level_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); mask_ack_irq(desc); if (unlikely(desc->istate & IRQS_INPROGRESS)) if (!irq_check_poll(desc)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * keep it masked and get out of here */ if (unlikely(!desc->action || (desc->status & IRQ_DISABLED))) goto out_unlock; handle_irq_event(desc); if (!(desc->status & IRQ_DISABLED) && !(desc->istate & IRQS_ONESHOT)) unmask_irq(desc); out_unlock: raw_spin_unlock(&desc->lock); } EXPORT_SYMBOL_GPL(handle_level_irq); /** * handle_fasteoi_irq - irq handler for transparent controllers * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Only a single callback will be issued to the chip: an ->eoi() * call when the interrupt has been serviced. This enables support * for modern forms of interrupt handlers, which handle the flow * details in hardware, transparently. */ void handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); if (unlikely(desc->istate & IRQS_INPROGRESS)) if (!irq_check_poll(desc)) goto out; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); /* * If its disabled or no action available * then mask it and get out of here: */ if (unlikely(!desc->action || (desc->status & IRQ_DISABLED))) { desc->status |= IRQ_PENDING; mask_irq(desc); goto out; } handle_irq_event(desc); out: desc->irq_data.chip->irq_eoi(&desc->irq_data); raw_spin_unlock(&desc->lock); } /** * handle_edge_irq - edge type IRQ handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Interrupt occures on the falling and/or rising edge of a hardware * signal. The occurence is latched into the irq controller hardware * and must be acked in order to be reenabled. After the ack another * interrupt can happen on the same source even before the first one * is handled by the associated event handler. If this happens it * might be necessary to disable (mask) the interrupt depending on the * controller hardware. This requires to reenable the interrupt inside * of the loop which handles the interrupts which have arrived while * the handler was running. If all pending interrupts are handled, the * loop is left. */ void handle_edge_irq(unsigned int irq, struct irq_desc *desc) { raw_spin_lock(&desc->lock); desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); /* * If we're currently running this IRQ, or its disabled, * we shouldn't process the IRQ. Mark it pending, handle * the necessary masking and go out */ if (unlikely((desc->istate & (IRQS_INPROGRESS) || (desc->status & IRQ_DISABLED) || !desc->action))) { if (!irq_check_poll(desc)) { desc->status |= IRQ_PENDING; mask_ack_irq(desc); goto out_unlock; } } kstat_incr_irqs_this_cpu(irq, desc); /* Start handling the irq */ desc->irq_data.chip->irq_ack(&desc->irq_data); do { if (unlikely(!desc->action)) { mask_irq(desc); goto out_unlock; } /* * When another irq arrived while we were handling * one, we could have masked the irq. * Renable it, if it was not disabled in meantime. */ if (unlikely((desc->status & (IRQ_PENDING | IRQ_MASKED | IRQ_DISABLED)) == (IRQ_PENDING | IRQ_MASKED))) { unmask_irq(desc); } handle_irq_event(desc); } while ((desc->status & (IRQ_PENDING | IRQ_DISABLED)) == IRQ_PENDING); out_unlock: raw_spin_unlock(&desc->lock); } /** * handle_percpu_irq - Per CPU local irq handler * @irq: the interrupt number * @desc: the interrupt description structure for this irq * * Per CPU interrupts on SMP machines without locking requirements */ void handle_percpu_irq(unsigned int irq, struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); kstat_incr_irqs_this_cpu(irq, desc); if (chip->irq_ack) chip->irq_ack(&desc->irq_data); handle_irq_event_percpu(desc, desc->action); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); } void __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, const char *name) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) { printk(KERN_ERR "Trying to install type control for IRQ%d\n", irq); return; } if (!handle) handle = handle_bad_irq; else if (desc->irq_data.chip == &no_irq_chip) { printk(KERN_WARNING "Trying to install %sinterrupt handler " "for IRQ%d\n", is_chained ? "chained " : "", irq); /* * Some ARM implementations install a handler for really dumb * interrupt hardware without setting an irq_chip. This worked * with the ARM no_irq_chip but the check in setup_irq would * prevent us to setup the interrupt at all. Switch it to * dummy_irq_chip for easy transition. */ desc->irq_data.chip = &dummy_irq_chip; } chip_bus_lock(desc); raw_spin_lock_irqsave(&desc->lock, flags); /* Uninstall? */ if (handle == handle_bad_irq) { if (desc->irq_data.chip != &no_irq_chip) mask_ack_irq(desc); desc->status |= IRQ_DISABLED; desc->depth = 1; } desc->handle_irq = handle; desc->name = name; if (handle != handle_bad_irq && is_chained) { desc->status |= IRQ_NOREQUEST | IRQ_NOPROBE; irq_startup(desc); } raw_spin_unlock_irqrestore(&desc->lock, flags); chip_bus_sync_unlock(desc); } EXPORT_SYMBOL_GPL(__set_irq_handler); void set_irq_chip_and_handler(unsigned int irq, struct irq_chip *chip, irq_flow_handler_t handle) { irq_set_chip(irq, chip); __set_irq_handler(irq, handle, 0, NULL); } void set_irq_chip_and_handler_name(unsigned int irq, struct irq_chip *chip, irq_flow_handler_t handle, const char *name) { irq_set_chip(irq, chip); __set_irq_handler(irq, handle, 0, name); } void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set) { struct irq_desc *desc = irq_to_desc(irq); unsigned long flags; if (!desc) return; /* Sanitize flags */ set &= IRQF_MODIFY_MASK; clr &= IRQF_MODIFY_MASK; raw_spin_lock_irqsave(&desc->lock, flags); desc->status &= ~clr; desc->status |= set; raw_spin_unlock_irqrestore(&desc->lock, flags); }