// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist * Alexei Starovoitov * Daniel Borkmann * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ #define BPF_R0 regs[BPF_REG_0] #define BPF_R1 regs[BPF_REG_1] #define BPF_R2 regs[BPF_REG_2] #define BPF_R3 regs[BPF_REG_3] #define BPF_R4 regs[BPF_REG_4] #define BPF_R5 regs[BPF_REG_5] #define BPF_R6 regs[BPF_REG_6] #define BPF_R7 regs[BPF_REG_7] #define BPF_R8 regs[BPF_REG_8] #define BPF_R9 regs[BPF_REG_9] #define BPF_R10 regs[BPF_REG_10] /* Named registers */ #define DST regs[insn->dst_reg] #define SRC regs[insn->src_reg] #define FP regs[BPF_REG_FP] #define AX regs[BPF_REG_AX] #define ARG1 regs[BPF_REG_ARG1] #define CTX regs[BPF_REG_CTX] #define IMM insn->imm /* No hurry in this branch * * Exported for the bpf jit load helper. */ void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) { u8 *ptr = NULL; if (k >= SKF_NET_OFF) ptr = skb_network_header(skb) + k - SKF_NET_OFF; else if (k >= SKF_LL_OFF) ptr = skb_mac_header(skb) + k - SKF_LL_OFF; if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) return ptr; return NULL; } struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; struct bpf_prog_aux *aux; struct bpf_prog *fp; size = round_up(size, PAGE_SIZE); fp = __vmalloc(size, gfp_flags); if (fp == NULL) return NULL; aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags); if (aux == NULL) { vfree(fp); return NULL; } fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags); if (!fp->active) { vfree(fp); kfree(aux); return NULL; } fp->pages = size / PAGE_SIZE; fp->aux = aux; fp->aux->prog = fp; fp->jit_requested = ebpf_jit_enabled(); INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); mutex_init(&fp->aux->used_maps_mutex); mutex_init(&fp->aux->dst_mutex); return fp; } struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; struct bpf_prog *prog; int cpu; prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); if (!prog) return NULL; prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); if (!prog->stats) { free_percpu(prog->active); kfree(prog->aux); vfree(prog); return NULL; } for_each_possible_cpu(cpu) { struct bpf_prog_stats *pstats; pstats = per_cpu_ptr(prog->stats, cpu); u64_stats_init(&pstats->syncp); } return prog; } EXPORT_SYMBOL_GPL(bpf_prog_alloc); int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) { if (!prog->aux->nr_linfo || !prog->jit_requested) return 0; prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo, sizeof(*prog->aux->jited_linfo), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (!prog->aux->jited_linfo) return -ENOMEM; return 0; } void bpf_prog_free_jited_linfo(struct bpf_prog *prog) { kfree(prog->aux->jited_linfo); prog->aux->jited_linfo = NULL; } void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog) { if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0]) bpf_prog_free_jited_linfo(prog); } /* The jit engine is responsible to provide an array * for insn_off to the jited_off mapping (insn_to_jit_off). * * The idx to this array is the insn_off. Hence, the insn_off * here is relative to the prog itself instead of the main prog. * This array has one entry for each xlated bpf insn. * * jited_off is the byte off to the last byte of the jited insn. * * Hence, with * insn_start: * The first bpf insn off of the prog. The insn off * here is relative to the main prog. * e.g. if prog is a subprog, insn_start > 0 * linfo_idx: * The prog's idx to prog->aux->linfo and jited_linfo * * jited_linfo[linfo_idx] = prog->bpf_func * * For i > linfo_idx, * * jited_linfo[i] = prog->bpf_func + * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] */ void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, const u32 *insn_to_jit_off) { u32 linfo_idx, insn_start, insn_end, nr_linfo, i; const struct bpf_line_info *linfo; void **jited_linfo; if (!prog->aux->jited_linfo) /* Userspace did not provide linfo */ return; linfo_idx = prog->aux->linfo_idx; linfo = &prog->aux->linfo[linfo_idx]; insn_start = linfo[0].insn_off; insn_end = insn_start + prog->len; jited_linfo = &prog->aux->jited_linfo[linfo_idx]; jited_linfo[0] = prog->bpf_func; nr_linfo = prog->aux->nr_linfo - linfo_idx; for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) /* The verifier ensures that linfo[i].insn_off is * strictly increasing */ jited_linfo[i] = prog->bpf_func + insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; } void bpf_prog_free_linfo(struct bpf_prog *prog) { bpf_prog_free_jited_linfo(prog); kvfree(prog->aux->linfo); } struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; struct bpf_prog *fp; u32 pages; size = round_up(size, PAGE_SIZE); pages = size / PAGE_SIZE; if (pages <= fp_old->pages) return fp_old; fp = __vmalloc(size, gfp_flags); if (fp) { memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); fp->pages = pages; fp->aux->prog = fp; /* We keep fp->aux from fp_old around in the new * reallocated structure. */ fp_old->aux = NULL; __bpf_prog_free(fp_old); } return fp; } void __bpf_prog_free(struct bpf_prog *fp) { if (fp->aux) { mutex_destroy(&fp->aux->used_maps_mutex); mutex_destroy(&fp->aux->dst_mutex); kfree(fp->aux->poke_tab); kfree(fp->aux); } free_percpu(fp->stats); free_percpu(fp->active); vfree(fp); } int bpf_prog_calc_tag(struct bpf_prog *fp) { const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); u32 raw_size = bpf_prog_tag_scratch_size(fp); u32 digest[SHA1_DIGEST_WORDS]; u32 ws[SHA1_WORKSPACE_WORDS]; u32 i, bsize, psize, blocks; struct bpf_insn *dst; bool was_ld_map; u8 *raw, *todo; __be32 *result; __be64 *bits; raw = vmalloc(raw_size); if (!raw) return -ENOMEM; sha1_init(digest); memset(ws, 0, sizeof(ws)); /* We need to take out the map fd for the digest calculation * since they are unstable from user space side. */ dst = (void *)raw; for (i = 0, was_ld_map = false; i < fp->len; i++) { dst[i] = fp->insnsi[i]; if (!was_ld_map && dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && (dst[i].src_reg == BPF_PSEUDO_MAP_FD || dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { was_ld_map = true; dst[i].imm = 0; } else if (was_ld_map && dst[i].code == 0 && dst[i].dst_reg == 0 && dst[i].src_reg == 0 && dst[i].off == 0) { was_ld_map = false; dst[i].imm = 0; } else { was_ld_map = false; } } psize = bpf_prog_insn_size(fp); memset(&raw[psize], 0, raw_size - psize); raw[psize++] = 0x80; bsize = round_up(psize, SHA1_BLOCK_SIZE); blocks = bsize / SHA1_BLOCK_SIZE; todo = raw; if (bsize - psize >= sizeof(__be64)) { bits = (__be64 *)(todo + bsize - sizeof(__be64)); } else { bits = (__be64 *)(todo + bsize + bits_offset); blocks++; } *bits = cpu_to_be64((psize - 1) << 3); while (blocks--) { sha1_transform(digest, todo, ws); todo += SHA1_BLOCK_SIZE; } result = (__force __be32 *)digest; for (i = 0; i < SHA1_DIGEST_WORDS; i++) result[i] = cpu_to_be32(digest[i]); memcpy(fp->tag, result, sizeof(fp->tag)); vfree(raw); return 0; } static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s64 imm_min = S32_MIN, imm_max = S32_MAX; s32 delta = end_new - end_old; s64 imm = insn->imm; if (curr < pos && curr + imm + 1 >= end_old) imm += delta; else if (curr >= end_new && curr + imm + 1 < end_new) imm -= delta; if (imm < imm_min || imm > imm_max) return -ERANGE; if (!probe_pass) insn->imm = imm; return 0; } static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, s32 end_new, s32 curr, const bool probe_pass) { const s32 off_min = S16_MIN, off_max = S16_MAX; s32 delta = end_new - end_old; s32 off = insn->off; if (curr < pos && curr + off + 1 >= end_old) off += delta; else if (curr >= end_new && curr + off + 1 < end_new) off -= delta; if (off < off_min || off > off_max) return -ERANGE; if (!probe_pass) insn->off = off; return 0; } static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, s32 end_new, const bool probe_pass) { u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); struct bpf_insn *insn = prog->insnsi; int ret = 0; for (i = 0; i < insn_cnt; i++, insn++) { u8 code; /* In the probing pass we still operate on the original, * unpatched image in order to check overflows before we * do any other adjustments. Therefore skip the patchlet. */ if (probe_pass && i == pos) { i = end_new; insn = prog->insnsi + end_old; } code = insn->code; if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || BPF_OP(code) == BPF_EXIT) continue; /* Adjust offset of jmps if we cross patch boundaries. */ if (BPF_OP(code) == BPF_CALL) { if (insn->src_reg != BPF_PSEUDO_CALL) continue; ret = bpf_adj_delta_to_imm(insn, pos, end_old, end_new, i, probe_pass); } else { ret = bpf_adj_delta_to_off(insn, pos, end_old, end_new, i, probe_pass); } if (ret) break; } return ret; } static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) { struct bpf_line_info *linfo; u32 i, nr_linfo; nr_linfo = prog->aux->nr_linfo; if (!nr_linfo || !delta) return; linfo = prog->aux->linfo; for (i = 0; i < nr_linfo; i++) if (off < linfo[i].insn_off) break; /* Push all off < linfo[i].insn_off by delta */ for (; i < nr_linfo; i++) linfo[i].insn_off += delta; } struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, const struct bpf_insn *patch, u32 len) { u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; const u32 cnt_max = S16_MAX; struct bpf_prog *prog_adj; int err; /* Since our patchlet doesn't expand the image, we're done. */ if (insn_delta == 0) { memcpy(prog->insnsi + off, patch, sizeof(*patch)); return prog; } insn_adj_cnt = prog->len + insn_delta; /* Reject anything that would potentially let the insn->off * target overflow when we have excessive program expansions. * We need to probe here before we do any reallocation where * we afterwards may not fail anymore. */ if (insn_adj_cnt > cnt_max && (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) return ERR_PTR(err); /* Several new instructions need to be inserted. Make room * for them. Likely, there's no need for a new allocation as * last page could have large enough tailroom. */ prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), GFP_USER); if (!prog_adj) return ERR_PTR(-ENOMEM); prog_adj->len = insn_adj_cnt; /* Patching happens in 3 steps: * * 1) Move over tail of insnsi from next instruction onwards, * so we can patch the single target insn with one or more * new ones (patching is always from 1 to n insns, n > 0). * 2) Inject new instructions at the target location. * 3) Adjust branch offsets if necessary. */ insn_rest = insn_adj_cnt - off - len; memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, sizeof(*patch) * insn_rest); memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); /* We are guaranteed to not fail at this point, otherwise * the ship has sailed to reverse to the original state. An * overflow cannot happen at this point. */ BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); bpf_adj_linfo(prog_adj, off, insn_delta); return prog_adj; } int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) { /* Branch offsets can't overflow when program is shrinking, no need * to call bpf_adj_branches(..., true) here */ memmove(prog->insnsi + off, prog->insnsi + off + cnt, sizeof(struct bpf_insn) * (prog->len - off - cnt)); prog->len -= cnt; return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); } static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) { int i; for (i = 0; i < fp->aux->func_cnt; i++) bpf_prog_kallsyms_del(fp->aux->func[i]); } void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) { bpf_prog_kallsyms_del_subprogs(fp); bpf_prog_kallsyms_del(fp); } #ifdef CONFIG_BPF_JIT /* All BPF JIT sysctl knobs here. */ int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); int bpf_jit_harden __read_mostly; long bpf_jit_limit __read_mostly; static void bpf_prog_ksym_set_addr(struct bpf_prog *prog) { const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); unsigned long addr = (unsigned long)hdr; WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); prog->aux->ksym.start = (unsigned long) prog->bpf_func; prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE; } static void bpf_prog_ksym_set_name(struct bpf_prog *prog) { char *sym = prog->aux->ksym.name; const char *end = sym + KSYM_NAME_LEN; const struct btf_type *type; const char *func_name; BUILD_BUG_ON(sizeof("bpf_prog_") + sizeof(prog->tag) * 2 + /* name has been null terminated. * We should need +1 for the '_' preceding * the name. However, the null character * is double counted between the name and the * sizeof("bpf_prog_") above, so we omit * the +1 here. */ sizeof(prog->aux->name) > KSYM_NAME_LEN); sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); /* prog->aux->name will be ignored if full btf name is available */ if (prog->aux->func_info_cnt) { type = btf_type_by_id(prog->aux->btf, prog->aux->func_info[prog->aux->func_idx].type_id); func_name = btf_name_by_offset(prog->aux->btf, type->name_off); snprintf(sym, (size_t)(end - sym), "_%s", func_name); return; } if (prog->aux->name[0]) snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); else *sym = 0; } static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) { return container_of(n, struct bpf_ksym, tnode)->start; } static __always_inline bool bpf_tree_less(struct latch_tree_node *a, struct latch_tree_node *b) { return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); } static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) { unsigned long val = (unsigned long)key; const struct bpf_ksym *ksym; ksym = container_of(n, struct bpf_ksym, tnode); if (val < ksym->start) return -1; if (val >= ksym->end) return 1; return 0; } static const struct latch_tree_ops bpf_tree_ops = { .less = bpf_tree_less, .comp = bpf_tree_comp, }; static DEFINE_SPINLOCK(bpf_lock); static LIST_HEAD(bpf_kallsyms); static struct latch_tree_root bpf_tree __cacheline_aligned; void bpf_ksym_add(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); WARN_ON_ONCE(!list_empty(&ksym->lnode)); list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); spin_unlock_bh(&bpf_lock); } static void __bpf_ksym_del(struct bpf_ksym *ksym) { if (list_empty(&ksym->lnode)) return; latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); list_del_rcu(&ksym->lnode); } void bpf_ksym_del(struct bpf_ksym *ksym) { spin_lock_bh(&bpf_lock); __bpf_ksym_del(ksym); spin_unlock_bh(&bpf_lock); } static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) { return fp->jited && !bpf_prog_was_classic(fp); } static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) { return list_empty(&fp->aux->ksym.lnode) || fp->aux->ksym.lnode.prev == LIST_POISON2; } void bpf_prog_kallsyms_add(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp) || !bpf_capable()) return; bpf_prog_ksym_set_addr(fp); bpf_prog_ksym_set_name(fp); fp->aux->ksym.prog = true; bpf_ksym_add(&fp->aux->ksym); } void bpf_prog_kallsyms_del(struct bpf_prog *fp) { if (!bpf_prog_kallsyms_candidate(fp)) return; bpf_ksym_del(&fp->aux->ksym); } static struct bpf_ksym *bpf_ksym_find(unsigned long addr) { struct latch_tree_node *n; n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); return n ? container_of(n, struct bpf_ksym, tnode) : NULL; } const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym) { struct bpf_ksym *ksym; char *ret = NULL; rcu_read_lock(); ksym = bpf_ksym_find(addr); if (ksym) { unsigned long symbol_start = ksym->start; unsigned long symbol_end = ksym->end; strncpy(sym, ksym->name, KSYM_NAME_LEN); ret = sym; if (size) *size = symbol_end - symbol_start; if (off) *off = addr - symbol_start; } rcu_read_unlock(); return ret; } bool is_bpf_text_address(unsigned long addr) { bool ret; rcu_read_lock(); ret = bpf_ksym_find(addr) != NULL; rcu_read_unlock(); return ret; } static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) { struct bpf_ksym *ksym = bpf_ksym_find(addr); return ksym && ksym->prog ? container_of(ksym, struct bpf_prog_aux, ksym)->prog : NULL; } const struct exception_table_entry *search_bpf_extables(unsigned long addr) { const struct exception_table_entry *e = NULL; struct bpf_prog *prog; rcu_read_lock(); prog = bpf_prog_ksym_find(addr); if (!prog) goto out; if (!prog->aux->num_exentries) goto out; e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); out: rcu_read_unlock(); return e; } int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { struct bpf_ksym *ksym; unsigned int it = 0; int ret = -ERANGE; if (!bpf_jit_kallsyms_enabled()) return ret; rcu_read_lock(); list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { if (it++ != symnum) continue; strncpy(sym, ksym->name, KSYM_NAME_LEN); *value = ksym->start; *type = BPF_SYM_ELF_TYPE; ret = 0; break; } rcu_read_unlock(); return ret; } int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke) { struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; static const u32 poke_tab_max = 1024; u32 slot = prog->aux->size_poke_tab; u32 size = slot + 1; if (size > poke_tab_max) return -ENOSPC; if (poke->tailcall_target || poke->tailcall_target_stable || poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) return -EINVAL; switch (poke->reason) { case BPF_POKE_REASON_TAIL_CALL: if (!poke->tail_call.map) return -EINVAL; break; default: return -EINVAL; } tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); if (!tab) return -ENOMEM; memcpy(&tab[slot], poke, sizeof(*poke)); prog->aux->size_poke_tab = size; prog->aux->poke_tab = tab; return slot; } static atomic_long_t bpf_jit_current; /* Can be overridden by an arch's JIT compiler if it has a custom, * dedicated BPF backend memory area, or if neither of the two * below apply. */ u64 __weak bpf_jit_alloc_exec_limit(void) { #if defined(MODULES_VADDR) return MODULES_END - MODULES_VADDR; #else return VMALLOC_END - VMALLOC_START; #endif } static int __init bpf_jit_charge_init(void) { /* Only used as heuristic here to derive limit. */ bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2, PAGE_SIZE), LONG_MAX); return 0; } pure_initcall(bpf_jit_charge_init); static int bpf_jit_charge_modmem(u32 pages) { if (atomic_long_add_return(pages, &bpf_jit_current) > (bpf_jit_limit >> PAGE_SHIFT)) { if (!capable(CAP_SYS_ADMIN)) { atomic_long_sub(pages, &bpf_jit_current); return -EPERM; } } return 0; } static void bpf_jit_uncharge_modmem(u32 pages) { atomic_long_sub(pages, &bpf_jit_current); } void *__weak bpf_jit_alloc_exec(unsigned long size) { return module_alloc(size); } void __weak bpf_jit_free_exec(void *addr) { module_memfree(addr); } struct bpf_binary_header * bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, bpf_jit_fill_hole_t bpf_fill_ill_insns) { struct bpf_binary_header *hdr; u32 size, hole, start, pages; WARN_ON_ONCE(!is_power_of_2(alignment) || alignment > BPF_IMAGE_ALIGNMENT); /* Most of BPF filters are really small, but if some of them * fill a page, allow at least 128 extra bytes to insert a * random section of illegal instructions. */ size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); pages = size / PAGE_SIZE; if (bpf_jit_charge_modmem(pages)) return NULL; hdr = bpf_jit_alloc_exec(size); if (!hdr) { bpf_jit_uncharge_modmem(pages); return NULL; } /* Fill space with illegal/arch-dep instructions. */ bpf_fill_ill_insns(hdr, size); hdr->pages = pages; hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), PAGE_SIZE - sizeof(*hdr)); start = (get_random_int() % hole) & ~(alignment - 1); /* Leave a random number of instructions before BPF code. */ *image_ptr = &hdr->image[start]; return hdr; } void bpf_jit_binary_free(struct bpf_binary_header *hdr) { u32 pages = hdr->pages; bpf_jit_free_exec(hdr); bpf_jit_uncharge_modmem(pages); } /* This symbol is only overridden by archs that have different * requirements than the usual eBPF JITs, f.e. when they only * implement cBPF JIT, do not set images read-only, etc. */ void __weak bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) { struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); bpf_jit_binary_free(hdr); WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); } bpf_prog_unlock_free(fp); } int bpf_jit_get_func_addr(const struct bpf_prog *prog, const struct bpf_insn *insn, bool extra_pass, u64 *func_addr, bool *func_addr_fixed) { s16 off = insn->off; s32 imm = insn->imm; u8 *addr; *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; if (!*func_addr_fixed) { /* Place-holder address till the last pass has collected * all addresses for JITed subprograms in which case we * can pick them up from prog->aux. */ if (!extra_pass) addr = NULL; else if (prog->aux->func && off >= 0 && off < prog->aux->func_cnt) addr = (u8 *)prog->aux->func[off]->bpf_func; else return -EINVAL; } else { /* Address of a BPF helper call. Since part of the core * kernel, it's always at a fixed location. __bpf_call_base * and the helper with imm relative to it are both in core * kernel. */ addr = (u8 *)__bpf_call_base + imm; } *func_addr = (unsigned long)addr; return 0; } static int bpf_jit_blind_insn(const struct bpf_insn *from, const struct bpf_insn *aux, struct bpf_insn *to_buff, bool emit_zext) { struct bpf_insn *to = to_buff; u32 imm_rnd = get_random_int(); s16 off; BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); /* Constraints on AX register: * * AX register is inaccessible from user space. It is mapped in * all JITs, and used here for constant blinding rewrites. It is * typically "stateless" meaning its contents are only valid within * the executed instruction, but not across several instructions. * There are a few exceptions however which are further detailed * below. * * Constant blinding is only used by JITs, not in the interpreter. * The interpreter uses AX in some occasions as a local temporary * register e.g. in DIV or MOD instructions. * * In restricted circumstances, the verifier can also use the AX * register for rewrites as long as they do not interfere with * the above cases! */ if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) goto out; if (from->imm == 0 && (from->code == (BPF_ALU | BPF_MOV | BPF_K) || from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); goto out; } switch (from->code) { case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); break; case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* Accommodate for extra offset in case of a backjump. */ off = from->off; if (off < 0) off -= 2; *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, off); break; case BPF_LD | BPF_IMM | BPF_DW: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); break; case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); if (emit_zext) *to++ = BPF_ZEXT_REG(BPF_REG_AX); *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); break; case BPF_ST | BPF_MEM | BPF_DW: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); break; } out: return to - to_buff; } static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, gfp_t gfp_extra_flags) { gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; struct bpf_prog *fp; fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); if (fp != NULL) { /* aux->prog still points to the fp_other one, so * when promoting the clone to the real program, * this still needs to be adapted. */ memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); } return fp; } static void bpf_prog_clone_free(struct bpf_prog *fp) { /* aux was stolen by the other clone, so we cannot free * it from this path! It will be freed eventually by the * other program on release. * * At this point, we don't need a deferred release since * clone is guaranteed to not be locked. */ fp->aux = NULL; __bpf_prog_free(fp); } void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) { /* We have to repoint aux->prog to self, as we don't * know whether fp here is the clone or the original. */ fp->aux->prog = fp; bpf_prog_clone_free(fp_other); } struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) { struct bpf_insn insn_buff[16], aux[2]; struct bpf_prog *clone, *tmp; int insn_delta, insn_cnt; struct bpf_insn *insn; int i, rewritten; if (!bpf_jit_blinding_enabled(prog) || prog->blinded) return prog; clone = bpf_prog_clone_create(prog, GFP_USER); if (!clone) return ERR_PTR(-ENOMEM); insn_cnt = clone->len; insn = clone->insnsi; for (i = 0; i < insn_cnt; i++, insn++) { /* We temporarily need to hold the original ld64 insn * so that we can still access the first part in the * second blinding run. */ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && insn[1].code == 0) memcpy(aux, insn, sizeof(aux)); rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, clone->aux->verifier_zext); if (!rewritten) continue; tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); if (IS_ERR(tmp)) { /* Patching may have repointed aux->prog during * realloc from the original one, so we need to * fix it up here on error. */ bpf_jit_prog_release_other(prog, clone); return tmp; } clone = tmp; insn_delta = rewritten - 1; /* Walk new program and skip insns we just inserted. */ insn = clone->insnsi + i + insn_delta; insn_cnt += insn_delta; i += insn_delta; } clone->blinded = 1; return clone; } #endif /* CONFIG_BPF_JIT */ /* Base function for offset calculation. Needs to go into .text section, * therefore keeping it non-static as well; will also be used by JITs * anyway later on, so do not let the compiler omit it. This also needs * to go into kallsyms for correlation from e.g. bpftool, so naming * must not change. */ noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) { return 0; } EXPORT_SYMBOL_GPL(__bpf_call_base); /* All UAPI available opcodes. */ #define BPF_INSN_MAP(INSN_2, INSN_3) \ /* 32 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU, ADD, X), \ INSN_3(ALU, SUB, X), \ INSN_3(ALU, AND, X), \ INSN_3(ALU, OR, X), \ INSN_3(ALU, LSH, X), \ INSN_3(ALU, RSH, X), \ INSN_3(ALU, XOR, X), \ INSN_3(ALU, MUL, X), \ INSN_3(ALU, MOV, X), \ INSN_3(ALU, ARSH, X), \ INSN_3(ALU, DIV, X), \ INSN_3(ALU, MOD, X), \ INSN_2(ALU, NEG), \ INSN_3(ALU, END, TO_BE), \ INSN_3(ALU, END, TO_LE), \ /* Immediate based. */ \ INSN_3(ALU, ADD, K), \ INSN_3(ALU, SUB, K), \ INSN_3(ALU, AND, K), \ INSN_3(ALU, OR, K), \ INSN_3(ALU, LSH, K), \ INSN_3(ALU, RSH, K), \ INSN_3(ALU, XOR, K), \ INSN_3(ALU, MUL, K), \ INSN_3(ALU, MOV, K), \ INSN_3(ALU, ARSH, K), \ INSN_3(ALU, DIV, K), \ INSN_3(ALU, MOD, K), \ /* 64 bit ALU operations. */ \ /* Register based. */ \ INSN_3(ALU64, ADD, X), \ INSN_3(ALU64, SUB, X), \ INSN_3(ALU64, AND, X), \ INSN_3(ALU64, OR, X), \ INSN_3(ALU64, LSH, X), \ INSN_3(ALU64, RSH, X), \ INSN_3(ALU64, XOR, X), \ INSN_3(ALU64, MUL, X), \ INSN_3(ALU64, MOV, X), \ INSN_3(ALU64, ARSH, X), \ INSN_3(ALU64, DIV, X), \ INSN_3(ALU64, MOD, X), \ INSN_2(ALU64, NEG), \ /* Immediate based. */ \ INSN_3(ALU64, ADD, K), \ INSN_3(ALU64, SUB, K), \ INSN_3(ALU64, AND, K), \ INSN_3(ALU64, OR, K), \ INSN_3(ALU64, LSH, K), \ INSN_3(ALU64, RSH, K), \ INSN_3(ALU64, XOR, K), \ INSN_3(ALU64, MUL, K), \ INSN_3(ALU64, MOV, K), \ INSN_3(ALU64, ARSH, K), \ INSN_3(ALU64, DIV, K), \ INSN_3(ALU64, MOD, K), \ /* Call instruction. */ \ INSN_2(JMP, CALL), \ /* Exit instruction. */ \ INSN_2(JMP, EXIT), \ /* 32-bit Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP32, JEQ, X), \ INSN_3(JMP32, JNE, X), \ INSN_3(JMP32, JGT, X), \ INSN_3(JMP32, JLT, X), \ INSN_3(JMP32, JGE, X), \ INSN_3(JMP32, JLE, X), \ INSN_3(JMP32, JSGT, X), \ INSN_3(JMP32, JSLT, X), \ INSN_3(JMP32, JSGE, X), \ INSN_3(JMP32, JSLE, X), \ INSN_3(JMP32, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP32, JEQ, K), \ INSN_3(JMP32, JNE, K), \ INSN_3(JMP32, JGT, K), \ INSN_3(JMP32, JLT, K), \ INSN_3(JMP32, JGE, K), \ INSN_3(JMP32, JLE, K), \ INSN_3(JMP32, JSGT, K), \ INSN_3(JMP32, JSLT, K), \ INSN_3(JMP32, JSGE, K), \ INSN_3(JMP32, JSLE, K), \ INSN_3(JMP32, JSET, K), \ /* Jump instructions. */ \ /* Register based. */ \ INSN_3(JMP, JEQ, X), \ INSN_3(JMP, JNE, X), \ INSN_3(JMP, JGT, X), \ INSN_3(JMP, JLT, X), \ INSN_3(JMP, JGE, X), \ INSN_3(JMP, JLE, X), \ INSN_3(JMP, JSGT, X), \ INSN_3(JMP, JSLT, X), \ INSN_3(JMP, JSGE, X), \ INSN_3(JMP, JSLE, X), \ INSN_3(JMP, JSET, X), \ /* Immediate based. */ \ INSN_3(JMP, JEQ, K), \ INSN_3(JMP, JNE, K), \ INSN_3(JMP, JGT, K), \ INSN_3(JMP, JLT, K), \ INSN_3(JMP, JGE, K), \ INSN_3(JMP, JLE, K), \ INSN_3(JMP, JSGT, K), \ INSN_3(JMP, JSLT, K), \ INSN_3(JMP, JSGE, K), \ INSN_3(JMP, JSLE, K), \ INSN_3(JMP, JSET, K), \ INSN_2(JMP, JA), \ /* Store instructions. */ \ /* Register based. */ \ INSN_3(STX, MEM, B), \ INSN_3(STX, MEM, H), \ INSN_3(STX, MEM, W), \ INSN_3(STX, MEM, DW), \ INSN_3(STX, ATOMIC, W), \ INSN_3(STX, ATOMIC, DW), \ /* Immediate based. */ \ INSN_3(ST, MEM, B), \ INSN_3(ST, MEM, H), \ INSN_3(ST, MEM, W), \ INSN_3(ST, MEM, DW), \ /* Load instructions. */ \ /* Register based. */ \ INSN_3(LDX, MEM, B), \ INSN_3(LDX, MEM, H), \ INSN_3(LDX, MEM, W), \ INSN_3(LDX, MEM, DW), \ /* Immediate based. */ \ INSN_3(LD, IMM, DW) bool bpf_opcode_in_insntable(u8 code) { #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true static const bool public_insntable[256] = { [0 ... 255] = false, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ [BPF_LD | BPF_ABS | BPF_B] = true, [BPF_LD | BPF_ABS | BPF_H] = true, [BPF_LD | BPF_ABS | BPF_W] = true, [BPF_LD | BPF_IND | BPF_B] = true, [BPF_LD | BPF_IND | BPF_H] = true, [BPF_LD | BPF_IND | BPF_W] = true, }; #undef BPF_INSN_3_TBL #undef BPF_INSN_2_TBL return public_insntable[code]; } #ifndef CONFIG_BPF_JIT_ALWAYS_ON u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) { memset(dst, 0, size); return -EFAULT; } /** * __bpf_prog_run - run eBPF program on a given context * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers * @insn: is the array of eBPF instructions * @stack: is the eBPF storage stack * * Decode and execute eBPF instructions. */ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) { #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z static const void * const jumptable[256] __annotate_jump_table = { [0 ... 255] = &&default_label, /* Now overwrite non-defaults ... */ BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), /* Non-UAPI available opcodes. */ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, }; #undef BPF_INSN_3_LBL #undef BPF_INSN_2_LBL u32 tail_call_cnt = 0; #define CONT ({ insn++; goto select_insn; }) #define CONT_JMP ({ insn++; goto select_insn; }) select_insn: goto *jumptable[insn->code]; /* ALU */ #define ALU(OPCODE, OP) \ ALU64_##OPCODE##_X: \ DST = DST OP SRC; \ CONT; \ ALU_##OPCODE##_X: \ DST = (u32) DST OP (u32) SRC; \ CONT; \ ALU64_##OPCODE##_K: \ DST = DST OP IMM; \ CONT; \ ALU_##OPCODE##_K: \ DST = (u32) DST OP (u32) IMM; \ CONT; ALU(ADD, +) ALU(SUB, -) ALU(AND, &) ALU(OR, |) ALU(LSH, <<) ALU(RSH, >>) ALU(XOR, ^) ALU(MUL, *) #undef ALU ALU_NEG: DST = (u32) -DST; CONT; ALU64_NEG: DST = -DST; CONT; ALU_MOV_X: DST = (u32) SRC; CONT; ALU_MOV_K: DST = (u32) IMM; CONT; ALU64_MOV_X: DST = SRC; CONT; ALU64_MOV_K: DST = IMM; CONT; LD_IMM_DW: DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; insn++; CONT; ALU_ARSH_X: DST = (u64) (u32) (((s32) DST) >> SRC); CONT; ALU_ARSH_K: DST = (u64) (u32) (((s32) DST) >> IMM); CONT; ALU64_ARSH_X: (*(s64 *) &DST) >>= SRC; CONT; ALU64_ARSH_K: (*(s64 *) &DST) >>= IMM; CONT; ALU64_MOD_X: div64_u64_rem(DST, SRC, &AX); DST = AX; CONT; ALU_MOD_X: AX = (u32) DST; DST = do_div(AX, (u32) SRC); CONT; ALU64_MOD_K: div64_u64_rem(DST, IMM, &AX); DST = AX; CONT; ALU_MOD_K: AX = (u32) DST; DST = do_div(AX, (u32) IMM); CONT; ALU64_DIV_X: DST = div64_u64(DST, SRC); CONT; ALU_DIV_X: AX = (u32) DST; do_div(AX, (u32) SRC); DST = (u32) AX; CONT; ALU64_DIV_K: DST = div64_u64(DST, IMM); CONT; ALU_DIV_K: AX = (u32) DST; do_div(AX, (u32) IMM); DST = (u32) AX; CONT; ALU_END_TO_BE: switch (IMM) { case 16: DST = (__force u16) cpu_to_be16(DST); break; case 32: DST = (__force u32) cpu_to_be32(DST); break; case 64: DST = (__force u64) cpu_to_be64(DST); break; } CONT; ALU_END_TO_LE: switch (IMM) { case 16: DST = (__force u16) cpu_to_le16(DST); break; case 32: DST = (__force u32) cpu_to_le32(DST); break; case 64: DST = (__force u64) cpu_to_le64(DST); break; } CONT; /* CALL */ JMP_CALL: /* Function call scratches BPF_R1-BPF_R5 registers, * preserves BPF_R6-BPF_R9, and stores return value * into BPF_R0. */ BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5); CONT; JMP_CALL_ARGS: BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, BPF_R3, BPF_R4, BPF_R5, insn + insn->off + 1); CONT; JMP_TAIL_CALL: { struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_prog *prog; u32 index = BPF_R3; if (unlikely(index >= array->map.max_entries)) goto out; if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) goto out; tail_call_cnt++; prog = READ_ONCE(array->ptrs[index]); if (!prog) goto out; /* ARG1 at this point is guaranteed to point to CTX from * the verifier side due to the fact that the tail call is * handled like a helper, that is, bpf_tail_call_proto, * where arg1_type is ARG_PTR_TO_CTX. */ insn = prog->insnsi; goto select_insn; out: CONT; } JMP_JA: insn += insn->off; CONT; JMP_EXIT: return BPF_R0; /* JMP */ #define COND_JMP(SIGN, OPCODE, CMP_OP) \ JMP_##OPCODE##_X: \ if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_X: \ if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP_##OPCODE##_K: \ if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; \ JMP32_##OPCODE##_K: \ if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ insn += insn->off; \ CONT_JMP; \ } \ CONT; COND_JMP(u, JEQ, ==) COND_JMP(u, JNE, !=) COND_JMP(u, JGT, >) COND_JMP(u, JLT, <) COND_JMP(u, JGE, >=) COND_JMP(u, JLE, <=) COND_JMP(u, JSET, &) COND_JMP(s, JSGT, >) COND_JMP(s, JSLT, <) COND_JMP(s, JSGE, >=) COND_JMP(s, JSLE, <=) #undef COND_JMP /* STX and ST and LDX*/ #define LDST(SIZEOP, SIZE) \ STX_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ CONT; \ ST_MEM_##SIZEOP: \ *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ CONT; \ LDX_MEM_##SIZEOP: \ DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ CONT; LDST(B, u8) LDST(H, u16) LDST(W, u32) LDST(DW, u64) #undef LDST #define LDX_PROBE(SIZEOP, SIZE) \ LDX_PROBE_MEM_##SIZEOP: \ bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \ CONT; LDX_PROBE(B, 1) LDX_PROBE(H, 2) LDX_PROBE(W, 4) LDX_PROBE(DW, 8) #undef LDX_PROBE #define ATOMIC_ALU_OP(BOP, KOP) \ case BOP: \ if (BPF_SIZE(insn->code) == BPF_W) \ atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ (DST + insn->off)); \ else \ atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ (DST + insn->off)); \ break; \ case BOP | BPF_FETCH: \ if (BPF_SIZE(insn->code) == BPF_W) \ SRC = (u32) atomic_fetch_##KOP( \ (u32) SRC, \ (atomic_t *)(unsigned long) (DST + insn->off)); \ else \ SRC = (u64) atomic64_fetch_##KOP( \ (u64) SRC, \ (atomic64_t *)(unsigned long) (DST + insn->off)); \ break; STX_ATOMIC_DW: STX_ATOMIC_W: switch (IMM) { ATOMIC_ALU_OP(BPF_ADD, add) ATOMIC_ALU_OP(BPF_AND, and) ATOMIC_ALU_OP(BPF_OR, or) ATOMIC_ALU_OP(BPF_XOR, xor) #undef ATOMIC_ALU_OP case BPF_XCHG: if (BPF_SIZE(insn->code) == BPF_W) SRC = (u32) atomic_xchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) SRC); else SRC = (u64) atomic64_xchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) SRC); break; case BPF_CMPXCHG: if (BPF_SIZE(insn->code) == BPF_W) BPF_R0 = (u32) atomic_cmpxchg( (atomic_t *)(unsigned long) (DST + insn->off), (u32) BPF_R0, (u32) SRC); else BPF_R0 = (u64) atomic64_cmpxchg( (atomic64_t *)(unsigned long) (DST + insn->off), (u64) BPF_R0, (u64) SRC); break; default: goto default_label; } CONT; default_label: /* If we ever reach this, we have a bug somewhere. Die hard here * instead of just returning 0; we could be somewhere in a subprog, * so execution could continue otherwise which we do /not/ want. * * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). */ pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", insn->code, insn->imm); BUG_ON(1); return 0; } #define PROG_NAME(stack_size) __bpf_prog_run##stack_size #define DEFINE_BPF_PROG_RUN(stack_size) \ static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG]; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ ARG1 = (u64) (unsigned long) ctx; \ return ___bpf_prog_run(regs, insn, stack); \ } #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ const struct bpf_insn *insn) \ { \ u64 stack[stack_size / sizeof(u64)]; \ u64 regs[MAX_BPF_EXT_REG]; \ \ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ BPF_R1 = r1; \ BPF_R2 = r2; \ BPF_R3 = r3; \ BPF_R4 = r4; \ BPF_R5 = r5; \ return ___bpf_prog_run(regs, insn, stack); \ } #define EVAL1(FN, X) FN(X) #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), static unsigned int (*interpreters[])(const void *ctx, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, const struct bpf_insn *insn) = { EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) }; #undef PROG_NAME_LIST void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) { stack_depth = max_t(u32, stack_depth, 1); insn->off = (s16) insn->imm; insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - __bpf_call_base_args; insn->code = BPF_JMP | BPF_CALL_ARGS; } #else static unsigned int __bpf_prog_ret0_warn(const void *ctx, const struct bpf_insn *insn) { /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON * is not working properly, so warn about it! */ WARN_ON_ONCE(1); return 0; } #endif bool bpf_prog_array_compatible(struct bpf_array *array, const struct bpf_prog *fp) { if (fp->kprobe_override) return false; if (!array->aux->type) { /* There's no owner yet where we could check for * compatibility. */ array->aux->type = fp->type; array->aux->jited = fp->jited; return true; } return array->aux->type == fp->type && array->aux->jited == fp->jited; } static int bpf_check_tail_call(const struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; int i, ret = 0; mutex_lock(&aux->used_maps_mutex); for (i = 0; i < aux->used_map_cnt; i++) { struct bpf_map *map = aux->used_maps[i]; struct bpf_array *array; if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) continue; array = container_of(map, struct bpf_array, map); if (!bpf_prog_array_compatible(array, fp)) { ret = -EINVAL; goto out; } } out: mutex_unlock(&aux->used_maps_mutex); return ret; } static void bpf_prog_select_func(struct bpf_prog *fp) { #ifndef CONFIG_BPF_JIT_ALWAYS_ON u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; #else fp->bpf_func = __bpf_prog_ret0_warn; #endif } /** * bpf_prog_select_runtime - select exec runtime for BPF program * @fp: bpf_prog populated with internal BPF program * @err: pointer to error variable * * Try to JIT eBPF program, if JIT is not available, use interpreter. * The BPF program will be executed via BPF_PROG_RUN() macro. */ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) { /* In case of BPF to BPF calls, verifier did all the prep * work with regards to JITing, etc. */ if (fp->bpf_func) goto finalize; bpf_prog_select_func(fp); /* eBPF JITs can rewrite the program in case constant * blinding is active. However, in case of error during * blinding, bpf_int_jit_compile() must always return a * valid program, which in this case would simply not * be JITed, but falls back to the interpreter. */ if (!bpf_prog_is_dev_bound(fp->aux)) { *err = bpf_prog_alloc_jited_linfo(fp); if (*err) return fp; fp = bpf_int_jit_compile(fp); if (!fp->jited) { bpf_prog_free_jited_linfo(fp); #ifdef CONFIG_BPF_JIT_ALWAYS_ON *err = -ENOTSUPP; return fp; #endif } else { bpf_prog_free_unused_jited_linfo(fp); } } else { *err = bpf_prog_offload_compile(fp); if (*err) return fp; } finalize: bpf_prog_lock_ro(fp); /* The tail call compatibility check can only be done at * this late stage as we need to determine, if we deal * with JITed or non JITed program concatenations and not * all eBPF JITs might immediately support all features. */ *err = bpf_check_tail_call(fp); return fp; } EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); static unsigned int __bpf_prog_ret1(const void *ctx, const struct bpf_insn *insn) { return 1; } static struct bpf_prog_dummy { struct bpf_prog prog; } dummy_bpf_prog = { .prog = { .bpf_func = __bpf_prog_ret1, }, }; /* to avoid allocating empty bpf_prog_array for cgroups that * don't have bpf program attached use one global 'empty_prog_array' * It will not be modified the caller of bpf_prog_array_alloc() * (since caller requested prog_cnt == 0) * that pointer should be 'freed' by bpf_prog_array_free() */ static struct { struct bpf_prog_array hdr; struct bpf_prog *null_prog; } empty_prog_array = { .null_prog = NULL, }; struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) { if (prog_cnt) return kzalloc(sizeof(struct bpf_prog_array) + sizeof(struct bpf_prog_array_item) * (prog_cnt + 1), flags); return &empty_prog_array.hdr; } void bpf_prog_array_free(struct bpf_prog_array *progs) { if (!progs || progs == &empty_prog_array.hdr) return; kfree_rcu(progs, rcu); } int bpf_prog_array_length(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; u32 cnt = 0; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) cnt++; return cnt; } bool bpf_prog_array_is_empty(struct bpf_prog_array *array) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog != &dummy_bpf_prog.prog) return false; return true; } static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt) { struct bpf_prog_array_item *item; int i = 0; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; prog_ids[i] = item->prog->aux->id; if (++i == request_cnt) { item++; break; } } return !!(item->prog); } int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, __u32 __user *prog_ids, u32 cnt) { unsigned long err = 0; bool nospc; u32 *ids; /* users of this function are doing: * cnt = bpf_prog_array_length(); * if (cnt > 0) * bpf_prog_array_copy_to_user(..., cnt); * so below kcalloc doesn't need extra cnt > 0 check. */ ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); if (!ids) return -ENOMEM; nospc = bpf_prog_array_copy_core(array, ids, cnt); err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); kfree(ids); if (err) return -EFAULT; if (nospc) return -ENOSPC; return 0; } void bpf_prog_array_delete_safe(struct bpf_prog_array *array, struct bpf_prog *old_prog) { struct bpf_prog_array_item *item; for (item = array->items; item->prog; item++) if (item->prog == old_prog) { WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); break; } } /** * bpf_prog_array_delete_safe_at() - Replaces the program at the given * index into the program array with * a dummy no-op program. * @array: a bpf_prog_array * @index: the index of the program to replace * * Skips over dummy programs, by not counting them, when calculating * the position of the program to replace. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) { return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); } /** * bpf_prog_array_update_at() - Updates the program at the given index * into the program array. * @array: a bpf_prog_array * @index: the index of the program to update * @prog: the program to insert into the array * * Skips over dummy programs, by not counting them, when calculating * the position of the program to update. * * Return: * * 0 - Success * * -EINVAL - Invalid index value. Must be a non-negative integer. * * -ENOENT - Index out of range */ int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, struct bpf_prog *prog) { struct bpf_prog_array_item *item; if (unlikely(index < 0)) return -EINVAL; for (item = array->items; item->prog; item++) { if (item->prog == &dummy_bpf_prog.prog) continue; if (!index) { WRITE_ONCE(item->prog, prog); return 0; } index--; } return -ENOENT; } int bpf_prog_array_copy(struct bpf_prog_array *old_array, struct bpf_prog *exclude_prog, struct bpf_prog *include_prog, struct bpf_prog_array **new_array) { int new_prog_cnt, carry_prog_cnt = 0; struct bpf_prog_array_item *existing; struct bpf_prog_array *array; bool found_exclude = false; int new_prog_idx = 0; /* Figure out how many existing progs we need to carry over to * the new array. */ if (old_array) { existing = old_array->items; for (; existing->prog; existing++) { if (existing->prog == exclude_prog) { found_exclude = true; continue; } if (existing->prog != &dummy_bpf_prog.prog) carry_prog_cnt++; if (existing->prog == include_prog) return -EEXIST; } } if (exclude_prog && !found_exclude) return -ENOENT; /* How many progs (not NULL) will be in the new array? */ new_prog_cnt = carry_prog_cnt; if (include_prog) new_prog_cnt += 1; /* Do we have any prog (not NULL) in the new array? */ if (!new_prog_cnt) { *new_array = NULL; return 0; } /* +1 as the end of prog_array is marked with NULL */ array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); if (!array) return -ENOMEM; /* Fill in the new prog array */ if (carry_prog_cnt) { existing = old_array->items; for (; existing->prog; existing++) if (existing->prog != exclude_prog && existing->prog != &dummy_bpf_prog.prog) { array->items[new_prog_idx++].prog = existing->prog; } } if (include_prog) array->items[new_prog_idx++].prog = include_prog; array->items[new_prog_idx].prog = NULL; *new_array = array; return 0; } int bpf_prog_array_copy_info(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt, u32 *prog_cnt) { u32 cnt = 0; if (array) cnt = bpf_prog_array_length(array); *prog_cnt = cnt; /* return early if user requested only program count or nothing to copy */ if (!request_cnt || !cnt) return 0; /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC : 0; } void __bpf_free_used_maps(struct bpf_prog_aux *aux, struct bpf_map **used_maps, u32 len) { struct bpf_map *map; u32 i; for (i = 0; i < len; i++) { map = used_maps[i]; if (map->ops->map_poke_untrack) map->ops->map_poke_untrack(map, aux); bpf_map_put(map); } } static void bpf_free_used_maps(struct bpf_prog_aux *aux) { __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); kfree(aux->used_maps); } void __bpf_free_used_btfs(struct bpf_prog_aux *aux, struct btf_mod_pair *used_btfs, u32 len) { #ifdef CONFIG_BPF_SYSCALL struct btf_mod_pair *btf_mod; u32 i; for (i = 0; i < len; i++) { btf_mod = &used_btfs[i]; if (btf_mod->module) module_put(btf_mod->module); btf_put(btf_mod->btf); } #endif } static void bpf_free_used_btfs(struct bpf_prog_aux *aux) { __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); kfree(aux->used_btfs); } static void bpf_prog_free_deferred(struct work_struct *work) { struct bpf_prog_aux *aux; int i; aux = container_of(work, struct bpf_prog_aux, work); bpf_free_used_maps(aux); bpf_free_used_btfs(aux); if (bpf_prog_is_dev_bound(aux)) bpf_prog_offload_destroy(aux->prog); #ifdef CONFIG_PERF_EVENTS if (aux->prog->has_callchain_buf) put_callchain_buffers(); #endif if (aux->dst_trampoline) bpf_trampoline_put(aux->dst_trampoline); for (i = 0; i < aux->func_cnt; i++) bpf_jit_free(aux->func[i]); if (aux->func_cnt) { kfree(aux->func); bpf_prog_unlock_free(aux->prog); } else { bpf_jit_free(aux->prog); } } /* Free internal BPF program */ void bpf_prog_free(struct bpf_prog *fp) { struct bpf_prog_aux *aux = fp->aux; if (aux->dst_prog) bpf_prog_put(aux->dst_prog); INIT_WORK(&aux->work, bpf_prog_free_deferred); schedule_work(&aux->work); } EXPORT_SYMBOL_GPL(bpf_prog_free); /* RNG for unpriviledged user space with separated state from prandom_u32(). */ static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); void bpf_user_rnd_init_once(void) { prandom_init_once(&bpf_user_rnd_state); } BPF_CALL_0(bpf_user_rnd_u32) { /* Should someone ever have the rather unwise idea to use some * of the registers passed into this function, then note that * this function is called from native eBPF and classic-to-eBPF * transformations. Register assignments from both sides are * different, f.e. classic always sets fn(ctx, A, X) here. */ struct rnd_state *state; u32 res; state = &get_cpu_var(bpf_user_rnd_state); res = prandom_u32_state(state); put_cpu_var(bpf_user_rnd_state); return res; } BPF_CALL_0(bpf_get_raw_cpu_id) { return raw_smp_processor_id(); } /* Weak definitions of helper functions in case we don't have bpf syscall. */ const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; const struct bpf_func_proto bpf_map_update_elem_proto __weak; const struct bpf_func_proto bpf_map_delete_elem_proto __weak; const struct bpf_func_proto bpf_map_push_elem_proto __weak; const struct bpf_func_proto bpf_map_pop_elem_proto __weak; const struct bpf_func_proto bpf_map_peek_elem_proto __weak; const struct bpf_func_proto bpf_spin_lock_proto __weak; const struct bpf_func_proto bpf_spin_unlock_proto __weak; const struct bpf_func_proto bpf_jiffies64_proto __weak; const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; const struct bpf_func_proto bpf_get_current_comm_proto __weak; const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; const struct bpf_func_proto bpf_get_local_storage_proto __weak; const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; const struct bpf_func_proto bpf_snprintf_btf_proto __weak; const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) { return NULL; } u64 __weak bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) { return -ENOTSUPP; } EXPORT_SYMBOL_GPL(bpf_event_output); /* Always built-in helper functions. */ const struct bpf_func_proto bpf_tail_call_proto = { .func = NULL, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; /* Stub for JITs that only support cBPF. eBPF programs are interpreted. * It is encouraged to implement bpf_int_jit_compile() instead, so that * eBPF and implicitly also cBPF can get JITed! */ struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) { return prog; } /* Stub for JITs that support eBPF. All cBPF code gets transformed into * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). */ void __weak bpf_jit_compile(struct bpf_prog *prog) { } bool __weak bpf_helper_changes_pkt_data(void *func) { return false; } /* Return TRUE if the JIT backend wants verifier to enable sub-register usage * analysis code and wants explicit zero extension inserted by verifier. * Otherwise, return FALSE. */ bool __weak bpf_jit_needs_zext(void) { return false; } /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call * skb_copy_bits(), so provide a weak definition of it for NET-less config. */ int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { return -EFAULT; } int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *addr1, void *addr2) { return -ENOTSUPP; } DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); EXPORT_SYMBOL(bpf_stats_enabled_key); /* All definitions of tracepoints related to BPF. */ #define CREATE_TRACE_POINTS #include EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);