/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; extern struct cpumask __cpu_dying_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) extern atomic_t __num_online_cpus; extern cpumask_t cpus_booted_once_mask; static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static __always_inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_first_and(src1p, src2p); } static inline int cpumask_any_distribute(const struct cpumask *srcp) { return cpumask_first(srcp); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_first_zero - get the first unset cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if all cpus are set. */ static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) { return find_first_zero_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ static inline unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int __pure cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int __pure cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int __pure cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); int cpumask_any_distribute(const struct cpumask *srcp); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static __always_inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static __always_inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static __always_inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } static inline void set_cpu_dying(unsigned int cpu, bool dying) { if (dying) cpumask_set_cpu(cpu, &__cpu_dying_mask); else cpumask_clear_cpu(cpu, &__cpu_dying_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) static inline bool cpu_online(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_online_mask); } static inline bool cpu_possible(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_possible_mask); } static inline bool cpu_present(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_present_mask); } static inline bool cpu_active(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_active_mask); } static inline bool cpu_dying(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_dying_mask); } #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U static inline bool cpu_online(unsigned int cpu) { return cpu == 0; } static inline bool cpu_possible(unsigned int cpu) { return cpu == 0; } static inline bool cpu_present(unsigned int cpu) { return cpu == 0; } static inline bool cpu_active(unsigned int cpu) { return cpu == 0; } static inline bool cpu_dying(unsigned int cpu) { return false; } #endif /* NR_CPUS > 1 */ #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } /** * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as * hex values of cpumask * * @buf: the buffer to copy into * @mask: the cpumask to copy * @off: in the string from which we are copying, we copy to @buf * @count: the maximum number of bytes to print * * The function prints the cpumask into the buffer as hex values of * cpumask; Typically used by bin_attribute to export cpumask bitmask * ABI. * * Returns the length of how many bytes have been copied, excluding * terminating '\0'. */ static inline ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } /** * cpumap_print_list_to_buf - copies the cpumask into the buffer as * comma-separated list of cpus * * Everything is same with the above cpumap_print_bitmask_to_buf() * except the print format. */ static inline ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_list_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */