/* * Copyright (C) 2012 ARM Ltd. * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __ASM_ARM_KVM_VGIC_H #define __ASM_ARM_KVM_VGIC_H #include #include #include #include #include #define VGIC_NR_IRQS_LEGACY 256 #define VGIC_NR_SGIS 16 #define VGIC_NR_PPIS 16 #define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS) #define VGIC_V2_MAX_LRS (1 << 6) #define VGIC_V3_MAX_LRS 16 #define VGIC_MAX_IRQS 1024 /* Sanity checks... */ #if (KVM_MAX_VCPUS > 8) #error Invalid number of CPU interfaces #endif #if (VGIC_NR_IRQS_LEGACY & 31) #error "VGIC_NR_IRQS must be a multiple of 32" #endif #if (VGIC_NR_IRQS_LEGACY > VGIC_MAX_IRQS) #error "VGIC_NR_IRQS must be <= 1024" #endif /* * The GIC distributor registers describing interrupts have two parts: * - 32 per-CPU interrupts (SGI + PPI) * - a bunch of shared interrupts (SPI) */ struct vgic_bitmap { /* * - One UL per VCPU for private interrupts (assumes UL is at * least 32 bits) * - As many UL as necessary for shared interrupts. * * The private interrupts are accessed via the "private" * field, one UL per vcpu (the state for vcpu n is in * private[n]). The shared interrupts are accessed via the * "shared" pointer (IRQn state is at bit n-32 in the bitmap). */ unsigned long *private; unsigned long *shared; }; struct vgic_bytemap { /* * - 8 u32 per VCPU for private interrupts * - As many u32 as necessary for shared interrupts. * * The private interrupts are accessed via the "private" * field, (the state for vcpu n is in private[n*8] to * private[n*8 + 7]). The shared interrupts are accessed via * the "shared" pointer (IRQn state is at byte (n-32)%4 of the * shared[(n-32)/4] word). */ u32 *private; u32 *shared; }; struct kvm_vcpu; enum vgic_type { VGIC_V2, /* Good ol' GICv2 */ VGIC_V3, /* New fancy GICv3 */ }; #define LR_STATE_PENDING (1 << 0) #define LR_STATE_ACTIVE (1 << 1) #define LR_STATE_MASK (3 << 0) #define LR_EOI_INT (1 << 2) struct vgic_lr { u16 irq; u8 source; u8 state; }; struct vgic_vmcr { u32 ctlr; u32 abpr; u32 bpr; u32 pmr; }; struct vgic_ops { struct vgic_lr (*get_lr)(const struct kvm_vcpu *, int); void (*set_lr)(struct kvm_vcpu *, int, struct vgic_lr); void (*sync_lr_elrsr)(struct kvm_vcpu *, int, struct vgic_lr); u64 (*get_elrsr)(const struct kvm_vcpu *vcpu); u64 (*get_eisr)(const struct kvm_vcpu *vcpu); u32 (*get_interrupt_status)(const struct kvm_vcpu *vcpu); void (*enable_underflow)(struct kvm_vcpu *vcpu); void (*disable_underflow)(struct kvm_vcpu *vcpu); void (*get_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); void (*set_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); void (*enable)(struct kvm_vcpu *vcpu); }; struct vgic_params { /* vgic type */ enum vgic_type type; /* Physical address of vgic virtual cpu interface */ phys_addr_t vcpu_base; /* Number of list registers */ u32 nr_lr; /* Interrupt number */ unsigned int maint_irq; /* Virtual control interface base address */ void __iomem *vctrl_base; }; struct vgic_dist { #ifdef CONFIG_KVM_ARM_VGIC spinlock_t lock; bool in_kernel; bool ready; int nr_cpus; int nr_irqs; /* Virtual control interface mapping */ void __iomem *vctrl_base; /* Distributor and vcpu interface mapping in the guest */ phys_addr_t vgic_dist_base; phys_addr_t vgic_cpu_base; /* Distributor enabled */ u32 enabled; /* Interrupt enabled (one bit per IRQ) */ struct vgic_bitmap irq_enabled; /* Level-triggered interrupt external input is asserted */ struct vgic_bitmap irq_level; /* * Interrupt state is pending on the distributor */ struct vgic_bitmap irq_pending; /* * Tracks writes to GICD_ISPENDRn and GICD_ICPENDRn for level-triggered * interrupts. Essentially holds the state of the flip-flop in * Figure 4-10 on page 4-101 in ARM IHI 0048B.b. * Once set, it is only cleared for level-triggered interrupts on * guest ACKs (when we queue it) or writes to GICD_ICPENDRn. */ struct vgic_bitmap irq_soft_pend; /* Level-triggered interrupt queued on VCPU interface */ struct vgic_bitmap irq_queued; /* Interrupt priority. Not used yet. */ struct vgic_bytemap irq_priority; /* Level/edge triggered */ struct vgic_bitmap irq_cfg; /* * Source CPU per SGI and target CPU: * * Each byte represent a SGI observable on a VCPU, each bit of * this byte indicating if the corresponding VCPU has * generated this interrupt. This is a GICv2 feature only. * * For VCPUn (n < 8), irq_sgi_sources[n*16] to [n*16 + 15] are * the SGIs observable on VCPUn. */ u8 *irq_sgi_sources; /* * Target CPU for each SPI: * * Array of available SPI, each byte indicating the target * VCPU for SPI. IRQn (n >=32) is at irq_spi_cpu[n-32]. */ u8 *irq_spi_cpu; /* * Reverse lookup of irq_spi_cpu for faster compute pending: * * Array of bitmaps, one per VCPU, describing if IRQn is * routed to a particular VCPU. */ struct vgic_bitmap *irq_spi_target; /* Bitmap indicating which CPU has something pending */ unsigned long *irq_pending_on_cpu; #endif }; struct vgic_v2_cpu_if { u32 vgic_hcr; u32 vgic_vmcr; u32 vgic_misr; /* Saved only */ u64 vgic_eisr; /* Saved only */ u64 vgic_elrsr; /* Saved only */ u32 vgic_apr; u32 vgic_lr[VGIC_V2_MAX_LRS]; }; struct vgic_v3_cpu_if { #ifdef CONFIG_ARM_GIC_V3 u32 vgic_hcr; u32 vgic_vmcr; u32 vgic_misr; /* Saved only */ u32 vgic_eisr; /* Saved only */ u32 vgic_elrsr; /* Saved only */ u32 vgic_ap0r[4]; u32 vgic_ap1r[4]; u64 vgic_lr[VGIC_V3_MAX_LRS]; #endif }; struct vgic_cpu { #ifdef CONFIG_KVM_ARM_VGIC /* per IRQ to LR mapping */ u8 *vgic_irq_lr_map; /* Pending interrupts on this VCPU */ DECLARE_BITMAP( pending_percpu, VGIC_NR_PRIVATE_IRQS); unsigned long *pending_shared; /* Bitmap of used/free list registers */ DECLARE_BITMAP( lr_used, VGIC_V2_MAX_LRS); /* Number of list registers on this CPU */ int nr_lr; /* CPU vif control registers for world switch */ union { struct vgic_v2_cpu_if vgic_v2; struct vgic_v3_cpu_if vgic_v3; }; #endif }; #define LR_EMPTY 0xff #define INT_STATUS_EOI (1 << 0) #define INT_STATUS_UNDERFLOW (1 << 1) struct kvm; struct kvm_vcpu; struct kvm_run; struct kvm_exit_mmio; #ifdef CONFIG_KVM_ARM_VGIC int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write); int kvm_vgic_hyp_init(void); int kvm_vgic_map_resources(struct kvm *kvm); int kvm_vgic_create(struct kvm *kvm); void kvm_vgic_destroy(struct kvm *kvm); void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu); void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu); void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu); int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level); int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu); bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio); #define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel)) #define vgic_ready(k) ((k)->arch.vgic.ready) int vgic_v2_probe(struct device_node *vgic_node, const struct vgic_ops **ops, const struct vgic_params **params); #ifdef CONFIG_ARM_GIC_V3 int vgic_v3_probe(struct device_node *vgic_node, const struct vgic_ops **ops, const struct vgic_params **params); #else static inline int vgic_v3_probe(struct device_node *vgic_node, const struct vgic_ops **ops, const struct vgic_params **params) { return -ENODEV; } #endif #else static inline int kvm_vgic_hyp_init(void) { return 0; } static inline int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr) { return 0; } static inline int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { return -ENXIO; } static inline int kvm_vgic_map_resources(struct kvm *kvm) { return 0; } static inline int kvm_vgic_create(struct kvm *kvm) { return 0; } static inline void kvm_vgic_destroy(struct kvm *kvm) { } static inline void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) { } static inline int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) { return 0; } static inline void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) {} static inline void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) {} static inline int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { return 0; } static inline int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) { return 0; } static inline bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio) { return false; } static inline int irqchip_in_kernel(struct kvm *kvm) { return 0; } static inline bool vgic_ready(struct kvm *kvm) { return true; } #endif #endif