/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_cksum.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_dinode.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" /* * Physical superblock buffer manipulations. Shared with libxfs in userspace. */ static const struct { short offset; short type; /* 0 = integer * 1 = binary / string (no translation) */ } xfs_sb_info[] = { { offsetof(xfs_sb_t, sb_magicnum), 0 }, { offsetof(xfs_sb_t, sb_blocksize), 0 }, { offsetof(xfs_sb_t, sb_dblocks), 0 }, { offsetof(xfs_sb_t, sb_rblocks), 0 }, { offsetof(xfs_sb_t, sb_rextents), 0 }, { offsetof(xfs_sb_t, sb_uuid), 1 }, { offsetof(xfs_sb_t, sb_logstart), 0 }, { offsetof(xfs_sb_t, sb_rootino), 0 }, { offsetof(xfs_sb_t, sb_rbmino), 0 }, { offsetof(xfs_sb_t, sb_rsumino), 0 }, { offsetof(xfs_sb_t, sb_rextsize), 0 }, { offsetof(xfs_sb_t, sb_agblocks), 0 }, { offsetof(xfs_sb_t, sb_agcount), 0 }, { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, { offsetof(xfs_sb_t, sb_logblocks), 0 }, { offsetof(xfs_sb_t, sb_versionnum), 0 }, { offsetof(xfs_sb_t, sb_sectsize), 0 }, { offsetof(xfs_sb_t, sb_inodesize), 0 }, { offsetof(xfs_sb_t, sb_inopblock), 0 }, { offsetof(xfs_sb_t, sb_fname[0]), 1 }, { offsetof(xfs_sb_t, sb_blocklog), 0 }, { offsetof(xfs_sb_t, sb_sectlog), 0 }, { offsetof(xfs_sb_t, sb_inodelog), 0 }, { offsetof(xfs_sb_t, sb_inopblog), 0 }, { offsetof(xfs_sb_t, sb_agblklog), 0 }, { offsetof(xfs_sb_t, sb_rextslog), 0 }, { offsetof(xfs_sb_t, sb_inprogress), 0 }, { offsetof(xfs_sb_t, sb_imax_pct), 0 }, { offsetof(xfs_sb_t, sb_icount), 0 }, { offsetof(xfs_sb_t, sb_ifree), 0 }, { offsetof(xfs_sb_t, sb_fdblocks), 0 }, { offsetof(xfs_sb_t, sb_frextents), 0 }, { offsetof(xfs_sb_t, sb_uquotino), 0 }, { offsetof(xfs_sb_t, sb_gquotino), 0 }, { offsetof(xfs_sb_t, sb_qflags), 0 }, { offsetof(xfs_sb_t, sb_flags), 0 }, { offsetof(xfs_sb_t, sb_shared_vn), 0 }, { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, { offsetof(xfs_sb_t, sb_unit), 0 }, { offsetof(xfs_sb_t, sb_width), 0 }, { offsetof(xfs_sb_t, sb_dirblklog), 0 }, { offsetof(xfs_sb_t, sb_logsectlog), 0 }, { offsetof(xfs_sb_t, sb_logsectsize), 0 }, { offsetof(xfs_sb_t, sb_logsunit), 0 }, { offsetof(xfs_sb_t, sb_features2), 0 }, { offsetof(xfs_sb_t, sb_bad_features2), 0 }, { offsetof(xfs_sb_t, sb_features_compat), 0 }, { offsetof(xfs_sb_t, sb_features_ro_compat), 0 }, { offsetof(xfs_sb_t, sb_features_incompat), 0 }, { offsetof(xfs_sb_t, sb_features_log_incompat), 0 }, { offsetof(xfs_sb_t, sb_crc), 0 }, { offsetof(xfs_sb_t, sb_pad), 0 }, { offsetof(xfs_sb_t, sb_pquotino), 0 }, { offsetof(xfs_sb_t, sb_lsn), 0 }, { sizeof(xfs_sb_t), 0 } }; /* * Reference counting access wrappers to the perag structures. * Because we never free per-ag structures, the only thing we * have to protect against changes is the tree structure itself. */ struct xfs_perag * xfs_perag_get( struct xfs_mount *mp, xfs_agnumber_t agno) { struct xfs_perag *pag; int ref = 0; rcu_read_lock(); pag = radix_tree_lookup(&mp->m_perag_tree, agno); if (pag) { ASSERT(atomic_read(&pag->pag_ref) >= 0); ref = atomic_inc_return(&pag->pag_ref); } rcu_read_unlock(); trace_xfs_perag_get(mp, agno, ref, _RET_IP_); return pag; } /* * search from @first to find the next perag with the given tag set. */ struct xfs_perag * xfs_perag_get_tag( struct xfs_mount *mp, xfs_agnumber_t first, int tag) { struct xfs_perag *pag; int found; int ref; rcu_read_lock(); found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, (void **)&pag, first, 1, tag); if (found <= 0) { rcu_read_unlock(); return NULL; } ref = atomic_inc_return(&pag->pag_ref); rcu_read_unlock(); trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); return pag; } void xfs_perag_put( struct xfs_perag *pag) { int ref; ASSERT(atomic_read(&pag->pag_ref) > 0); ref = atomic_dec_return(&pag->pag_ref); trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); } /* * Check the validity of the SB found. */ STATIC int xfs_mount_validate_sb( xfs_mount_t *mp, xfs_sb_t *sbp, bool check_inprogress, bool check_version) { /* * If the log device and data device have the * same device number, the log is internal. * Consequently, the sb_logstart should be non-zero. If * we have a zero sb_logstart in this case, we may be trying to mount * a volume filesystem in a non-volume manner. */ if (sbp->sb_magicnum != XFS_SB_MAGIC) { xfs_warn(mp, "bad magic number"); return EWRONGFS; } if (!xfs_sb_good_version(sbp)) { xfs_warn(mp, "bad version"); return EWRONGFS; } /* * Version 5 superblock feature mask validation. Reject combinations the * kernel cannot support up front before checking anything else. For * write validation, we don't need to check feature masks. */ if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) { if (xfs_sb_has_compat_feature(sbp, XFS_SB_FEAT_COMPAT_UNKNOWN)) { xfs_warn(mp, "Superblock has unknown compatible features (0x%x) enabled.\n" "Using a more recent kernel is recommended.", (sbp->sb_features_compat & XFS_SB_FEAT_COMPAT_UNKNOWN)); } if (xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { xfs_alert(mp, "Superblock has unknown read-only compatible features (0x%x) enabled.", (sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { xfs_warn(mp, "Attempted to mount read-only compatible filesystem read-write.\n" "Filesystem can only be safely mounted read only."); return EINVAL; } } if (xfs_sb_has_incompat_feature(sbp, XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { xfs_warn(mp, "Superblock has unknown incompatible features (0x%x) enabled.\n" "Filesystem can not be safely mounted by this kernel.", (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_UNKNOWN)); return EINVAL; } } if (xfs_sb_version_has_pquotino(sbp)) { if (sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) { xfs_notice(mp, "Version 5 of Super block has XFS_OQUOTA bits."); return EFSCORRUPTED; } } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { xfs_notice(mp, "Superblock earlier than Version 5 has XFS_[PQ]UOTA_{ENFD|CHKD} bits."); return EFSCORRUPTED; } if (unlikely( sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { xfs_warn(mp, "filesystem is marked as having an external log; " "specify logdev on the mount command line."); return EINVAL; } if (unlikely( sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { xfs_warn(mp, "filesystem is marked as having an internal log; " "do not specify logdev on the mount command line."); return EINVAL; } /* * More sanity checking. Most of these were stolen directly from * xfs_repair. */ if (unlikely( sbp->sb_agcount <= 0 || sbp->sb_sectsize < XFS_MIN_SECTORSIZE || sbp->sb_sectsize > XFS_MAX_SECTORSIZE || sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || sbp->sb_sectsize != (1 << sbp->sb_sectlog) || sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || sbp->sb_blocksize != (1 << sbp->sb_blocklog) || sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || sbp->sb_inodelog < XFS_DINODE_MIN_LOG || sbp->sb_inodelog > XFS_DINODE_MAX_LOG || sbp->sb_inodesize != (1 << sbp->sb_inodelog) || sbp->sb_inopblock != howmany(sbp->sb_blocksize,sbp->sb_inodesize) || (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || sbp->sb_dblocks == 0 || sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp) || sbp->sb_shared_vn != 0)) { xfs_notice(mp, "SB sanity check failed"); return EFSCORRUPTED; } /* * Until this is fixed only page-sized or smaller data blocks work. */ if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { xfs_warn(mp, "File system with blocksize %d bytes. " "Only pagesize (%ld) or less will currently work.", sbp->sb_blocksize, PAGE_SIZE); return ENOSYS; } /* * Currently only very few inode sizes are supported. */ switch (sbp->sb_inodesize) { case 256: case 512: case 1024: case 2048: break; default: xfs_warn(mp, "inode size of %d bytes not supported", sbp->sb_inodesize); return ENOSYS; } if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { xfs_warn(mp, "file system too large to be mounted on this system."); return EFBIG; } if (check_inprogress && sbp->sb_inprogress) { xfs_warn(mp, "Offline file system operation in progress!"); return EFSCORRUPTED; } return 0; } void xfs_sb_quota_from_disk(struct xfs_sb *sbp) { /* * older mkfs doesn't initialize quota inodes to NULLFSINO. This * leads to in-core values having two different values for a quota * inode to be invalid: 0 and NULLFSINO. Change it to a single value * NULLFSINO. * * Note that this change affect only the in-core values. These * values are not written back to disk unless any quota information * is written to the disk. Even in that case, sb_pquotino field is * not written to disk unless the superblock supports pquotino. */ if (sbp->sb_uquotino == 0) sbp->sb_uquotino = NULLFSINO; if (sbp->sb_gquotino == 0) sbp->sb_gquotino = NULLFSINO; if (sbp->sb_pquotino == 0) sbp->sb_pquotino = NULLFSINO; /* * We need to do these manipilations only if we are working * with an older version of on-disk superblock. */ if (xfs_sb_version_has_pquotino(sbp)) return; if (sbp->sb_qflags & XFS_OQUOTA_ENFD) sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; if (sbp->sb_qflags & XFS_OQUOTA_CHKD) sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); if (sbp->sb_qflags & XFS_PQUOTA_ACCT) { /* * In older version of superblock, on-disk superblock only * has sb_gquotino, and in-core superblock has both sb_gquotino * and sb_pquotino. But, only one of them is supported at any * point of time. So, if PQUOTA is set in disk superblock, * copy over sb_gquotino to sb_pquotino. */ sbp->sb_pquotino = sbp->sb_gquotino; sbp->sb_gquotino = NULLFSINO; } } void xfs_sb_from_disk( struct xfs_sb *to, xfs_dsb_t *from) { to->sb_magicnum = be32_to_cpu(from->sb_magicnum); to->sb_blocksize = be32_to_cpu(from->sb_blocksize); to->sb_dblocks = be64_to_cpu(from->sb_dblocks); to->sb_rblocks = be64_to_cpu(from->sb_rblocks); to->sb_rextents = be64_to_cpu(from->sb_rextents); memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); to->sb_logstart = be64_to_cpu(from->sb_logstart); to->sb_rootino = be64_to_cpu(from->sb_rootino); to->sb_rbmino = be64_to_cpu(from->sb_rbmino); to->sb_rsumino = be64_to_cpu(from->sb_rsumino); to->sb_rextsize = be32_to_cpu(from->sb_rextsize); to->sb_agblocks = be32_to_cpu(from->sb_agblocks); to->sb_agcount = be32_to_cpu(from->sb_agcount); to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); to->sb_logblocks = be32_to_cpu(from->sb_logblocks); to->sb_versionnum = be16_to_cpu(from->sb_versionnum); to->sb_sectsize = be16_to_cpu(from->sb_sectsize); to->sb_inodesize = be16_to_cpu(from->sb_inodesize); to->sb_inopblock = be16_to_cpu(from->sb_inopblock); memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); to->sb_blocklog = from->sb_blocklog; to->sb_sectlog = from->sb_sectlog; to->sb_inodelog = from->sb_inodelog; to->sb_inopblog = from->sb_inopblog; to->sb_agblklog = from->sb_agblklog; to->sb_rextslog = from->sb_rextslog; to->sb_inprogress = from->sb_inprogress; to->sb_imax_pct = from->sb_imax_pct; to->sb_icount = be64_to_cpu(from->sb_icount); to->sb_ifree = be64_to_cpu(from->sb_ifree); to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); to->sb_frextents = be64_to_cpu(from->sb_frextents); to->sb_uquotino = be64_to_cpu(from->sb_uquotino); to->sb_gquotino = be64_to_cpu(from->sb_gquotino); to->sb_qflags = be16_to_cpu(from->sb_qflags); to->sb_flags = from->sb_flags; to->sb_shared_vn = from->sb_shared_vn; to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); to->sb_unit = be32_to_cpu(from->sb_unit); to->sb_width = be32_to_cpu(from->sb_width); to->sb_dirblklog = from->sb_dirblklog; to->sb_logsectlog = from->sb_logsectlog; to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); to->sb_logsunit = be32_to_cpu(from->sb_logsunit); to->sb_features2 = be32_to_cpu(from->sb_features2); to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); to->sb_features_compat = be32_to_cpu(from->sb_features_compat); to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); to->sb_features_log_incompat = be32_to_cpu(from->sb_features_log_incompat); to->sb_pad = 0; to->sb_pquotino = be64_to_cpu(from->sb_pquotino); to->sb_lsn = be64_to_cpu(from->sb_lsn); } static inline void xfs_sb_quota_to_disk( xfs_dsb_t *to, xfs_sb_t *from, __int64_t *fields) { __uint16_t qflags = from->sb_qflags; /* * We need to do these manipilations only if we are working * with an older version of on-disk superblock. */ if (xfs_sb_version_has_pquotino(from)) return; if (*fields & XFS_SB_QFLAGS) { /* * The in-core version of sb_qflags do not have * XFS_OQUOTA_* flags, whereas the on-disk version * does. So, convert incore XFS_{PG}QUOTA_* flags * to on-disk XFS_OQUOTA_* flags. */ qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); if (from->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) qflags |= XFS_OQUOTA_ENFD; if (from->sb_qflags & (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) qflags |= XFS_OQUOTA_CHKD; to->sb_qflags = cpu_to_be16(qflags); *fields &= ~XFS_SB_QFLAGS; } /* * GQUOTINO and PQUOTINO cannot be used together in versions * of superblock that do not have pquotino. from->sb_flags * tells us which quota is active and should be copied to * disk. */ if ((*fields & XFS_SB_GQUOTINO) && (from->sb_qflags & XFS_GQUOTA_ACCT)) to->sb_gquotino = cpu_to_be64(from->sb_gquotino); else if ((*fields & XFS_SB_PQUOTINO) && (from->sb_qflags & XFS_PQUOTA_ACCT)) to->sb_gquotino = cpu_to_be64(from->sb_pquotino); *fields &= ~(XFS_SB_PQUOTINO | XFS_SB_GQUOTINO); } /* * Copy in core superblock to ondisk one. * * The fields argument is mask of superblock fields to copy. */ void xfs_sb_to_disk( xfs_dsb_t *to, xfs_sb_t *from, __int64_t fields) { xfs_caddr_t to_ptr = (xfs_caddr_t)to; xfs_caddr_t from_ptr = (xfs_caddr_t)from; xfs_sb_field_t f; int first; int size; ASSERT(fields); if (!fields) return; xfs_sb_quota_to_disk(to, from, &fields); while (fields) { f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); first = xfs_sb_info[f].offset; size = xfs_sb_info[f + 1].offset - first; ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); if (size == 1 || xfs_sb_info[f].type == 1) { memcpy(to_ptr + first, from_ptr + first, size); } else { switch (size) { case 2: *(__be16 *)(to_ptr + first) = cpu_to_be16(*(__u16 *)(from_ptr + first)); break; case 4: *(__be32 *)(to_ptr + first) = cpu_to_be32(*(__u32 *)(from_ptr + first)); break; case 8: *(__be64 *)(to_ptr + first) = cpu_to_be64(*(__u64 *)(from_ptr + first)); break; default: ASSERT(0); } } fields &= ~(1LL << f); } } static int xfs_sb_verify( struct xfs_buf *bp, bool check_version) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_sb sb; xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp)); /* * Only check the in progress field for the primary superblock as * mkfs.xfs doesn't clear it from secondary superblocks. */ return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR, check_version); } /* * If the superblock has the CRC feature bit set or the CRC field is non-null, * check that the CRC is valid. We check the CRC field is non-null because a * single bit error could clear the feature bit and unused parts of the * superblock are supposed to be zero. Hence a non-null crc field indicates that * we've potentially lost a feature bit and we should check it anyway. * * However, past bugs (i.e. in growfs) left non-zeroed regions beyond the * last field in V4 secondary superblocks. So for secondary superblocks, * we are more forgiving, and ignore CRC failures if the primary doesn't * indicate that the fs version is V5. */ static void xfs_sb_read_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); int error; /* * open code the version check to avoid needing to convert the entire * superblock from disk order just to check the version number */ if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == XFS_SB_VERSION_5) || dsb->sb_crc != 0)) { if (!xfs_buf_verify_cksum(bp, XFS_SB_CRC_OFF)) { /* Only fail bad secondaries on a known V5 filesystem */ if (bp->b_bn == XFS_SB_DADDR || xfs_sb_version_hascrc(&mp->m_sb)) { error = EFSBADCRC; goto out_error; } } } error = xfs_sb_verify(bp, true); out_error: if (error) { xfs_buf_ioerror(bp, error); if (error == EFSCORRUPTED || error == EFSBADCRC) xfs_verifier_error(bp); } } /* * We may be probed for a filesystem match, so we may not want to emit * messages when the superblock buffer is not actually an XFS superblock. * If we find an XFS superblock, then run a normal, noisy mount because we are * really going to mount it and want to know about errors. */ static void xfs_sb_quiet_read_verify( struct xfs_buf *bp) { struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { /* XFS filesystem, verify noisily! */ xfs_sb_read_verify(bp); return; } /* quietly fail */ xfs_buf_ioerror(bp, EWRONGFS); } static void xfs_sb_write_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_buf_log_item *bip = bp->b_fspriv; int error; error = xfs_sb_verify(bp, false); if (error) { xfs_buf_ioerror(bp, error); xfs_verifier_error(bp); return; } if (!xfs_sb_version_hascrc(&mp->m_sb)) return; if (bip) XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_SB_CRC_OFF); } const struct xfs_buf_ops xfs_sb_buf_ops = { .verify_read = xfs_sb_read_verify, .verify_write = xfs_sb_write_verify, }; const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { .verify_read = xfs_sb_quiet_read_verify, .verify_write = xfs_sb_write_verify, }; /* * xfs_mount_common * * Mount initialization code establishing various mount * fields from the superblock associated with the given * mount structure */ void xfs_sb_mount_common( struct xfs_mount *mp, struct xfs_sb *sbp) { mp->m_agfrotor = mp->m_agirotor = 0; spin_lock_init(&mp->m_agirotor_lock); mp->m_maxagi = mp->m_sb.sb_agcount; mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; mp->m_blockmask = sbp->sb_blocksize - 1; mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; mp->m_blockwmask = mp->m_blockwsize - 1; mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; mp->m_bsize = XFS_FSB_TO_BB(mp, 1); mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, sbp->sb_inopblock); mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; } /* * xfs_initialize_perag_data * * Read in each per-ag structure so we can count up the number of * allocated inodes, free inodes and used filesystem blocks as this * information is no longer persistent in the superblock. Once we have * this information, write it into the in-core superblock structure. */ int xfs_initialize_perag_data( struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index; xfs_perag_t *pag; xfs_sb_t *sbp = &mp->m_sb; uint64_t ifree = 0; uint64_t ialloc = 0; uint64_t bfree = 0; uint64_t bfreelst = 0; uint64_t btree = 0; int error; for (index = 0; index < agcount; index++) { /* * read the agf, then the agi. This gets us * all the information we need and populates the * per-ag structures for us. */ error = xfs_alloc_pagf_init(mp, NULL, index, 0); if (error) return error; error = xfs_ialloc_pagi_init(mp, NULL, index); if (error) return error; pag = xfs_perag_get(mp, index); ifree += pag->pagi_freecount; ialloc += pag->pagi_count; bfree += pag->pagf_freeblks; bfreelst += pag->pagf_flcount; btree += pag->pagf_btreeblks; xfs_perag_put(pag); } /* * Overwrite incore superblock counters with just-read data */ spin_lock(&mp->m_sb_lock); sbp->sb_ifree = ifree; sbp->sb_icount = ialloc; sbp->sb_fdblocks = bfree + bfreelst + btree; spin_unlock(&mp->m_sb_lock); /* Fixup the per-cpu counters as well. */ xfs_icsb_reinit_counters(mp); return 0; } /* * xfs_mod_sb() can be used to copy arbitrary changes to the * in-core superblock into the superblock buffer to be logged. * It does not provide the higher level of locking that is * needed to protect the in-core superblock from concurrent * access. */ void xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) { xfs_buf_t *bp; int first; int last; xfs_mount_t *mp; xfs_sb_field_t f; ASSERT(fields); if (!fields) return; mp = tp->t_mountp; bp = xfs_trans_getsb(tp, mp, 0); first = sizeof(xfs_sb_t); last = 0; /* translate/copy */ xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); /* find modified range */ f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); ASSERT((1LL << f) & XFS_SB_MOD_BITS); last = xfs_sb_info[f + 1].offset - 1; f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); ASSERT((1LL << f) & XFS_SB_MOD_BITS); first = xfs_sb_info[f].offset; xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); xfs_trans_log_buf(tp, bp, first, last); }