// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_inode_item.h" #include "xfs_extfree_item.h" #include "xfs_trans_priv.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_quota.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_bmap_btree.h" #include "xfs_error.h" #include "xfs_dir2.h" #include "xfs_rmap_item.h" #include "xfs_buf_item.h" #include "xfs_refcount_item.h" #include "xfs_bmap_item.h" #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) STATIC int xlog_find_zeroed( struct xlog *, xfs_daddr_t *); STATIC int xlog_clear_stale_blocks( struct xlog *, xfs_lsn_t); #if defined(DEBUG) STATIC void xlog_recover_check_summary( struct xlog *); #else #define xlog_recover_check_summary(log) #endif STATIC int xlog_do_recovery_pass( struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); /* * This structure is used during recovery to record the buf log items which * have been canceled and should not be replayed. */ struct xfs_buf_cancel { xfs_daddr_t bc_blkno; uint bc_len; int bc_refcount; struct list_head bc_list; }; /* * Sector aligned buffer routines for buffer create/read/write/access */ /* * Verify the log-relative block number and length in basic blocks are valid for * an operation involving the given XFS log buffer. Returns true if the fields * are valid, false otherwise. */ static inline bool xlog_verify_bno( struct xlog *log, xfs_daddr_t blk_no, int bbcount) { if (blk_no < 0 || blk_no >= log->l_logBBsize) return false; if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) return false; return true; } /* * Allocate a buffer to hold log data. The buffer needs to be able to map to * a range of nbblks basic blocks at any valid offset within the log. */ static char * xlog_alloc_buffer( struct xlog *log, int nbblks) { int align_mask = xfs_buftarg_dma_alignment(log->l_targ); /* * Pass log block 0 since we don't have an addr yet, buffer will be * verified on read. */ if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", nbblks); return NULL; } /* * We do log I/O in units of log sectors (a power-of-2 multiple of the * basic block size), so we round up the requested size to accommodate * the basic blocks required for complete log sectors. * * In addition, the buffer may be used for a non-sector-aligned block * offset, in which case an I/O of the requested size could extend * beyond the end of the buffer. If the requested size is only 1 basic * block it will never straddle a sector boundary, so this won't be an * issue. Nor will this be a problem if the log I/O is done in basic * blocks (sector size 1). But otherwise we extend the buffer by one * extra log sector to ensure there's space to accommodate this * possibility. */ if (nbblks > 1 && log->l_sectBBsize > 1) nbblks += log->l_sectBBsize; nbblks = round_up(nbblks, log->l_sectBBsize); return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); } /* * Return the address of the start of the given block number's data * in a log buffer. The buffer covers a log sector-aligned region. */ static inline unsigned int xlog_align( struct xlog *log, xfs_daddr_t blk_no) { return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); } static int xlog_do_io( struct xlog *log, xfs_daddr_t blk_no, unsigned int nbblks, char *data, unsigned int op) { int error; if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { xfs_warn(log->l_mp, "Invalid log block/length (0x%llx, 0x%x) for buffer", blk_no, nbblks); return -EFSCORRUPTED; } blk_no = round_down(blk_no, log->l_sectBBsize); nbblks = round_up(nbblks, log->l_sectBBsize); ASSERT(nbblks > 0); error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, BBTOB(nbblks), data, op); if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { xfs_alert(log->l_mp, "log recovery %s I/O error at daddr 0x%llx len %d error %d", op == REQ_OP_WRITE ? "write" : "read", blk_no, nbblks, error); } return error; } STATIC int xlog_bread_noalign( struct xlog *log, xfs_daddr_t blk_no, int nbblks, char *data) { return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); } STATIC int xlog_bread( struct xlog *log, xfs_daddr_t blk_no, int nbblks, char *data, char **offset) { int error; error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); if (!error) *offset = data + xlog_align(log, blk_no); return error; } STATIC int xlog_bwrite( struct xlog *log, xfs_daddr_t blk_no, int nbblks, char *data) { return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); } #ifdef DEBUG /* * dump debug superblock and log record information */ STATIC void xlog_header_check_dump( xfs_mount_t *mp, xlog_rec_header_t *head) { xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", __func__, &mp->m_sb.sb_uuid, XLOG_FMT); xfs_debug(mp, " log : uuid = %pU, fmt = %d", &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); } #else #define xlog_header_check_dump(mp, head) #endif /* * check log record header for recovery */ STATIC int xlog_header_check_recover( xfs_mount_t *mp, xlog_rec_header_t *head) { ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); /* * IRIX doesn't write the h_fmt field and leaves it zeroed * (XLOG_FMT_UNKNOWN). This stops us from trying to recover * a dirty log created in IRIX. */ if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { xfs_warn(mp, "dirty log written in incompatible format - can't recover"); xlog_header_check_dump(mp, head); return -EFSCORRUPTED; } if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { xfs_warn(mp, "dirty log entry has mismatched uuid - can't recover"); xlog_header_check_dump(mp, head); return -EFSCORRUPTED; } return 0; } /* * read the head block of the log and check the header */ STATIC int xlog_header_check_mount( xfs_mount_t *mp, xlog_rec_header_t *head) { ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); if (uuid_is_null(&head->h_fs_uuid)) { /* * IRIX doesn't write the h_fs_uuid or h_fmt fields. If * h_fs_uuid is null, we assume this log was last mounted * by IRIX and continue. */ xfs_warn(mp, "null uuid in log - IRIX style log"); } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { xfs_warn(mp, "log has mismatched uuid - can't recover"); xlog_header_check_dump(mp, head); return -EFSCORRUPTED; } return 0; } STATIC void xlog_recover_iodone( struct xfs_buf *bp) { if (bp->b_error) { /* * We're not going to bother about retrying * this during recovery. One strike! */ if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { xfs_buf_ioerror_alert(bp, __this_address); xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); } } /* * On v5 supers, a bli could be attached to update the metadata LSN. * Clean it up. */ if (bp->b_log_item) xfs_buf_item_relse(bp); ASSERT(bp->b_log_item == NULL); bp->b_iodone = NULL; xfs_buf_ioend(bp); } /* * This routine finds (to an approximation) the first block in the physical * log which contains the given cycle. It uses a binary search algorithm. * Note that the algorithm can not be perfect because the disk will not * necessarily be perfect. */ STATIC int xlog_find_cycle_start( struct xlog *log, char *buffer, xfs_daddr_t first_blk, xfs_daddr_t *last_blk, uint cycle) { char *offset; xfs_daddr_t mid_blk; xfs_daddr_t end_blk; uint mid_cycle; int error; end_blk = *last_blk; mid_blk = BLK_AVG(first_blk, end_blk); while (mid_blk != first_blk && mid_blk != end_blk) { error = xlog_bread(log, mid_blk, 1, buffer, &offset); if (error) return error; mid_cycle = xlog_get_cycle(offset); if (mid_cycle == cycle) end_blk = mid_blk; /* last_half_cycle == mid_cycle */ else first_blk = mid_blk; /* first_half_cycle == mid_cycle */ mid_blk = BLK_AVG(first_blk, end_blk); } ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || (mid_blk == end_blk && mid_blk-1 == first_blk)); *last_blk = end_blk; return 0; } /* * Check that a range of blocks does not contain stop_on_cycle_no. * Fill in *new_blk with the block offset where such a block is * found, or with -1 (an invalid block number) if there is no such * block in the range. The scan needs to occur from front to back * and the pointer into the region must be updated since a later * routine will need to perform another test. */ STATIC int xlog_find_verify_cycle( struct xlog *log, xfs_daddr_t start_blk, int nbblks, uint stop_on_cycle_no, xfs_daddr_t *new_blk) { xfs_daddr_t i, j; uint cycle; char *buffer; xfs_daddr_t bufblks; char *buf = NULL; int error = 0; /* * Greedily allocate a buffer big enough to handle the full * range of basic blocks we'll be examining. If that fails, * try a smaller size. We need to be able to read at least * a log sector, or we're out of luck. */ bufblks = 1 << ffs(nbblks); while (bufblks > log->l_logBBsize) bufblks >>= 1; while (!(buffer = xlog_alloc_buffer(log, bufblks))) { bufblks >>= 1; if (bufblks < log->l_sectBBsize) return -ENOMEM; } for (i = start_blk; i < start_blk + nbblks; i += bufblks) { int bcount; bcount = min(bufblks, (start_blk + nbblks - i)); error = xlog_bread(log, i, bcount, buffer, &buf); if (error) goto out; for (j = 0; j < bcount; j++) { cycle = xlog_get_cycle(buf); if (cycle == stop_on_cycle_no) { *new_blk = i+j; goto out; } buf += BBSIZE; } } *new_blk = -1; out: kmem_free(buffer); return error; } /* * Potentially backup over partial log record write. * * In the typical case, last_blk is the number of the block directly after * a good log record. Therefore, we subtract one to get the block number * of the last block in the given buffer. extra_bblks contains the number * of blocks we would have read on a previous read. This happens when the * last log record is split over the end of the physical log. * * extra_bblks is the number of blocks potentially verified on a previous * call to this routine. */ STATIC int xlog_find_verify_log_record( struct xlog *log, xfs_daddr_t start_blk, xfs_daddr_t *last_blk, int extra_bblks) { xfs_daddr_t i; char *buffer; char *offset = NULL; xlog_rec_header_t *head = NULL; int error = 0; int smallmem = 0; int num_blks = *last_blk - start_blk; int xhdrs; ASSERT(start_blk != 0 || *last_blk != start_blk); buffer = xlog_alloc_buffer(log, num_blks); if (!buffer) { buffer = xlog_alloc_buffer(log, 1); if (!buffer) return -ENOMEM; smallmem = 1; } else { error = xlog_bread(log, start_blk, num_blks, buffer, &offset); if (error) goto out; offset += ((num_blks - 1) << BBSHIFT); } for (i = (*last_blk) - 1; i >= 0; i--) { if (i < start_blk) { /* valid log record not found */ xfs_warn(log->l_mp, "Log inconsistent (didn't find previous header)"); ASSERT(0); error = -EFSCORRUPTED; goto out; } if (smallmem) { error = xlog_bread(log, i, 1, buffer, &offset); if (error) goto out; } head = (xlog_rec_header_t *)offset; if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) break; if (!smallmem) offset -= BBSIZE; } /* * We hit the beginning of the physical log & still no header. Return * to caller. If caller can handle a return of -1, then this routine * will be called again for the end of the physical log. */ if (i == -1) { error = 1; goto out; } /* * We have the final block of the good log (the first block * of the log record _before_ the head. So we check the uuid. */ if ((error = xlog_header_check_mount(log->l_mp, head))) goto out; /* * We may have found a log record header before we expected one. * last_blk will be the 1st block # with a given cycle #. We may end * up reading an entire log record. In this case, we don't want to * reset last_blk. Only when last_blk points in the middle of a log * record do we update last_blk. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { uint h_size = be32_to_cpu(head->h_size); xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) xhdrs++; } else { xhdrs = 1; } if (*last_blk - i + extra_bblks != BTOBB(be32_to_cpu(head->h_len)) + xhdrs) *last_blk = i; out: kmem_free(buffer); return error; } /* * Head is defined to be the point of the log where the next log write * could go. This means that incomplete LR writes at the end are * eliminated when calculating the head. We aren't guaranteed that previous * LR have complete transactions. We only know that a cycle number of * current cycle number -1 won't be present in the log if we start writing * from our current block number. * * last_blk contains the block number of the first block with a given * cycle number. * * Return: zero if normal, non-zero if error. */ STATIC int xlog_find_head( struct xlog *log, xfs_daddr_t *return_head_blk) { char *buffer; char *offset; xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; int num_scan_bblks; uint first_half_cycle, last_half_cycle; uint stop_on_cycle; int error, log_bbnum = log->l_logBBsize; /* Is the end of the log device zeroed? */ error = xlog_find_zeroed(log, &first_blk); if (error < 0) { xfs_warn(log->l_mp, "empty log check failed"); return error; } if (error == 1) { *return_head_blk = first_blk; /* Is the whole lot zeroed? */ if (!first_blk) { /* Linux XFS shouldn't generate totally zeroed logs - * mkfs etc write a dummy unmount record to a fresh * log so we can store the uuid in there */ xfs_warn(log->l_mp, "totally zeroed log"); } return 0; } first_blk = 0; /* get cycle # of 1st block */ buffer = xlog_alloc_buffer(log, 1); if (!buffer) return -ENOMEM; error = xlog_bread(log, 0, 1, buffer, &offset); if (error) goto out_free_buffer; first_half_cycle = xlog_get_cycle(offset); last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ error = xlog_bread(log, last_blk, 1, buffer, &offset); if (error) goto out_free_buffer; last_half_cycle = xlog_get_cycle(offset); ASSERT(last_half_cycle != 0); /* * If the 1st half cycle number is equal to the last half cycle number, * then the entire log is stamped with the same cycle number. In this * case, head_blk can't be set to zero (which makes sense). The below * math doesn't work out properly with head_blk equal to zero. Instead, * we set it to log_bbnum which is an invalid block number, but this * value makes the math correct. If head_blk doesn't changed through * all the tests below, *head_blk is set to zero at the very end rather * than log_bbnum. In a sense, log_bbnum and zero are the same block * in a circular file. */ if (first_half_cycle == last_half_cycle) { /* * In this case we believe that the entire log should have * cycle number last_half_cycle. We need to scan backwards * from the end verifying that there are no holes still * containing last_half_cycle - 1. If we find such a hole, * then the start of that hole will be the new head. The * simple case looks like * x | x ... | x - 1 | x * Another case that fits this picture would be * x | x + 1 | x ... | x * In this case the head really is somewhere at the end of the * log, as one of the latest writes at the beginning was * incomplete. * One more case is * x | x + 1 | x ... | x - 1 | x * This is really the combination of the above two cases, and * the head has to end up at the start of the x-1 hole at the * end of the log. * * In the 256k log case, we will read from the beginning to the * end of the log and search for cycle numbers equal to x-1. * We don't worry about the x+1 blocks that we encounter, * because we know that they cannot be the head since the log * started with x. */ head_blk = log_bbnum; stop_on_cycle = last_half_cycle - 1; } else { /* * In this case we want to find the first block with cycle * number matching last_half_cycle. We expect the log to be * some variation on * x + 1 ... | x ... | x * The first block with cycle number x (last_half_cycle) will * be where the new head belongs. First we do a binary search * for the first occurrence of last_half_cycle. The binary * search may not be totally accurate, so then we scan back * from there looking for occurrences of last_half_cycle before * us. If that backwards scan wraps around the beginning of * the log, then we look for occurrences of last_half_cycle - 1 * at the end of the log. The cases we're looking for look * like * v binary search stopped here * x + 1 ... | x | x + 1 | x ... | x * ^ but we want to locate this spot * or * <---------> less than scan distance * x + 1 ... | x ... | x - 1 | x * ^ we want to locate this spot */ stop_on_cycle = last_half_cycle; error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, last_half_cycle); if (error) goto out_free_buffer; } /* * Now validate the answer. Scan back some number of maximum possible * blocks and make sure each one has the expected cycle number. The * maximum is determined by the total possible amount of buffering * in the in-core log. The following number can be made tighter if * we actually look at the block size of the filesystem. */ num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); if (head_blk >= num_scan_bblks) { /* * We are guaranteed that the entire check can be performed * in one buffer. */ start_blk = head_blk - num_scan_bblks; if ((error = xlog_find_verify_cycle(log, start_blk, num_scan_bblks, stop_on_cycle, &new_blk))) goto out_free_buffer; if (new_blk != -1) head_blk = new_blk; } else { /* need to read 2 parts of log */ /* * We are going to scan backwards in the log in two parts. * First we scan the physical end of the log. In this part * of the log, we are looking for blocks with cycle number * last_half_cycle - 1. * If we find one, then we know that the log starts there, as * we've found a hole that didn't get written in going around * the end of the physical log. The simple case for this is * x + 1 ... | x ... | x - 1 | x * <---------> less than scan distance * If all of the blocks at the end of the log have cycle number * last_half_cycle, then we check the blocks at the start of * the log looking for occurrences of last_half_cycle. If we * find one, then our current estimate for the location of the * first occurrence of last_half_cycle is wrong and we move * back to the hole we've found. This case looks like * x + 1 ... | x | x + 1 | x ... * ^ binary search stopped here * Another case we need to handle that only occurs in 256k * logs is * x + 1 ... | x ... | x+1 | x ... * ^ binary search stops here * In a 256k log, the scan at the end of the log will see the * x + 1 blocks. We need to skip past those since that is * certainly not the head of the log. By searching for * last_half_cycle-1 we accomplish that. */ ASSERT(head_blk <= INT_MAX && (xfs_daddr_t) num_scan_bblks >= head_blk); start_blk = log_bbnum - (num_scan_bblks - head_blk); if ((error = xlog_find_verify_cycle(log, start_blk, num_scan_bblks - (int)head_blk, (stop_on_cycle - 1), &new_blk))) goto out_free_buffer; if (new_blk != -1) { head_blk = new_blk; goto validate_head; } /* * Scan beginning of log now. The last part of the physical * log is good. This scan needs to verify that it doesn't find * the last_half_cycle. */ start_blk = 0; ASSERT(head_blk <= INT_MAX); if ((error = xlog_find_verify_cycle(log, start_blk, (int)head_blk, stop_on_cycle, &new_blk))) goto out_free_buffer; if (new_blk != -1) head_blk = new_blk; } validate_head: /* * Now we need to make sure head_blk is not pointing to a block in * the middle of a log record. */ num_scan_bblks = XLOG_REC_SHIFT(log); if (head_blk >= num_scan_bblks) { start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ /* start ptr at last block ptr before head_blk */ error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); if (error == 1) error = -EIO; if (error) goto out_free_buffer; } else { start_blk = 0; ASSERT(head_blk <= INT_MAX); error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); if (error < 0) goto out_free_buffer; if (error == 1) { /* We hit the beginning of the log during our search */ start_blk = log_bbnum - (num_scan_bblks - head_blk); new_blk = log_bbnum; ASSERT(start_blk <= INT_MAX && (xfs_daddr_t) log_bbnum-start_blk >= 0); ASSERT(head_blk <= INT_MAX); error = xlog_find_verify_log_record(log, start_blk, &new_blk, (int)head_blk); if (error == 1) error = -EIO; if (error) goto out_free_buffer; if (new_blk != log_bbnum) head_blk = new_blk; } else if (error) goto out_free_buffer; } kmem_free(buffer); if (head_blk == log_bbnum) *return_head_blk = 0; else *return_head_blk = head_blk; /* * When returning here, we have a good block number. Bad block * means that during a previous crash, we didn't have a clean break * from cycle number N to cycle number N-1. In this case, we need * to find the first block with cycle number N-1. */ return 0; out_free_buffer: kmem_free(buffer); if (error) xfs_warn(log->l_mp, "failed to find log head"); return error; } /* * Seek backwards in the log for log record headers. * * Given a starting log block, walk backwards until we find the provided number * of records or hit the provided tail block. The return value is the number of * records encountered or a negative error code. The log block and buffer * pointer of the last record seen are returned in rblk and rhead respectively. */ STATIC int xlog_rseek_logrec_hdr( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk, int count, char *buffer, xfs_daddr_t *rblk, struct xlog_rec_header **rhead, bool *wrapped) { int i; int error; int found = 0; char *offset = NULL; xfs_daddr_t end_blk; *wrapped = false; /* * Walk backwards from the head block until we hit the tail or the first * block in the log. */ end_blk = head_blk > tail_blk ? tail_blk : 0; for (i = (int) head_blk - 1; i >= end_blk; i--) { error = xlog_bread(log, i, 1, buffer, &offset); if (error) goto out_error; if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { *rblk = i; *rhead = (struct xlog_rec_header *) offset; if (++found == count) break; } } /* * If we haven't hit the tail block or the log record header count, * start looking again from the end of the physical log. Note that * callers can pass head == tail if the tail is not yet known. */ if (tail_blk >= head_blk && found != count) { for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { error = xlog_bread(log, i, 1, buffer, &offset); if (error) goto out_error; if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { *wrapped = true; *rblk = i; *rhead = (struct xlog_rec_header *) offset; if (++found == count) break; } } } return found; out_error: return error; } /* * Seek forward in the log for log record headers. * * Given head and tail blocks, walk forward from the tail block until we find * the provided number of records or hit the head block. The return value is the * number of records encountered or a negative error code. The log block and * buffer pointer of the last record seen are returned in rblk and rhead * respectively. */ STATIC int xlog_seek_logrec_hdr( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk, int count, char *buffer, xfs_daddr_t *rblk, struct xlog_rec_header **rhead, bool *wrapped) { int i; int error; int found = 0; char *offset = NULL; xfs_daddr_t end_blk; *wrapped = false; /* * Walk forward from the tail block until we hit the head or the last * block in the log. */ end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; for (i = (int) tail_blk; i <= end_blk; i++) { error = xlog_bread(log, i, 1, buffer, &offset); if (error) goto out_error; if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { *rblk = i; *rhead = (struct xlog_rec_header *) offset; if (++found == count) break; } } /* * If we haven't hit the head block or the log record header count, * start looking again from the start of the physical log. */ if (tail_blk > head_blk && found != count) { for (i = 0; i < (int) head_blk; i++) { error = xlog_bread(log, i, 1, buffer, &offset); if (error) goto out_error; if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { *wrapped = true; *rblk = i; *rhead = (struct xlog_rec_header *) offset; if (++found == count) break; } } } return found; out_error: return error; } /* * Calculate distance from head to tail (i.e., unused space in the log). */ static inline int xlog_tail_distance( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk) { if (head_blk < tail_blk) return tail_blk - head_blk; return tail_blk + (log->l_logBBsize - head_blk); } /* * Verify the log tail. This is particularly important when torn or incomplete * writes have been detected near the front of the log and the head has been * walked back accordingly. * * We also have to handle the case where the tail was pinned and the head * blocked behind the tail right before a crash. If the tail had been pushed * immediately prior to the crash and the subsequent checkpoint was only * partially written, it's possible it overwrote the last referenced tail in the * log with garbage. This is not a coherency problem because the tail must have * been pushed before it can be overwritten, but appears as log corruption to * recovery because we have no way to know the tail was updated if the * subsequent checkpoint didn't write successfully. * * Therefore, CRC check the log from tail to head. If a failure occurs and the * offending record is within max iclog bufs from the head, walk the tail * forward and retry until a valid tail is found or corruption is detected out * of the range of a possible overwrite. */ STATIC int xlog_verify_tail( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t *tail_blk, int hsize) { struct xlog_rec_header *thead; char *buffer; xfs_daddr_t first_bad; int error = 0; bool wrapped; xfs_daddr_t tmp_tail; xfs_daddr_t orig_tail = *tail_blk; buffer = xlog_alloc_buffer(log, 1); if (!buffer) return -ENOMEM; /* * Make sure the tail points to a record (returns positive count on * success). */ error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, &tmp_tail, &thead, &wrapped); if (error < 0) goto out; if (*tail_blk != tmp_tail) *tail_blk = tmp_tail; /* * Run a CRC check from the tail to the head. We can't just check * MAX_ICLOGS records past the tail because the tail may point to stale * blocks cleared during the search for the head/tail. These blocks are * overwritten with zero-length records and thus record count is not a * reliable indicator of the iclog state before a crash. */ first_bad = 0; error = xlog_do_recovery_pass(log, head_blk, *tail_blk, XLOG_RECOVER_CRCPASS, &first_bad); while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { int tail_distance; /* * Is corruption within range of the head? If so, retry from * the next record. Otherwise return an error. */ tail_distance = xlog_tail_distance(log, head_blk, first_bad); if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) break; /* skip to the next record; returns positive count on success */ error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, buffer, &tmp_tail, &thead, &wrapped); if (error < 0) goto out; *tail_blk = tmp_tail; first_bad = 0; error = xlog_do_recovery_pass(log, head_blk, *tail_blk, XLOG_RECOVER_CRCPASS, &first_bad); } if (!error && *tail_blk != orig_tail) xfs_warn(log->l_mp, "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", orig_tail, *tail_blk); out: kmem_free(buffer); return error; } /* * Detect and trim torn writes from the head of the log. * * Storage without sector atomicity guarantees can result in torn writes in the * log in the event of a crash. Our only means to detect this scenario is via * CRC verification. While we can't always be certain that CRC verification * failure is due to a torn write vs. an unrelated corruption, we do know that * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of * the log and treat failures in this range as torn writes as a matter of * policy. In the event of CRC failure, the head is walked back to the last good * record in the log and the tail is updated from that record and verified. */ STATIC int xlog_verify_head( struct xlog *log, xfs_daddr_t *head_blk, /* in/out: unverified head */ xfs_daddr_t *tail_blk, /* out: tail block */ char *buffer, xfs_daddr_t *rhead_blk, /* start blk of last record */ struct xlog_rec_header **rhead, /* ptr to last record */ bool *wrapped) /* last rec. wraps phys. log */ { struct xlog_rec_header *tmp_rhead; char *tmp_buffer; xfs_daddr_t first_bad; xfs_daddr_t tmp_rhead_blk; int found; int error; bool tmp_wrapped; /* * Check the head of the log for torn writes. Search backwards from the * head until we hit the tail or the maximum number of log record I/Os * that could have been in flight at one time. Use a temporary buffer so * we don't trash the rhead/buffer pointers from the caller. */ tmp_buffer = xlog_alloc_buffer(log, 1); if (!tmp_buffer) return -ENOMEM; error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, XLOG_MAX_ICLOGS, tmp_buffer, &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); kmem_free(tmp_buffer); if (error < 0) return error; /* * Now run a CRC verification pass over the records starting at the * block found above to the current head. If a CRC failure occurs, the * log block of the first bad record is saved in first_bad. */ error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, XLOG_RECOVER_CRCPASS, &first_bad); if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { /* * We've hit a potential torn write. Reset the error and warn * about it. */ error = 0; xfs_warn(log->l_mp, "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", first_bad, *head_blk); /* * Get the header block and buffer pointer for the last good * record before the bad record. * * Note that xlog_find_tail() clears the blocks at the new head * (i.e., the records with invalid CRC) if the cycle number * matches the the current cycle. */ found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, buffer, rhead_blk, rhead, wrapped); if (found < 0) return found; if (found == 0) /* XXX: right thing to do here? */ return -EIO; /* * Reset the head block to the starting block of the first bad * log record and set the tail block based on the last good * record. * * Bail out if the updated head/tail match as this indicates * possible corruption outside of the acceptable * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... */ *head_blk = first_bad; *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); if (*head_blk == *tail_blk) { ASSERT(0); return 0; } } if (error) return error; return xlog_verify_tail(log, *head_blk, tail_blk, be32_to_cpu((*rhead)->h_size)); } /* * We need to make sure we handle log wrapping properly, so we can't use the * calculated logbno directly. Make sure it wraps to the correct bno inside the * log. * * The log is limited to 32 bit sizes, so we use the appropriate modulus * operation here and cast it back to a 64 bit daddr on return. */ static inline xfs_daddr_t xlog_wrap_logbno( struct xlog *log, xfs_daddr_t bno) { int mod; div_s64_rem(bno, log->l_logBBsize, &mod); return mod; } /* * Check whether the head of the log points to an unmount record. In other * words, determine whether the log is clean. If so, update the in-core state * appropriately. */ static int xlog_check_unmount_rec( struct xlog *log, xfs_daddr_t *head_blk, xfs_daddr_t *tail_blk, struct xlog_rec_header *rhead, xfs_daddr_t rhead_blk, char *buffer, bool *clean) { struct xlog_op_header *op_head; xfs_daddr_t umount_data_blk; xfs_daddr_t after_umount_blk; int hblks; int error; char *offset; *clean = false; /* * Look for unmount record. If we find it, then we know there was a * clean unmount. Since 'i' could be the last block in the physical * log, we convert to a log block before comparing to the head_blk. * * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() * below. We won't want to clear the unmount record if there is one, so * we pass the lsn of the unmount record rather than the block after it. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { int h_size = be32_to_cpu(rhead->h_size); int h_version = be32_to_cpu(rhead->h_version); if ((h_version & XLOG_VERSION_2) && (h_size > XLOG_HEADER_CYCLE_SIZE)) { hblks = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) hblks++; } else { hblks = 1; } } else { hblks = 1; } after_umount_blk = xlog_wrap_logbno(log, rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); if (*head_blk == after_umount_blk && be32_to_cpu(rhead->h_num_logops) == 1) { umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); if (error) return error; op_head = (struct xlog_op_header *)offset; if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { /* * Set tail and last sync so that newly written log * records will point recovery to after the current * unmount record. */ xlog_assign_atomic_lsn(&log->l_tail_lsn, log->l_curr_cycle, after_umount_blk); xlog_assign_atomic_lsn(&log->l_last_sync_lsn, log->l_curr_cycle, after_umount_blk); *tail_blk = after_umount_blk; *clean = true; } } return 0; } static void xlog_set_state( struct xlog *log, xfs_daddr_t head_blk, struct xlog_rec_header *rhead, xfs_daddr_t rhead_blk, bool bump_cycle) { /* * Reset log values according to the state of the log when we * crashed. In the case where head_blk == 0, we bump curr_cycle * one because the next write starts a new cycle rather than * continuing the cycle of the last good log record. At this * point we have guaranteed that all partial log records have been * accounted for. Therefore, we know that the last good log record * written was complete and ended exactly on the end boundary * of the physical log. */ log->l_prev_block = rhead_blk; log->l_curr_block = (int)head_blk; log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); if (bump_cycle) log->l_curr_cycle++; atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, BBTOB(log->l_curr_block)); xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, BBTOB(log->l_curr_block)); } /* * Find the sync block number or the tail of the log. * * This will be the block number of the last record to have its * associated buffers synced to disk. Every log record header has * a sync lsn embedded in it. LSNs hold block numbers, so it is easy * to get a sync block number. The only concern is to figure out which * log record header to believe. * * The following algorithm uses the log record header with the largest * lsn. The entire log record does not need to be valid. We only care * that the header is valid. * * We could speed up search by using current head_blk buffer, but it is not * available. */ STATIC int xlog_find_tail( struct xlog *log, xfs_daddr_t *head_blk, xfs_daddr_t *tail_blk) { xlog_rec_header_t *rhead; char *offset = NULL; char *buffer; int error; xfs_daddr_t rhead_blk; xfs_lsn_t tail_lsn; bool wrapped = false; bool clean = false; /* * Find previous log record */ if ((error = xlog_find_head(log, head_blk))) return error; ASSERT(*head_blk < INT_MAX); buffer = xlog_alloc_buffer(log, 1); if (!buffer) return -ENOMEM; if (*head_blk == 0) { /* special case */ error = xlog_bread(log, 0, 1, buffer, &offset); if (error) goto done; if (xlog_get_cycle(offset) == 0) { *tail_blk = 0; /* leave all other log inited values alone */ goto done; } } /* * Search backwards through the log looking for the log record header * block. This wraps all the way back around to the head so something is * seriously wrong if we can't find it. */ error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, &rhead_blk, &rhead, &wrapped); if (error < 0) goto done; if (!error) { xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); error = -EFSCORRUPTED; goto done; } *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); /* * Set the log state based on the current head record. */ xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); tail_lsn = atomic64_read(&log->l_tail_lsn); /* * Look for an unmount record at the head of the log. This sets the log * state to determine whether recovery is necessary. */ error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, rhead_blk, buffer, &clean); if (error) goto done; /* * Verify the log head if the log is not clean (e.g., we have anything * but an unmount record at the head). This uses CRC verification to * detect and trim torn writes. If discovered, CRC failures are * considered torn writes and the log head is trimmed accordingly. * * Note that we can only run CRC verification when the log is dirty * because there's no guarantee that the log data behind an unmount * record is compatible with the current architecture. */ if (!clean) { xfs_daddr_t orig_head = *head_blk; error = xlog_verify_head(log, head_blk, tail_blk, buffer, &rhead_blk, &rhead, &wrapped); if (error) goto done; /* update in-core state again if the head changed */ if (*head_blk != orig_head) { xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); tail_lsn = atomic64_read(&log->l_tail_lsn); error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, rhead_blk, buffer, &clean); if (error) goto done; } } /* * Note that the unmount was clean. If the unmount was not clean, we * need to know this to rebuild the superblock counters from the perag * headers if we have a filesystem using non-persistent counters. */ if (clean) log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; /* * Make sure that there are no blocks in front of the head * with the same cycle number as the head. This can happen * because we allow multiple outstanding log writes concurrently, * and the later writes might make it out before earlier ones. * * We use the lsn from before modifying it so that we'll never * overwrite the unmount record after a clean unmount. * * Do this only if we are going to recover the filesystem * * NOTE: This used to say "if (!readonly)" * However on Linux, we can & do recover a read-only filesystem. * We only skip recovery if NORECOVERY is specified on mount, * in which case we would not be here. * * But... if the -device- itself is readonly, just skip this. * We can't recover this device anyway, so it won't matter. */ if (!xfs_readonly_buftarg(log->l_targ)) error = xlog_clear_stale_blocks(log, tail_lsn); done: kmem_free(buffer); if (error) xfs_warn(log->l_mp, "failed to locate log tail"); return error; } /* * Is the log zeroed at all? * * The last binary search should be changed to perform an X block read * once X becomes small enough. You can then search linearly through * the X blocks. This will cut down on the number of reads we need to do. * * If the log is partially zeroed, this routine will pass back the blkno * of the first block with cycle number 0. It won't have a complete LR * preceding it. * * Return: * 0 => the log is completely written to * 1 => use *blk_no as the first block of the log * <0 => error has occurred */ STATIC int xlog_find_zeroed( struct xlog *log, xfs_daddr_t *blk_no) { char *buffer; char *offset; uint first_cycle, last_cycle; xfs_daddr_t new_blk, last_blk, start_blk; xfs_daddr_t num_scan_bblks; int error, log_bbnum = log->l_logBBsize; *blk_no = 0; /* check totally zeroed log */ buffer = xlog_alloc_buffer(log, 1); if (!buffer) return -ENOMEM; error = xlog_bread(log, 0, 1, buffer, &offset); if (error) goto out_free_buffer; first_cycle = xlog_get_cycle(offset); if (first_cycle == 0) { /* completely zeroed log */ *blk_no = 0; kmem_free(buffer); return 1; } /* check partially zeroed log */ error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); if (error) goto out_free_buffer; last_cycle = xlog_get_cycle(offset); if (last_cycle != 0) { /* log completely written to */ kmem_free(buffer); return 0; } /* we have a partially zeroed log */ last_blk = log_bbnum-1; error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); if (error) goto out_free_buffer; /* * Validate the answer. Because there is no way to guarantee that * the entire log is made up of log records which are the same size, * we scan over the defined maximum blocks. At this point, the maximum * is not chosen to mean anything special. XXXmiken */ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); ASSERT(num_scan_bblks <= INT_MAX); if (last_blk < num_scan_bblks) num_scan_bblks = last_blk; start_blk = last_blk - num_scan_bblks; /* * We search for any instances of cycle number 0 that occur before * our current estimate of the head. What we're trying to detect is * 1 ... | 0 | 1 | 0... * ^ binary search ends here */ if ((error = xlog_find_verify_cycle(log, start_blk, (int)num_scan_bblks, 0, &new_blk))) goto out_free_buffer; if (new_blk != -1) last_blk = new_blk; /* * Potentially backup over partial log record write. We don't need * to search the end of the log because we know it is zero. */ error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); if (error == 1) error = -EIO; if (error) goto out_free_buffer; *blk_no = last_blk; out_free_buffer: kmem_free(buffer); if (error) return error; return 1; } /* * These are simple subroutines used by xlog_clear_stale_blocks() below * to initialize a buffer full of empty log record headers and write * them into the log. */ STATIC void xlog_add_record( struct xlog *log, char *buf, int cycle, int block, int tail_cycle, int tail_block) { xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; memset(buf, 0, BBSIZE); recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); recp->h_cycle = cpu_to_be32(cycle); recp->h_version = cpu_to_be32( xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); recp->h_fmt = cpu_to_be32(XLOG_FMT); memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); } STATIC int xlog_write_log_records( struct xlog *log, int cycle, int start_block, int blocks, int tail_cycle, int tail_block) { char *offset; char *buffer; int balign, ealign; int sectbb = log->l_sectBBsize; int end_block = start_block + blocks; int bufblks; int error = 0; int i, j = 0; /* * Greedily allocate a buffer big enough to handle the full * range of basic blocks to be written. If that fails, try * a smaller size. We need to be able to write at least a * log sector, or we're out of luck. */ bufblks = 1 << ffs(blocks); while (bufblks > log->l_logBBsize) bufblks >>= 1; while (!(buffer = xlog_alloc_buffer(log, bufblks))) { bufblks >>= 1; if (bufblks < sectbb) return -ENOMEM; } /* We may need to do a read at the start to fill in part of * the buffer in the starting sector not covered by the first * write below. */ balign = round_down(start_block, sectbb); if (balign != start_block) { error = xlog_bread_noalign(log, start_block, 1, buffer); if (error) goto out_free_buffer; j = start_block - balign; } for (i = start_block; i < end_block; i += bufblks) { int bcount, endcount; bcount = min(bufblks, end_block - start_block); endcount = bcount - j; /* We may need to do a read at the end to fill in part of * the buffer in the final sector not covered by the write. * If this is the same sector as the above read, skip it. */ ealign = round_down(end_block, sectbb); if (j == 0 && (start_block + endcount > ealign)) { error = xlog_bread_noalign(log, ealign, sectbb, buffer + BBTOB(ealign - start_block)); if (error) break; } offset = buffer + xlog_align(log, start_block); for (; j < endcount; j++) { xlog_add_record(log, offset, cycle, i+j, tail_cycle, tail_block); offset += BBSIZE; } error = xlog_bwrite(log, start_block, endcount, buffer); if (error) break; start_block += endcount; j = 0; } out_free_buffer: kmem_free(buffer); return error; } /* * This routine is called to blow away any incomplete log writes out * in front of the log head. We do this so that we won't become confused * if we come up, write only a little bit more, and then crash again. * If we leave the partial log records out there, this situation could * cause us to think those partial writes are valid blocks since they * have the current cycle number. We get rid of them by overwriting them * with empty log records with the old cycle number rather than the * current one. * * The tail lsn is passed in rather than taken from * the log so that we will not write over the unmount record after a * clean unmount in a 512 block log. Doing so would leave the log without * any valid log records in it until a new one was written. If we crashed * during that time we would not be able to recover. */ STATIC int xlog_clear_stale_blocks( struct xlog *log, xfs_lsn_t tail_lsn) { int tail_cycle, head_cycle; int tail_block, head_block; int tail_distance, max_distance; int distance; int error; tail_cycle = CYCLE_LSN(tail_lsn); tail_block = BLOCK_LSN(tail_lsn); head_cycle = log->l_curr_cycle; head_block = log->l_curr_block; /* * Figure out the distance between the new head of the log * and the tail. We want to write over any blocks beyond the * head that we may have written just before the crash, but * we don't want to overwrite the tail of the log. */ if (head_cycle == tail_cycle) { /* * The tail is behind the head in the physical log, * so the distance from the head to the tail is the * distance from the head to the end of the log plus * the distance from the beginning of the log to the * tail. */ if (XFS_IS_CORRUPT(log->l_mp, head_block < tail_block || head_block >= log->l_logBBsize)) return -EFSCORRUPTED; tail_distance = tail_block + (log->l_logBBsize - head_block); } else { /* * The head is behind the tail in the physical log, * so the distance from the head to the tail is just * the tail block minus the head block. */ if (XFS_IS_CORRUPT(log->l_mp, head_block >= tail_block || head_cycle != tail_cycle + 1)) return -EFSCORRUPTED; tail_distance = tail_block - head_block; } /* * If the head is right up against the tail, we can't clear * anything. */ if (tail_distance <= 0) { ASSERT(tail_distance == 0); return 0; } max_distance = XLOG_TOTAL_REC_SHIFT(log); /* * Take the smaller of the maximum amount of outstanding I/O * we could have and the distance to the tail to clear out. * We take the smaller so that we don't overwrite the tail and * we don't waste all day writing from the head to the tail * for no reason. */ max_distance = min(max_distance, tail_distance); if ((head_block + max_distance) <= log->l_logBBsize) { /* * We can stomp all the blocks we need to without * wrapping around the end of the log. Just do it * in a single write. Use the cycle number of the * current cycle minus one so that the log will look like: * n ... | n - 1 ... */ error = xlog_write_log_records(log, (head_cycle - 1), head_block, max_distance, tail_cycle, tail_block); if (error) return error; } else { /* * We need to wrap around the end of the physical log in * order to clear all the blocks. Do it in two separate * I/Os. The first write should be from the head to the * end of the physical log, and it should use the current * cycle number minus one just like above. */ distance = log->l_logBBsize - head_block; error = xlog_write_log_records(log, (head_cycle - 1), head_block, distance, tail_cycle, tail_block); if (error) return error; /* * Now write the blocks at the start of the physical log. * This writes the remainder of the blocks we want to clear. * It uses the current cycle number since we're now on the * same cycle as the head so that we get: * n ... n ... | n - 1 ... * ^^^^^ blocks we're writing */ distance = max_distance - (log->l_logBBsize - head_block); error = xlog_write_log_records(log, head_cycle, 0, distance, tail_cycle, tail_block); if (error) return error; } return 0; } /****************************************************************************** * * Log recover routines * ****************************************************************************** */ /* * Sort the log items in the transaction. * * The ordering constraints are defined by the inode allocation and unlink * behaviour. The rules are: * * 1. Every item is only logged once in a given transaction. Hence it * represents the last logged state of the item. Hence ordering is * dependent on the order in which operations need to be performed so * required initial conditions are always met. * * 2. Cancelled buffers are recorded in pass 1 in a separate table and * there's nothing to replay from them so we can simply cull them * from the transaction. However, we can't do that until after we've * replayed all the other items because they may be dependent on the * cancelled buffer and replaying the cancelled buffer can remove it * form the cancelled buffer table. Hence they have tobe done last. * * 3. Inode allocation buffers must be replayed before inode items that * read the buffer and replay changes into it. For filesystems using the * ICREATE transactions, this means XFS_LI_ICREATE objects need to get * treated the same as inode allocation buffers as they create and * initialise the buffers directly. * * 4. Inode unlink buffers must be replayed after inode items are replayed. * This ensures that inodes are completely flushed to the inode buffer * in a "free" state before we remove the unlinked inode list pointer. * * Hence the ordering needs to be inode allocation buffers first, inode items * second, inode unlink buffers third and cancelled buffers last. * * But there's a problem with that - we can't tell an inode allocation buffer * apart from a regular buffer, so we can't separate them. We can, however, * tell an inode unlink buffer from the others, and so we can separate them out * from all the other buffers and move them to last. * * Hence, 4 lists, in order from head to tail: * - buffer_list for all buffers except cancelled/inode unlink buffers * - item_list for all non-buffer items * - inode_buffer_list for inode unlink buffers * - cancel_list for the cancelled buffers * * Note that we add objects to the tail of the lists so that first-to-last * ordering is preserved within the lists. Adding objects to the head of the * list means when we traverse from the head we walk them in last-to-first * order. For cancelled buffers and inode unlink buffers this doesn't matter, * but for all other items there may be specific ordering that we need to * preserve. */ STATIC int xlog_recover_reorder_trans( struct xlog *log, struct xlog_recover *trans, int pass) { xlog_recover_item_t *item, *n; int error = 0; LIST_HEAD(sort_list); LIST_HEAD(cancel_list); LIST_HEAD(buffer_list); LIST_HEAD(inode_buffer_list); LIST_HEAD(item_list); list_splice_init(&trans->r_itemq, &sort_list); list_for_each_entry_safe(item, n, &sort_list, ri_list) { xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; switch (ITEM_TYPE(item)) { case XFS_LI_ICREATE: list_move_tail(&item->ri_list, &buffer_list); break; case XFS_LI_BUF: if (buf_f->blf_flags & XFS_BLF_CANCEL) { trace_xfs_log_recover_item_reorder_head(log, trans, item, pass); list_move(&item->ri_list, &cancel_list); break; } if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { list_move(&item->ri_list, &inode_buffer_list); break; } list_move_tail(&item->ri_list, &buffer_list); break; case XFS_LI_INODE: case XFS_LI_DQUOT: case XFS_LI_QUOTAOFF: case XFS_LI_EFD: case XFS_LI_EFI: case XFS_LI_RUI: case XFS_LI_RUD: case XFS_LI_CUI: case XFS_LI_CUD: case XFS_LI_BUI: case XFS_LI_BUD: trace_xfs_log_recover_item_reorder_tail(log, trans, item, pass); list_move_tail(&item->ri_list, &item_list); break; default: xfs_warn(log->l_mp, "%s: unrecognized type of log operation (%d)", __func__, ITEM_TYPE(item)); ASSERT(0); /* * return the remaining items back to the transaction * item list so they can be freed in caller. */ if (!list_empty(&sort_list)) list_splice_init(&sort_list, &trans->r_itemq); error = -EIO; goto out; } } out: ASSERT(list_empty(&sort_list)); if (!list_empty(&buffer_list)) list_splice(&buffer_list, &trans->r_itemq); if (!list_empty(&item_list)) list_splice_tail(&item_list, &trans->r_itemq); if (!list_empty(&inode_buffer_list)) list_splice_tail(&inode_buffer_list, &trans->r_itemq); if (!list_empty(&cancel_list)) list_splice_tail(&cancel_list, &trans->r_itemq); return error; } static struct xfs_buf_cancel * xlog_find_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct list_head *bucket; struct xfs_buf_cancel *bcp; if (!log->l_buf_cancel_table) return NULL; bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); list_for_each_entry(bcp, bucket, bc_list) { if (bcp->bc_blkno == blkno && bcp->bc_len == len) return bcp; } return NULL; } static bool xlog_add_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct xfs_buf_cancel *bcp; /* * If we find an existing cancel record, this indicates that the buffer * was cancelled multiple times. To ensure that during pass 2 we keep * the record in the table until we reach its last occurrence in the * log, a reference count is kept to tell how many times we expect to * see this record during the second pass. */ bcp = xlog_find_buffer_cancelled(log, blkno, len); if (bcp) { bcp->bc_refcount++; return false; } bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); bcp->bc_blkno = blkno; bcp->bc_len = len; bcp->bc_refcount = 1; list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno)); return true; } /* * Check if there is and entry for blkno, len in the buffer cancel record table. */ static bool xlog_is_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { return xlog_find_buffer_cancelled(log, blkno, len) != NULL; } /* * Check if there is and entry for blkno, len in the buffer cancel record table, * and decremented the reference count on it if there is one. * * Remove the cancel record once the refcount hits zero, so that if the same * buffer is re-used again after its last cancellation we actually replay the * changes made at that point. */ static bool xlog_put_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct xfs_buf_cancel *bcp; bcp = xlog_find_buffer_cancelled(log, blkno, len); if (!bcp) { ASSERT(0); return false; } if (--bcp->bc_refcount == 0) { list_del(&bcp->bc_list); kmem_free(bcp); } return true; } static void xlog_buf_readahead( struct xlog *log, xfs_daddr_t blkno, uint len, const struct xfs_buf_ops *ops) { if (!xlog_is_buffer_cancelled(log, blkno, len)) xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); } /* * Build up the table of buf cancel records so that we don't replay cancelled * data in the second pass. */ static int xlog_recover_buffer_pass1( struct xlog *log, struct xlog_recover_item *item) { struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr; if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { xfs_err(log->l_mp, "bad buffer log item size (%d)", item->ri_buf[0].i_len); return -EFSCORRUPTED; } if (!(bf->blf_flags & XFS_BLF_CANCEL)) trace_xfs_log_recover_buf_not_cancel(log, bf); else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len)) trace_xfs_log_recover_buf_cancel_add(log, bf); else trace_xfs_log_recover_buf_cancel_ref_inc(log, bf); return 0; } /* * Perform recovery for a buffer full of inodes. In these buffers, the only * data which should be recovered is that which corresponds to the * di_next_unlinked pointers in the on disk inode structures. The rest of the * data for the inodes is always logged through the inodes themselves rather * than the inode buffer and is recovered in xlog_recover_inode_pass2(). * * The only time when buffers full of inodes are fully recovered is when the * buffer is full of newly allocated inodes. In this case the buffer will * not be marked as an inode buffer and so will be sent to * xlog_recover_do_reg_buffer() below during recovery. */ STATIC int xlog_recover_do_inode_buffer( struct xfs_mount *mp, xlog_recover_item_t *item, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f) { int i; int item_index = 0; int bit = 0; int nbits = 0; int reg_buf_offset = 0; int reg_buf_bytes = 0; int next_unlinked_offset; int inodes_per_buf; xfs_agino_t *logged_nextp; xfs_agino_t *buffer_nextp; trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); /* * Post recovery validation only works properly on CRC enabled * filesystems. */ if (xfs_sb_version_hascrc(&mp->m_sb)) bp->b_ops = &xfs_inode_buf_ops; inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; for (i = 0; i < inodes_per_buf; i++) { next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + offsetof(xfs_dinode_t, di_next_unlinked); while (next_unlinked_offset >= (reg_buf_offset + reg_buf_bytes)) { /* * The next di_next_unlinked field is beyond * the current logged region. Find the next * logged region that contains or is beyond * the current di_next_unlinked field. */ bit += nbits; bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); /* * If there are no more logged regions in the * buffer, then we're done. */ if (bit == -1) return 0; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); reg_buf_offset = bit << XFS_BLF_SHIFT; reg_buf_bytes = nbits << XFS_BLF_SHIFT; item_index++; } /* * If the current logged region starts after the current * di_next_unlinked field, then move on to the next * di_next_unlinked field. */ if (next_unlinked_offset < reg_buf_offset) continue; ASSERT(item->ri_buf[item_index].i_addr != NULL); ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); /* * The current logged region contains a copy of the * current di_next_unlinked field. Extract its value * and copy it to the buffer copy. */ logged_nextp = item->ri_buf[item_index].i_addr + next_unlinked_offset - reg_buf_offset; if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { xfs_alert(mp, "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " "Trying to replay bad (0) inode di_next_unlinked field.", item, bp); return -EFSCORRUPTED; } buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); *buffer_nextp = *logged_nextp; /* * If necessary, recalculate the CRC in the on-disk inode. We * have to leave the inode in a consistent state for whoever * reads it next.... */ xfs_dinode_calc_crc(mp, xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); } return 0; } /* * V5 filesystems know the age of the buffer on disk being recovered. We can * have newer objects on disk than we are replaying, and so for these cases we * don't want to replay the current change as that will make the buffer contents * temporarily invalid on disk. * * The magic number might not match the buffer type we are going to recover * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence * extract the LSN of the existing object in the buffer based on it's current * magic number. If we don't recognise the magic number in the buffer, then * return a LSN of -1 so that the caller knows it was an unrecognised block and * so can recover the buffer. * * Note: we cannot rely solely on magic number matches to determine that the * buffer has a valid LSN - we also need to verify that it belongs to this * filesystem, so we need to extract the object's LSN and compare it to that * which we read from the superblock. If the UUIDs don't match, then we've got a * stale metadata block from an old filesystem instance that we need to recover * over the top of. */ static xfs_lsn_t xlog_recover_get_buf_lsn( struct xfs_mount *mp, struct xfs_buf *bp) { uint32_t magic32; uint16_t magic16; uint16_t magicda; void *blk = bp->b_addr; uuid_t *uuid; xfs_lsn_t lsn = -1; /* v4 filesystems always recover immediately */ if (!xfs_sb_version_hascrc(&mp->m_sb)) goto recover_immediately; magic32 = be32_to_cpu(*(__be32 *)blk); switch (magic32) { case XFS_ABTB_CRC_MAGIC: case XFS_ABTC_CRC_MAGIC: case XFS_ABTB_MAGIC: case XFS_ABTC_MAGIC: case XFS_RMAP_CRC_MAGIC: case XFS_REFC_CRC_MAGIC: case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); uuid = &btb->bb_u.s.bb_uuid; break; } case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); uuid = &btb->bb_u.l.bb_uuid; break; } case XFS_AGF_MAGIC: lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); uuid = &((struct xfs_agf *)blk)->agf_uuid; break; case XFS_AGFL_MAGIC: lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); uuid = &((struct xfs_agfl *)blk)->agfl_uuid; break; case XFS_AGI_MAGIC: lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); uuid = &((struct xfs_agi *)blk)->agi_uuid; break; case XFS_SYMLINK_MAGIC: lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; break; case XFS_DIR3_BLOCK_MAGIC: case XFS_DIR3_DATA_MAGIC: case XFS_DIR3_FREE_MAGIC: lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; break; case XFS_ATTR3_RMT_MAGIC: /* * Remote attr blocks are written synchronously, rather than * being logged. That means they do not contain a valid LSN * (i.e. transactionally ordered) in them, and hence any time we * see a buffer to replay over the top of a remote attribute * block we should simply do so. */ goto recover_immediately; case XFS_SB_MAGIC: /* * superblock uuids are magic. We may or may not have a * sb_meta_uuid on disk, but it will be set in the in-core * superblock. We set the uuid pointer for verification * according to the superblock feature mask to ensure we check * the relevant UUID in the superblock. */ lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); if (xfs_sb_version_hasmetauuid(&mp->m_sb)) uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; else uuid = &((struct xfs_dsb *)blk)->sb_uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) goto recover_immediately; return lsn; } magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); switch (magicda) { case XFS_DIR3_LEAF1_MAGIC: case XFS_DIR3_LEAFN_MAGIC: case XFS_DA3_NODE_MAGIC: lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) goto recover_immediately; return lsn; } /* * We do individual object checks on dquot and inode buffers as they * have their own individual LSN records. Also, we could have a stale * buffer here, so we have to at least recognise these buffer types. * * A notd complexity here is inode unlinked list processing - it logs * the inode directly in the buffer, but we don't know which inodes have * been modified, and there is no global buffer LSN. Hence we need to * recover all inode buffer types immediately. This problem will be * fixed by logical logging of the unlinked list modifications. */ magic16 = be16_to_cpu(*(__be16 *)blk); switch (magic16) { case XFS_DQUOT_MAGIC: case XFS_DINODE_MAGIC: goto recover_immediately; default: break; } /* unknown buffer contents, recover immediately */ recover_immediately: return (xfs_lsn_t)-1; } /* * Validate the recovered buffer is of the correct type and attach the * appropriate buffer operations to them for writeback. Magic numbers are in a * few places: * the first 16 bits of the buffer (inode buffer, dquot buffer), * the first 32 bits of the buffer (most blocks), * inside a struct xfs_da_blkinfo at the start of the buffer. */ static void xlog_recover_validate_buf_type( struct xfs_mount *mp, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f, xfs_lsn_t current_lsn) { struct xfs_da_blkinfo *info = bp->b_addr; uint32_t magic32; uint16_t magic16; uint16_t magicda; char *warnmsg = NULL; /* * We can only do post recovery validation on items on CRC enabled * fielsystems as we need to know when the buffer was written to be able * to determine if we should have replayed the item. If we replay old * metadata over a newer buffer, then it will enter a temporarily * inconsistent state resulting in verification failures. Hence for now * just avoid the verification stage for non-crc filesystems */ if (!xfs_sb_version_hascrc(&mp->m_sb)) return; magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); magic16 = be16_to_cpu(*(__be16*)bp->b_addr); magicda = be16_to_cpu(info->magic); switch (xfs_blft_from_flags(buf_f)) { case XFS_BLFT_BTREE_BUF: switch (magic32) { case XFS_ABTB_CRC_MAGIC: case XFS_ABTB_MAGIC: bp->b_ops = &xfs_bnobt_buf_ops; break; case XFS_ABTC_CRC_MAGIC: case XFS_ABTC_MAGIC: bp->b_ops = &xfs_cntbt_buf_ops; break; case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: bp->b_ops = &xfs_inobt_buf_ops; break; case XFS_FIBT_CRC_MAGIC: case XFS_FIBT_MAGIC: bp->b_ops = &xfs_finobt_buf_ops; break; case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: bp->b_ops = &xfs_bmbt_buf_ops; break; case XFS_RMAP_CRC_MAGIC: bp->b_ops = &xfs_rmapbt_buf_ops; break; case XFS_REFC_CRC_MAGIC: bp->b_ops = &xfs_refcountbt_buf_ops; break; default: warnmsg = "Bad btree block magic!"; break; } break; case XFS_BLFT_AGF_BUF: if (magic32 != XFS_AGF_MAGIC) { warnmsg = "Bad AGF block magic!"; break; } bp->b_ops = &xfs_agf_buf_ops; break; case XFS_BLFT_AGFL_BUF: if (magic32 != XFS_AGFL_MAGIC) { warnmsg = "Bad AGFL block magic!"; break; } bp->b_ops = &xfs_agfl_buf_ops; break; case XFS_BLFT_AGI_BUF: if (magic32 != XFS_AGI_MAGIC) { warnmsg = "Bad AGI block magic!"; break; } bp->b_ops = &xfs_agi_buf_ops; break; case XFS_BLFT_UDQUOT_BUF: case XFS_BLFT_PDQUOT_BUF: case XFS_BLFT_GDQUOT_BUF: #ifdef CONFIG_XFS_QUOTA if (magic16 != XFS_DQUOT_MAGIC) { warnmsg = "Bad DQUOT block magic!"; break; } bp->b_ops = &xfs_dquot_buf_ops; #else xfs_alert(mp, "Trying to recover dquots without QUOTA support built in!"); ASSERT(0); #endif break; case XFS_BLFT_DINO_BUF: if (magic16 != XFS_DINODE_MAGIC) { warnmsg = "Bad INODE block magic!"; break; } bp->b_ops = &xfs_inode_buf_ops; break; case XFS_BLFT_SYMLINK_BUF: if (magic32 != XFS_SYMLINK_MAGIC) { warnmsg = "Bad symlink block magic!"; break; } bp->b_ops = &xfs_symlink_buf_ops; break; case XFS_BLFT_DIR_BLOCK_BUF: if (magic32 != XFS_DIR2_BLOCK_MAGIC && magic32 != XFS_DIR3_BLOCK_MAGIC) { warnmsg = "Bad dir block magic!"; break; } bp->b_ops = &xfs_dir3_block_buf_ops; break; case XFS_BLFT_DIR_DATA_BUF: if (magic32 != XFS_DIR2_DATA_MAGIC && magic32 != XFS_DIR3_DATA_MAGIC) { warnmsg = "Bad dir data magic!"; break; } bp->b_ops = &xfs_dir3_data_buf_ops; break; case XFS_BLFT_DIR_FREE_BUF: if (magic32 != XFS_DIR2_FREE_MAGIC && magic32 != XFS_DIR3_FREE_MAGIC) { warnmsg = "Bad dir3 free magic!"; break; } bp->b_ops = &xfs_dir3_free_buf_ops; break; case XFS_BLFT_DIR_LEAF1_BUF: if (magicda != XFS_DIR2_LEAF1_MAGIC && magicda != XFS_DIR3_LEAF1_MAGIC) { warnmsg = "Bad dir leaf1 magic!"; break; } bp->b_ops = &xfs_dir3_leaf1_buf_ops; break; case XFS_BLFT_DIR_LEAFN_BUF: if (magicda != XFS_DIR2_LEAFN_MAGIC && magicda != XFS_DIR3_LEAFN_MAGIC) { warnmsg = "Bad dir leafn magic!"; break; } bp->b_ops = &xfs_dir3_leafn_buf_ops; break; case XFS_BLFT_DA_NODE_BUF: if (magicda != XFS_DA_NODE_MAGIC && magicda != XFS_DA3_NODE_MAGIC) { warnmsg = "Bad da node magic!"; break; } bp->b_ops = &xfs_da3_node_buf_ops; break; case XFS_BLFT_ATTR_LEAF_BUF: if (magicda != XFS_ATTR_LEAF_MAGIC && magicda != XFS_ATTR3_LEAF_MAGIC) { warnmsg = "Bad attr leaf magic!"; break; } bp->b_ops = &xfs_attr3_leaf_buf_ops; break; case XFS_BLFT_ATTR_RMT_BUF: if (magic32 != XFS_ATTR3_RMT_MAGIC) { warnmsg = "Bad attr remote magic!"; break; } bp->b_ops = &xfs_attr3_rmt_buf_ops; break; case XFS_BLFT_SB_BUF: if (magic32 != XFS_SB_MAGIC) { warnmsg = "Bad SB block magic!"; break; } bp->b_ops = &xfs_sb_buf_ops; break; #ifdef CONFIG_XFS_RT case XFS_BLFT_RTBITMAP_BUF: case XFS_BLFT_RTSUMMARY_BUF: /* no magic numbers for verification of RT buffers */ bp->b_ops = &xfs_rtbuf_ops; break; #endif /* CONFIG_XFS_RT */ default: xfs_warn(mp, "Unknown buffer type %d!", xfs_blft_from_flags(buf_f)); break; } /* * Nothing else to do in the case of a NULL current LSN as this means * the buffer is more recent than the change in the log and will be * skipped. */ if (current_lsn == NULLCOMMITLSN) return; if (warnmsg) { xfs_warn(mp, warnmsg); ASSERT(0); } /* * We must update the metadata LSN of the buffer as it is written out to * ensure that older transactions never replay over this one and corrupt * the buffer. This can occur if log recovery is interrupted at some * point after the current transaction completes, at which point a * subsequent mount starts recovery from the beginning. * * Write verifiers update the metadata LSN from log items attached to * the buffer. Therefore, initialize a bli purely to carry the LSN to * the verifier. We'll clean it up in our ->iodone() callback. */ if (bp->b_ops) { struct xfs_buf_log_item *bip; ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); bp->b_iodone = xlog_recover_iodone; xfs_buf_item_init(bp, mp); bip = bp->b_log_item; bip->bli_item.li_lsn = current_lsn; } } /* * Perform a 'normal' buffer recovery. Each logged region of the * buffer should be copied over the corresponding region in the * given buffer. The bitmap in the buf log format structure indicates * where to place the logged data. */ STATIC void xlog_recover_do_reg_buffer( struct xfs_mount *mp, xlog_recover_item_t *item, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f, xfs_lsn_t current_lsn) { int i; int bit; int nbits; xfs_failaddr_t fa; const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); bit = 0; i = 1; /* 0 is the buf format structure */ while (1) { bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); if (bit == -1) break; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); ASSERT(item->ri_buf[i].i_addr != NULL); ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); ASSERT(BBTOB(bp->b_length) >= ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); /* * The dirty regions logged in the buffer, even though * contiguous, may span multiple chunks. This is because the * dirty region may span a physical page boundary in a buffer * and hence be split into two separate vectors for writing into * the log. Hence we need to trim nbits back to the length of * the current region being copied out of the log. */ if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; /* * Do a sanity check if this is a dquot buffer. Just checking * the first dquot in the buffer should do. XXXThis is * probably a good thing to do for other buf types also. */ fa = NULL; if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { if (item->ri_buf[i].i_addr == NULL) { xfs_alert(mp, "XFS: NULL dquot in %s.", __func__); goto next; } if (item->ri_buf[i].i_len < size_disk_dquot) { xfs_alert(mp, "XFS: dquot too small (%d) in %s.", item->ri_buf[i].i_len, __func__); goto next; } fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1, 0); if (fa) { xfs_alert(mp, "dquot corrupt at %pS trying to replay into block 0x%llx", fa, bp->b_bn); goto next; } } memcpy(xfs_buf_offset(bp, (uint)bit << XFS_BLF_SHIFT), /* dest */ item->ri_buf[i].i_addr, /* source */ nbits<ri_total); xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); } /* * Perform a dquot buffer recovery. * Simple algorithm: if we have found a QUOTAOFF log item of the same type * (ie. USR or GRP), then just toss this buffer away; don't recover it. * Else, treat it as a regular buffer and do recovery. * * Return false if the buffer was tossed and true if we recovered the buffer to * indicate to the caller if the buffer needs writing. */ STATIC bool xlog_recover_do_dquot_buffer( struct xfs_mount *mp, struct xlog *log, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f) { uint type; trace_xfs_log_recover_buf_dquot_buf(log, buf_f); /* * Filesystems are required to send in quota flags at mount time. */ if (!mp->m_qflags) return false; type = 0; if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) type |= XFS_DQ_USER; if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) type |= XFS_DQ_PROJ; if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) type |= XFS_DQ_GROUP; /* * This type of quotas was turned off, so ignore this buffer */ if (log->l_quotaoffs_flag & type) return false; xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); return true; } /* * This routine replays a modification made to a buffer at runtime. * There are actually two types of buffer, regular and inode, which * are handled differently. Inode buffers are handled differently * in that we only recover a specific set of data from them, namely * the inode di_next_unlinked fields. This is because all other inode * data is actually logged via inode records and any data we replay * here which overlaps that may be stale. * * When meta-data buffers are freed at run time we log a buffer item * with the XFS_BLF_CANCEL bit set to indicate that previous copies * of the buffer in the log should not be replayed at recovery time. * This is so that if the blocks covered by the buffer are reused for * file data before we crash we don't end up replaying old, freed * meta-data into a user's file. * * To handle the cancellation of buffer log items, we make two passes * over the log during recovery. During the first we build a table of * those buffers which have been cancelled, and during the second we * only replay those buffers which do not have corresponding cancel * records in the table. See xlog_recover_buffer_pass[1,2] above * for more details on the implementation of the table of cancel records. */ STATIC int xlog_recover_buffer_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; int error; uint buf_flags; xfs_lsn_t lsn; /* * In this pass we only want to recover all the buffers which have * not been cancelled and are not cancellation buffers themselves. */ if (buf_f->blf_flags & XFS_BLF_CANCEL) { if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len)) goto cancelled; } else { if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len)) goto cancelled; } trace_xfs_log_recover_buf_recover(log, buf_f); buf_flags = 0; if (buf_f->blf_flags & XFS_BLF_INODE_BUF) buf_flags |= XBF_UNMAPPED; error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, buf_flags, &bp, NULL); if (error) return error; /* * Recover the buffer only if we get an LSN from it and it's less than * the lsn of the transaction we are replaying. * * Note that we have to be extremely careful of readahead here. * Readahead does not attach verfiers to the buffers so if we don't * actually do any replay after readahead because of the LSN we found * in the buffer if more recent than that current transaction then we * need to attach the verifier directly. Failure to do so can lead to * future recovery actions (e.g. EFI and unlinked list recovery) can * operate on the buffers and they won't get the verifier attached. This * can lead to blocks on disk having the correct content but a stale * CRC. * * It is safe to assume these clean buffers are currently up to date. * If the buffer is dirtied by a later transaction being replayed, then * the verifier will be reset to match whatever recover turns that * buffer into. */ lsn = xlog_recover_get_buf_lsn(mp, bp); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { trace_xfs_log_recover_buf_skip(log, buf_f); xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); goto out_release; } if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); if (error) goto out_release; } else if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { bool dirty; dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); if (!dirty) goto out_release; } else { xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); } /* * Perform delayed write on the buffer. Asynchronous writes will be * slower when taking into account all the buffers to be flushed. * * Also make sure that only inode buffers with good sizes stay in * the buffer cache. The kernel moves inodes in buffers of 1 block * or inode_cluster_size bytes, whichever is bigger. The inode * buffers in the log can be a different size if the log was generated * by an older kernel using unclustered inode buffers or a newer kernel * running with a different inode cluster size. Regardless, if the * the inode buffer size isn't max(blocksize, inode_cluster_size) * for *our* value of inode_cluster_size, then we need to keep * the buffer out of the buffer cache so that the buffer won't * overlap with future reads of those inodes. */ if (XFS_DINODE_MAGIC == be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { xfs_buf_stale(bp); error = xfs_bwrite(bp); } else { ASSERT(bp->b_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); } out_release: xfs_buf_relse(bp); return error; cancelled: trace_xfs_log_recover_buf_cancel(log, buf_f); return 0; } /* * Inode fork owner changes * * If we have been told that we have to reparent the inode fork, it's because an * extent swap operation on a CRC enabled filesystem has been done and we are * replaying it. We need to walk the BMBT of the appropriate fork and change the * owners of it. * * The complexity here is that we don't have an inode context to work with, so * after we've replayed the inode we need to instantiate one. This is where the * fun begins. * * We are in the middle of log recovery, so we can't run transactions. That * means we cannot use cache coherent inode instantiation via xfs_iget(), as * that will result in the corresponding iput() running the inode through * xfs_inactive(). If we've just replayed an inode core that changes the link * count to zero (i.e. it's been unlinked), then xfs_inactive() will run * transactions (bad!). * * So, to avoid this, we instantiate an inode directly from the inode core we've * just recovered. We have the buffer still locked, and all we really need to * instantiate is the inode core and the forks being modified. We can do this * manually, then run the inode btree owner change, and then tear down the * xfs_inode without having to run any transactions at all. * * Also, because we don't have a transaction context available here but need to * gather all the buffers we modify for writeback so we pass the buffer_list * instead for the operation to use. */ STATIC int xfs_recover_inode_owner_change( struct xfs_mount *mp, struct xfs_dinode *dip, struct xfs_inode_log_format *in_f, struct list_head *buffer_list) { struct xfs_inode *ip; int error; ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); ip = xfs_inode_alloc(mp, in_f->ilf_ino); if (!ip) return -ENOMEM; /* instantiate the inode */ ASSERT(dip->di_version >= 3); xfs_inode_from_disk(ip, dip); error = xfs_iformat_fork(ip, dip); if (error) goto out_free_ip; if (!xfs_inode_verify_forks(ip)) { error = -EFSCORRUPTED; goto out_free_ip; } if (in_f->ilf_fields & XFS_ILOG_DOWNER) { ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, ip->i_ino, buffer_list); if (error) goto out_free_ip; } if (in_f->ilf_fields & XFS_ILOG_AOWNER) { ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, ip->i_ino, buffer_list); if (error) goto out_free_ip; } out_free_ip: xfs_inode_free(ip); return error; } STATIC int xlog_recover_inode_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { struct xfs_inode_log_format *in_f; xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; xfs_dinode_t *dip; int len; char *src; char *dest; int error; int attr_index; uint fields; struct xfs_log_dinode *ldip; uint isize; int need_free = 0; if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { in_f = item->ri_buf[0].i_addr; } else { in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0); need_free = 1; error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); if (error) goto error; } /* * Inode buffers can be freed, look out for it, * and do not replay the inode. */ if (xlog_is_buffer_cancelled(log, in_f->ilf_blkno, in_f->ilf_len)) { error = 0; trace_xfs_log_recover_inode_cancel(log, in_f); goto error; } trace_xfs_log_recover_inode_recover(log, in_f); error = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, &bp, &xfs_inode_buf_ops); if (error) goto error; ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); dip = xfs_buf_offset(bp, in_f->ilf_boffset); /* * Make sure the place we're flushing out to really looks * like an inode! */ if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) { xfs_alert(mp, "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", __func__, dip, bp, in_f->ilf_ino); error = -EFSCORRUPTED; goto out_release; } ldip = item->ri_buf[1].i_addr; if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) { xfs_alert(mp, "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", __func__, item, in_f->ilf_ino); error = -EFSCORRUPTED; goto out_release; } /* * If the inode has an LSN in it, recover the inode only if it's less * than the lsn of the transaction we are replaying. Note: we still * need to replay an owner change even though the inode is more recent * than the transaction as there is no guarantee that all the btree * blocks are more recent than this transaction, too. */ if (dip->di_version >= 3) { xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { trace_xfs_log_recover_inode_skip(log, in_f); error = 0; goto out_owner_change; } } /* * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes * are transactional and if ordering is necessary we can determine that * more accurately by the LSN field in the V3 inode core. Don't trust * the inode versions we might be changing them here - use the * superblock flag to determine whether we need to look at di_flushiter * to skip replay when the on disk inode is newer than the log one */ if (!xfs_sb_version_has_v3inode(&mp->m_sb) && ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { /* * Deal with the wrap case, DI_MAX_FLUSH is less * than smaller numbers */ if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { /* do nothing */ } else { trace_xfs_log_recover_inode_skip(log, in_f); error = 0; goto out_release; } } /* Take the opportunity to reset the flush iteration count */ ldip->di_flushiter = 0; if (unlikely(S_ISREG(ldip->di_mode))) { if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && (ldip->di_format != XFS_DINODE_FMT_BTREE)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip)); xfs_alert(mp, "%s: Bad regular inode log record, rec ptr "PTR_FMT", " "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", __func__, item, dip, bp, in_f->ilf_ino); error = -EFSCORRUPTED; goto out_release; } } else if (unlikely(S_ISDIR(ldip->di_mode))) { if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && (ldip->di_format != XFS_DINODE_FMT_BTREE) && (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip)); xfs_alert(mp, "%s: Bad dir inode log record, rec ptr "PTR_FMT", " "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", __func__, item, dip, bp, in_f->ilf_ino); error = -EFSCORRUPTED; goto out_release; } } if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip)); xfs_alert(mp, "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", __func__, item, dip, bp, in_f->ilf_ino, ldip->di_nextents + ldip->di_anextents, ldip->di_nblocks); error = -EFSCORRUPTED; goto out_release; } if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip)); xfs_alert(mp, "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); error = -EFSCORRUPTED; goto out_release; } isize = xfs_log_dinode_size(mp); if (unlikely(item->ri_buf[1].i_len > isize)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", XFS_ERRLEVEL_LOW, mp, ldip, sizeof(*ldip)); xfs_alert(mp, "%s: Bad inode log record length %d, rec ptr "PTR_FMT, __func__, item->ri_buf[1].i_len, item); error = -EFSCORRUPTED; goto out_release; } /* recover the log dinode inode into the on disk inode */ xfs_log_dinode_to_disk(ldip, dip); fields = in_f->ilf_fields; if (fields & XFS_ILOG_DEV) xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); if (in_f->ilf_size == 2) goto out_owner_change; len = item->ri_buf[2].i_len; src = item->ri_buf[2].i_addr; ASSERT(in_f->ilf_size <= 4); ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); ASSERT(!(fields & XFS_ILOG_DFORK) || (len == in_f->ilf_dsize)); switch (fields & XFS_ILOG_DFORK) { case XFS_ILOG_DDATA: case XFS_ILOG_DEXT: memcpy(XFS_DFORK_DPTR(dip), src, len); break; case XFS_ILOG_DBROOT: xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), XFS_DFORK_DSIZE(dip, mp)); break; default: /* * There are no data fork flags set. */ ASSERT((fields & XFS_ILOG_DFORK) == 0); break; } /* * If we logged any attribute data, recover it. There may or * may not have been any other non-core data logged in this * transaction. */ if (in_f->ilf_fields & XFS_ILOG_AFORK) { if (in_f->ilf_fields & XFS_ILOG_DFORK) { attr_index = 3; } else { attr_index = 2; } len = item->ri_buf[attr_index].i_len; src = item->ri_buf[attr_index].i_addr; ASSERT(len == in_f->ilf_asize); switch (in_f->ilf_fields & XFS_ILOG_AFORK) { case XFS_ILOG_ADATA: case XFS_ILOG_AEXT: dest = XFS_DFORK_APTR(dip); ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); memcpy(dest, src, len); break; case XFS_ILOG_ABROOT: dest = XFS_DFORK_APTR(dip); xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, (xfs_bmdr_block_t*)dest, XFS_DFORK_ASIZE(dip, mp)); break; default: xfs_warn(log->l_mp, "%s: Invalid flag", __func__); ASSERT(0); error = -EFSCORRUPTED; goto out_release; } } out_owner_change: /* Recover the swapext owner change unless inode has been deleted */ if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && (dip->di_mode != 0)) error = xfs_recover_inode_owner_change(mp, dip, in_f, buffer_list); /* re-generate the checksum. */ xfs_dinode_calc_crc(log->l_mp, dip); ASSERT(bp->b_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); out_release: xfs_buf_relse(bp); error: if (need_free) kmem_free(in_f); return error; } /* * Recover QUOTAOFF records. We simply make a note of it in the xlog * structure, so that we know not to do any dquot item or dquot buffer recovery, * of that type. */ STATIC int xlog_recover_quotaoff_pass1( struct xlog *log, struct xlog_recover_item *item) { xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; ASSERT(qoff_f); /* * The logitem format's flag tells us if this was user quotaoff, * group/project quotaoff or both. */ if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_USER; if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_PROJ; if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_GROUP; return 0; } /* * Recover a dquot record */ STATIC int xlog_recover_dquot_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; struct xfs_disk_dquot *ddq, *recddq; xfs_failaddr_t fa; int error; xfs_dq_logformat_t *dq_f; uint type; /* * Filesystems are required to send in quota flags at mount time. */ if (mp->m_qflags == 0) return 0; recddq = item->ri_buf[1].i_addr; if (recddq == NULL) { xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); return -EFSCORRUPTED; } if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) { xfs_alert(log->l_mp, "dquot too small (%d) in %s.", item->ri_buf[1].i_len, __func__); return -EFSCORRUPTED; } /* * This type of quotas was turned off, so ignore this record. */ type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); ASSERT(type); if (log->l_quotaoffs_flag & type) return 0; /* * At this point we know that quota was _not_ turned off. * Since the mount flags are not indicating to us otherwise, this * must mean that quota is on, and the dquot needs to be replayed. * Remember that we may not have fully recovered the superblock yet, * so we can't do the usual trick of looking at the SB quota bits. * * The other possibility, of course, is that the quota subsystem was * removed since the last mount - ENOSYS. */ dq_f = item->ri_buf[0].i_addr; ASSERT(dq_f); fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); if (fa) { xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", dq_f->qlf_id, fa); return -EFSCORRUPTED; } ASSERT(dq_f->qlf_len == 1); /* * At this point we are assuming that the dquots have been allocated * and hence the buffer has valid dquots stamped in it. It should, * therefore, pass verifier validation. If the dquot is bad, then the * we'll return an error here, so we don't need to specifically check * the dquot in the buffer after the verifier has run. */ error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, &xfs_dquot_buf_ops); if (error) return error; ASSERT(bp); ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); /* * If the dquot has an LSN in it, recover the dquot only if it's less * than the lsn of the transaction we are replaying. */ if (xfs_sb_version_hascrc(&mp->m_sb)) { struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { goto out_release; } } memcpy(ddq, recddq, item->ri_buf[1].i_len); if (xfs_sb_version_hascrc(&mp->m_sb)) { xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), XFS_DQUOT_CRC_OFF); } ASSERT(dq_f->qlf_size == 2); ASSERT(bp->b_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); out_release: xfs_buf_relse(bp); return 0; } /* * This routine is called to create an in-core extent free intent * item from the efi format structure which was logged on disk. * It allocates an in-core efi, copies the extents from the format * structure into it, and adds the efi to the AIL with the given * LSN. */ STATIC int xlog_recover_efi_pass2( struct xlog *log, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; struct xfs_mount *mp = log->l_mp; struct xfs_efi_log_item *efip; struct xfs_efi_log_format *efi_formatp; efi_formatp = item->ri_buf[0].i_addr; efip = xfs_efi_init(mp, efi_formatp->efi_nextents); error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); if (error) { xfs_efi_item_free(efip); return error; } atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); spin_lock(&log->l_ailp->ail_lock); /* * The EFI has two references. One for the EFD and one for EFI to ensure * it makes it into the AIL. Insert the EFI into the AIL directly and * drop the EFI reference. Note that xfs_trans_ail_update() drops the * AIL lock. */ xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); xfs_efi_release(efip); return 0; } /* * This routine is called when an EFD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding EFI if it * was still in the log. To do this it searches the AIL for the EFI with an id * equal to that in the EFD format structure. If we find it we drop the EFD * reference, which removes the EFI from the AIL and frees it. */ STATIC int xlog_recover_efd_pass2( struct xlog *log, struct xlog_recover_item *item) { xfs_efd_log_format_t *efd_formatp; struct xfs_efi_log_item *efip = NULL; struct xfs_log_item *lip; uint64_t efi_id; struct xfs_ail_cursor cur; struct xfs_ail *ailp = log->l_ailp; efd_formatp = item->ri_buf[0].i_addr; ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); efi_id = efd_formatp->efd_efi_id; /* * Search for the EFI with the id in the EFD format structure in the * AIL. */ spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { if (lip->li_type == XFS_LI_EFI) { efip = (struct xfs_efi_log_item *)lip; if (efip->efi_format.efi_id == efi_id) { /* * Drop the EFD reference to the EFI. This * removes the EFI from the AIL and frees it. */ spin_unlock(&ailp->ail_lock); xfs_efi_release(efip); spin_lock(&ailp->ail_lock); break; } } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); return 0; } /* * This routine is called to create an in-core extent rmap update * item from the rui format structure which was logged on disk. * It allocates an in-core rui, copies the extents from the format * structure into it, and adds the rui to the AIL with the given * LSN. */ STATIC int xlog_recover_rui_pass2( struct xlog *log, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; struct xfs_mount *mp = log->l_mp; struct xfs_rui_log_item *ruip; struct xfs_rui_log_format *rui_formatp; rui_formatp = item->ri_buf[0].i_addr; ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); if (error) { xfs_rui_item_free(ruip); return error; } atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); spin_lock(&log->l_ailp->ail_lock); /* * The RUI has two references. One for the RUD and one for RUI to ensure * it makes it into the AIL. Insert the RUI into the AIL directly and * drop the RUI reference. Note that xfs_trans_ail_update() drops the * AIL lock. */ xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); xfs_rui_release(ruip); return 0; } /* * This routine is called when an RUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding RUI if it * was still in the log. To do this it searches the AIL for the RUI with an id * equal to that in the RUD format structure. If we find it we drop the RUD * reference, which removes the RUI from the AIL and frees it. */ STATIC int xlog_recover_rud_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_rud_log_format *rud_formatp; struct xfs_rui_log_item *ruip = NULL; struct xfs_log_item *lip; uint64_t rui_id; struct xfs_ail_cursor cur; struct xfs_ail *ailp = log->l_ailp; rud_formatp = item->ri_buf[0].i_addr; ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); rui_id = rud_formatp->rud_rui_id; /* * Search for the RUI with the id in the RUD format structure in the * AIL. */ spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { if (lip->li_type == XFS_LI_RUI) { ruip = (struct xfs_rui_log_item *)lip; if (ruip->rui_format.rui_id == rui_id) { /* * Drop the RUD reference to the RUI. This * removes the RUI from the AIL and frees it. */ spin_unlock(&ailp->ail_lock); xfs_rui_release(ruip); spin_lock(&ailp->ail_lock); break; } } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); return 0; } /* * Copy an CUI format buffer from the given buf, and into the destination * CUI format structure. The CUI/CUD items were designed not to need any * special alignment handling. */ static int xfs_cui_copy_format( struct xfs_log_iovec *buf, struct xfs_cui_log_format *dst_cui_fmt) { struct xfs_cui_log_format *src_cui_fmt; uint len; src_cui_fmt = buf->i_addr; len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); if (buf->i_len == len) { memcpy(dst_cui_fmt, src_cui_fmt, len); return 0; } XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } /* * This routine is called to create an in-core extent refcount update * item from the cui format structure which was logged on disk. * It allocates an in-core cui, copies the extents from the format * structure into it, and adds the cui to the AIL with the given * LSN. */ STATIC int xlog_recover_cui_pass2( struct xlog *log, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; struct xfs_mount *mp = log->l_mp; struct xfs_cui_log_item *cuip; struct xfs_cui_log_format *cui_formatp; cui_formatp = item->ri_buf[0].i_addr; cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); if (error) { xfs_cui_item_free(cuip); return error; } atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); spin_lock(&log->l_ailp->ail_lock); /* * The CUI has two references. One for the CUD and one for CUI to ensure * it makes it into the AIL. Insert the CUI into the AIL directly and * drop the CUI reference. Note that xfs_trans_ail_update() drops the * AIL lock. */ xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); xfs_cui_release(cuip); return 0; } /* * This routine is called when an CUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding CUI if it * was still in the log. To do this it searches the AIL for the CUI with an id * equal to that in the CUD format structure. If we find it we drop the CUD * reference, which removes the CUI from the AIL and frees it. */ STATIC int xlog_recover_cud_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_cud_log_format *cud_formatp; struct xfs_cui_log_item *cuip = NULL; struct xfs_log_item *lip; uint64_t cui_id; struct xfs_ail_cursor cur; struct xfs_ail *ailp = log->l_ailp; cud_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); return -EFSCORRUPTED; } cui_id = cud_formatp->cud_cui_id; /* * Search for the CUI with the id in the CUD format structure in the * AIL. */ spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { if (lip->li_type == XFS_LI_CUI) { cuip = (struct xfs_cui_log_item *)lip; if (cuip->cui_format.cui_id == cui_id) { /* * Drop the CUD reference to the CUI. This * removes the CUI from the AIL and frees it. */ spin_unlock(&ailp->ail_lock); xfs_cui_release(cuip); spin_lock(&ailp->ail_lock); break; } } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); return 0; } /* * Copy an BUI format buffer from the given buf, and into the destination * BUI format structure. The BUI/BUD items were designed not to need any * special alignment handling. */ static int xfs_bui_copy_format( struct xfs_log_iovec *buf, struct xfs_bui_log_format *dst_bui_fmt) { struct xfs_bui_log_format *src_bui_fmt; uint len; src_bui_fmt = buf->i_addr; len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); if (buf->i_len == len) { memcpy(dst_bui_fmt, src_bui_fmt, len); return 0; } XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } /* * This routine is called to create an in-core extent bmap update * item from the bui format structure which was logged on disk. * It allocates an in-core bui, copies the extents from the format * structure into it, and adds the bui to the AIL with the given * LSN. */ STATIC int xlog_recover_bui_pass2( struct xlog *log, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; struct xfs_mount *mp = log->l_mp; struct xfs_bui_log_item *buip; struct xfs_bui_log_format *bui_formatp; bui_formatp = item->ri_buf[0].i_addr; if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); return -EFSCORRUPTED; } buip = xfs_bui_init(mp); error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); if (error) { xfs_bui_item_free(buip); return error; } atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); spin_lock(&log->l_ailp->ail_lock); /* * The RUI has two references. One for the RUD and one for RUI to ensure * it makes it into the AIL. Insert the RUI into the AIL directly and * drop the RUI reference. Note that xfs_trans_ail_update() drops the * AIL lock. */ xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); xfs_bui_release(buip); return 0; } /* * This routine is called when an BUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding BUI if it * was still in the log. To do this it searches the AIL for the BUI with an id * equal to that in the BUD format structure. If we find it we drop the BUD * reference, which removes the BUI from the AIL and frees it. */ STATIC int xlog_recover_bud_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_bud_log_format *bud_formatp; struct xfs_bui_log_item *buip = NULL; struct xfs_log_item *lip; uint64_t bui_id; struct xfs_ail_cursor cur; struct xfs_ail *ailp = log->l_ailp; bud_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); return -EFSCORRUPTED; } bui_id = bud_formatp->bud_bui_id; /* * Search for the BUI with the id in the BUD format structure in the * AIL. */ spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { if (lip->li_type == XFS_LI_BUI) { buip = (struct xfs_bui_log_item *)lip; if (buip->bui_format.bui_id == bui_id) { /* * Drop the BUD reference to the BUI. This * removes the BUI from the AIL and frees it. */ spin_unlock(&ailp->ail_lock); xfs_bui_release(buip); spin_lock(&ailp->ail_lock); break; } } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); return 0; } /* * This routine is called when an inode create format structure is found in a * committed transaction in the log. It's purpose is to initialise the inodes * being allocated on disk. This requires us to get inode cluster buffers that * match the range to be initialised, stamped with inode templates and written * by delayed write so that subsequent modifications will hit the cached buffer * and only need writing out at the end of recovery. */ STATIC int xlog_recover_do_icreate_pass2( struct xlog *log, struct list_head *buffer_list, xlog_recover_item_t *item) { struct xfs_mount *mp = log->l_mp; struct xfs_icreate_log *icl; struct xfs_ino_geometry *igeo = M_IGEO(mp); xfs_agnumber_t agno; xfs_agblock_t agbno; unsigned int count; unsigned int isize; xfs_agblock_t length; int bb_per_cluster; int cancel_count; int nbufs; int i; icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; if (icl->icl_type != XFS_LI_ICREATE) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); return -EINVAL; } if (icl->icl_size != 1) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); return -EINVAL; } agno = be32_to_cpu(icl->icl_ag); if (agno >= mp->m_sb.sb_agcount) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); return -EINVAL; } agbno = be32_to_cpu(icl->icl_agbno); if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); return -EINVAL; } isize = be32_to_cpu(icl->icl_isize); if (isize != mp->m_sb.sb_inodesize) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); return -EINVAL; } count = be32_to_cpu(icl->icl_count); if (!count) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); return -EINVAL; } length = be32_to_cpu(icl->icl_length); if (!length || length >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); return -EINVAL; } /* * The inode chunk is either full or sparse and we only support * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. */ if (length != igeo->ialloc_blks && length != igeo->ialloc_min_blks) { xfs_warn(log->l_mp, "%s: unsupported chunk length", __FUNCTION__); return -EINVAL; } /* verify inode count is consistent with extent length */ if ((count >> mp->m_sb.sb_inopblog) != length) { xfs_warn(log->l_mp, "%s: inconsistent inode count and chunk length", __FUNCTION__); return -EINVAL; } /* * The icreate transaction can cover multiple cluster buffers and these * buffers could have been freed and reused. Check the individual * buffers for cancellation so we don't overwrite anything written after * a cancellation. */ bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); nbufs = length / igeo->blocks_per_cluster; for (i = 0, cancel_count = 0; i < nbufs; i++) { xfs_daddr_t daddr; daddr = XFS_AGB_TO_DADDR(mp, agno, agbno + i * igeo->blocks_per_cluster); if (xlog_is_buffer_cancelled(log, daddr, bb_per_cluster)) cancel_count++; } /* * We currently only use icreate for a single allocation at a time. This * means we should expect either all or none of the buffers to be * cancelled. Be conservative and skip replay if at least one buffer is * cancelled, but warn the user that something is awry if the buffers * are not consistent. * * XXX: This must be refined to only skip cancelled clusters once we use * icreate for multiple chunk allocations. */ ASSERT(!cancel_count || cancel_count == nbufs); if (cancel_count) { if (cancel_count != nbufs) xfs_warn(mp, "WARNING: partial inode chunk cancellation, skipped icreate."); trace_xfs_log_recover_icreate_cancel(log, icl); return 0; } trace_xfs_log_recover_icreate_recover(log, icl); return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length, be32_to_cpu(icl->icl_gen)); } STATIC void xlog_recover_buffer_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL); } STATIC void xlog_recover_inode_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { struct xfs_inode_log_format *ilfp = item->ri_buf[0].i_addr; xlog_buf_readahead(log, ilfp->ilf_blkno, ilfp->ilf_len, &xfs_inode_buf_ra_ops); } else { struct xfs_inode_log_format_32 *ilfp = item->ri_buf[0].i_addr; xlog_buf_readahead(log, ilfp->ilf_blkno, ilfp->ilf_len, &xfs_inode_buf_ra_ops); } } STATIC void xlog_recover_dquot_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_mount *mp = log->l_mp; struct xfs_disk_dquot *recddq; struct xfs_dq_logformat *dq_f; uint type; if (mp->m_qflags == 0) return; recddq = item->ri_buf[1].i_addr; if (recddq == NULL) return; if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) return; type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); ASSERT(type); if (log->l_quotaoffs_flag & type) return; dq_f = item->ri_buf[0].i_addr; ASSERT(dq_f); ASSERT(dq_f->qlf_len == 1); xlog_buf_readahead(log, dq_f->qlf_blkno, XFS_FSB_TO_BB(mp, dq_f->qlf_len), &xfs_dquot_buf_ra_ops); } STATIC void xlog_recover_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { switch (ITEM_TYPE(item)) { case XFS_LI_BUF: xlog_recover_buffer_ra_pass2(log, item); break; case XFS_LI_INODE: xlog_recover_inode_ra_pass2(log, item); break; case XFS_LI_DQUOT: xlog_recover_dquot_ra_pass2(log, item); break; case XFS_LI_EFI: case XFS_LI_EFD: case XFS_LI_QUOTAOFF: case XFS_LI_RUI: case XFS_LI_RUD: case XFS_LI_CUI: case XFS_LI_CUD: case XFS_LI_BUI: case XFS_LI_BUD: default: break; } } STATIC int xlog_recover_commit_pass1( struct xlog *log, struct xlog_recover *trans, struct xlog_recover_item *item) { trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); switch (ITEM_TYPE(item)) { case XFS_LI_BUF: return xlog_recover_buffer_pass1(log, item); case XFS_LI_QUOTAOFF: return xlog_recover_quotaoff_pass1(log, item); case XFS_LI_INODE: case XFS_LI_EFI: case XFS_LI_EFD: case XFS_LI_DQUOT: case XFS_LI_ICREATE: case XFS_LI_RUI: case XFS_LI_RUD: case XFS_LI_CUI: case XFS_LI_CUD: case XFS_LI_BUI: case XFS_LI_BUD: /* nothing to do in pass 1 */ return 0; default: xfs_warn(log->l_mp, "%s: invalid item type (%d)", __func__, ITEM_TYPE(item)); ASSERT(0); return -EFSCORRUPTED; } } STATIC int xlog_recover_commit_pass2( struct xlog *log, struct xlog_recover *trans, struct list_head *buffer_list, struct xlog_recover_item *item) { trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); switch (ITEM_TYPE(item)) { case XFS_LI_BUF: return xlog_recover_buffer_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_INODE: return xlog_recover_inode_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_EFI: return xlog_recover_efi_pass2(log, item, trans->r_lsn); case XFS_LI_EFD: return xlog_recover_efd_pass2(log, item); case XFS_LI_RUI: return xlog_recover_rui_pass2(log, item, trans->r_lsn); case XFS_LI_RUD: return xlog_recover_rud_pass2(log, item); case XFS_LI_CUI: return xlog_recover_cui_pass2(log, item, trans->r_lsn); case XFS_LI_CUD: return xlog_recover_cud_pass2(log, item); case XFS_LI_BUI: return xlog_recover_bui_pass2(log, item, trans->r_lsn); case XFS_LI_BUD: return xlog_recover_bud_pass2(log, item); case XFS_LI_DQUOT: return xlog_recover_dquot_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_ICREATE: return xlog_recover_do_icreate_pass2(log, buffer_list, item); case XFS_LI_QUOTAOFF: /* nothing to do in pass2 */ return 0; default: xfs_warn(log->l_mp, "%s: invalid item type (%d)", __func__, ITEM_TYPE(item)); ASSERT(0); return -EFSCORRUPTED; } } STATIC int xlog_recover_items_pass2( struct xlog *log, struct xlog_recover *trans, struct list_head *buffer_list, struct list_head *item_list) { struct xlog_recover_item *item; int error = 0; list_for_each_entry(item, item_list, ri_list) { error = xlog_recover_commit_pass2(log, trans, buffer_list, item); if (error) return error; } return error; } /* * Perform the transaction. * * If the transaction modifies a buffer or inode, do it now. Otherwise, * EFIs and EFDs get queued up by adding entries into the AIL for them. */ STATIC int xlog_recover_commit_trans( struct xlog *log, struct xlog_recover *trans, int pass, struct list_head *buffer_list) { int error = 0; int items_queued = 0; struct xlog_recover_item *item; struct xlog_recover_item *next; LIST_HEAD (ra_list); LIST_HEAD (done_list); #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 hlist_del_init(&trans->r_list); error = xlog_recover_reorder_trans(log, trans, pass); if (error) return error; list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { switch (pass) { case XLOG_RECOVER_PASS1: error = xlog_recover_commit_pass1(log, trans, item); break; case XLOG_RECOVER_PASS2: xlog_recover_ra_pass2(log, item); list_move_tail(&item->ri_list, &ra_list); items_queued++; if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { error = xlog_recover_items_pass2(log, trans, buffer_list, &ra_list); list_splice_tail_init(&ra_list, &done_list); items_queued = 0; } break; default: ASSERT(0); } if (error) goto out; } out: if (!list_empty(&ra_list)) { if (!error) error = xlog_recover_items_pass2(log, trans, buffer_list, &ra_list); list_splice_tail_init(&ra_list, &done_list); } if (!list_empty(&done_list)) list_splice_init(&done_list, &trans->r_itemq); return error; } STATIC void xlog_recover_add_item( struct list_head *head) { xlog_recover_item_t *item; item = kmem_zalloc(sizeof(xlog_recover_item_t), 0); INIT_LIST_HEAD(&item->ri_list); list_add_tail(&item->ri_list, head); } STATIC int xlog_recover_add_to_cont_trans( struct xlog *log, struct xlog_recover *trans, char *dp, int len) { xlog_recover_item_t *item; char *ptr, *old_ptr; int old_len; /* * If the transaction is empty, the header was split across this and the * previous record. Copy the rest of the header. */ if (list_empty(&trans->r_itemq)) { ASSERT(len <= sizeof(struct xfs_trans_header)); if (len > sizeof(struct xfs_trans_header)) { xfs_warn(log->l_mp, "%s: bad header length", __func__); return -EFSCORRUPTED; } xlog_recover_add_item(&trans->r_itemq); ptr = (char *)&trans->r_theader + sizeof(struct xfs_trans_header) - len; memcpy(ptr, dp, len); return 0; } /* take the tail entry */ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; old_len = item->ri_buf[item->ri_cnt-1].i_len; ptr = kmem_realloc(old_ptr, len + old_len, 0); memcpy(&ptr[old_len], dp, len); item->ri_buf[item->ri_cnt-1].i_len += len; item->ri_buf[item->ri_cnt-1].i_addr = ptr; trace_xfs_log_recover_item_add_cont(log, trans, item, 0); return 0; } /* * The next region to add is the start of a new region. It could be * a whole region or it could be the first part of a new region. Because * of this, the assumption here is that the type and size fields of all * format structures fit into the first 32 bits of the structure. * * This works because all regions must be 32 bit aligned. Therefore, we * either have both fields or we have neither field. In the case we have * neither field, the data part of the region is zero length. We only have * a log_op_header and can throw away the header since a new one will appear * later. If we have at least 4 bytes, then we can determine how many regions * will appear in the current log item. */ STATIC int xlog_recover_add_to_trans( struct xlog *log, struct xlog_recover *trans, char *dp, int len) { struct xfs_inode_log_format *in_f; /* any will do */ xlog_recover_item_t *item; char *ptr; if (!len) return 0; if (list_empty(&trans->r_itemq)) { /* we need to catch log corruptions here */ if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { xfs_warn(log->l_mp, "%s: bad header magic number", __func__); ASSERT(0); return -EFSCORRUPTED; } if (len > sizeof(struct xfs_trans_header)) { xfs_warn(log->l_mp, "%s: bad header length", __func__); ASSERT(0); return -EFSCORRUPTED; } /* * The transaction header can be arbitrarily split across op * records. If we don't have the whole thing here, copy what we * do have and handle the rest in the next record. */ if (len == sizeof(struct xfs_trans_header)) xlog_recover_add_item(&trans->r_itemq); memcpy(&trans->r_theader, dp, len); return 0; } ptr = kmem_alloc(len, 0); memcpy(ptr, dp, len); in_f = (struct xfs_inode_log_format *)ptr; /* take the tail entry */ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); if (item->ri_total != 0 && item->ri_total == item->ri_cnt) { /* tail item is in use, get a new one */ xlog_recover_add_item(&trans->r_itemq); item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); } if (item->ri_total == 0) { /* first region to be added */ if (in_f->ilf_size == 0 || in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { xfs_warn(log->l_mp, "bad number of regions (%d) in inode log format", in_f->ilf_size); ASSERT(0); kmem_free(ptr); return -EFSCORRUPTED; } item->ri_total = in_f->ilf_size; item->ri_buf = kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 0); } if (item->ri_total <= item->ri_cnt) { xfs_warn(log->l_mp, "log item region count (%d) overflowed size (%d)", item->ri_cnt, item->ri_total); ASSERT(0); kmem_free(ptr); return -EFSCORRUPTED; } /* Description region is ri_buf[0] */ item->ri_buf[item->ri_cnt].i_addr = ptr; item->ri_buf[item->ri_cnt].i_len = len; item->ri_cnt++; trace_xfs_log_recover_item_add(log, trans, item, 0); return 0; } /* * Free up any resources allocated by the transaction * * Remember that EFIs, EFDs, and IUNLINKs are handled later. */ STATIC void xlog_recover_free_trans( struct xlog_recover *trans) { xlog_recover_item_t *item, *n; int i; hlist_del_init(&trans->r_list); list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { /* Free the regions in the item. */ list_del(&item->ri_list); for (i = 0; i < item->ri_cnt; i++) kmem_free(item->ri_buf[i].i_addr); /* Free the item itself */ kmem_free(item->ri_buf); kmem_free(item); } /* Free the transaction recover structure */ kmem_free(trans); } /* * On error or completion, trans is freed. */ STATIC int xlog_recovery_process_trans( struct xlog *log, struct xlog_recover *trans, char *dp, unsigned int len, unsigned int flags, int pass, struct list_head *buffer_list) { int error = 0; bool freeit = false; /* mask off ophdr transaction container flags */ flags &= ~XLOG_END_TRANS; if (flags & XLOG_WAS_CONT_TRANS) flags &= ~XLOG_CONTINUE_TRANS; /* * Callees must not free the trans structure. We'll decide if we need to * free it or not based on the operation being done and it's result. */ switch (flags) { /* expected flag values */ case 0: case XLOG_CONTINUE_TRANS: error = xlog_recover_add_to_trans(log, trans, dp, len); break; case XLOG_WAS_CONT_TRANS: error = xlog_recover_add_to_cont_trans(log, trans, dp, len); break; case XLOG_COMMIT_TRANS: error = xlog_recover_commit_trans(log, trans, pass, buffer_list); /* success or fail, we are now done with this transaction. */ freeit = true; break; /* unexpected flag values */ case XLOG_UNMOUNT_TRANS: /* just skip trans */ xfs_warn(log->l_mp, "%s: Unmount LR", __func__); freeit = true; break; case XLOG_START_TRANS: default: xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); ASSERT(0); error = -EFSCORRUPTED; break; } if (error || freeit) xlog_recover_free_trans(trans); return error; } /* * Lookup the transaction recovery structure associated with the ID in the * current ophdr. If the transaction doesn't exist and the start flag is set in * the ophdr, then allocate a new transaction for future ID matches to find. * Either way, return what we found during the lookup - an existing transaction * or nothing. */ STATIC struct xlog_recover * xlog_recover_ophdr_to_trans( struct hlist_head rhash[], struct xlog_rec_header *rhead, struct xlog_op_header *ohead) { struct xlog_recover *trans; xlog_tid_t tid; struct hlist_head *rhp; tid = be32_to_cpu(ohead->oh_tid); rhp = &rhash[XLOG_RHASH(tid)]; hlist_for_each_entry(trans, rhp, r_list) { if (trans->r_log_tid == tid) return trans; } /* * skip over non-start transaction headers - we could be * processing slack space before the next transaction starts */ if (!(ohead->oh_flags & XLOG_START_TRANS)) return NULL; ASSERT(be32_to_cpu(ohead->oh_len) == 0); /* * This is a new transaction so allocate a new recovery container to * hold the recovery ops that will follow. */ trans = kmem_zalloc(sizeof(struct xlog_recover), 0); trans->r_log_tid = tid; trans->r_lsn = be64_to_cpu(rhead->h_lsn); INIT_LIST_HEAD(&trans->r_itemq); INIT_HLIST_NODE(&trans->r_list); hlist_add_head(&trans->r_list, rhp); /* * Nothing more to do for this ophdr. Items to be added to this new * transaction will be in subsequent ophdr containers. */ return NULL; } STATIC int xlog_recover_process_ophdr( struct xlog *log, struct hlist_head rhash[], struct xlog_rec_header *rhead, struct xlog_op_header *ohead, char *dp, char *end, int pass, struct list_head *buffer_list) { struct xlog_recover *trans; unsigned int len; int error; /* Do we understand who wrote this op? */ if (ohead->oh_clientid != XFS_TRANSACTION && ohead->oh_clientid != XFS_LOG) { xfs_warn(log->l_mp, "%s: bad clientid 0x%x", __func__, ohead->oh_clientid); ASSERT(0); return -EFSCORRUPTED; } /* * Check the ophdr contains all the data it is supposed to contain. */ len = be32_to_cpu(ohead->oh_len); if (dp + len > end) { xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); WARN_ON(1); return -EFSCORRUPTED; } trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); if (!trans) { /* nothing to do, so skip over this ophdr */ return 0; } /* * The recovered buffer queue is drained only once we know that all * recovery items for the current LSN have been processed. This is * required because: * * - Buffer write submission updates the metadata LSN of the buffer. * - Log recovery skips items with a metadata LSN >= the current LSN of * the recovery item. * - Separate recovery items against the same metadata buffer can share * a current LSN. I.e., consider that the LSN of a recovery item is * defined as the starting LSN of the first record in which its * transaction appears, that a record can hold multiple transactions, * and/or that a transaction can span multiple records. * * In other words, we are allowed to submit a buffer from log recovery * once per current LSN. Otherwise, we may incorrectly skip recovery * items and cause corruption. * * We don't know up front whether buffers are updated multiple times per * LSN. Therefore, track the current LSN of each commit log record as it * is processed and drain the queue when it changes. Use commit records * because they are ordered correctly by the logging code. */ if (log->l_recovery_lsn != trans->r_lsn && ohead->oh_flags & XLOG_COMMIT_TRANS) { error = xfs_buf_delwri_submit(buffer_list); if (error) return error; log->l_recovery_lsn = trans->r_lsn; } return xlog_recovery_process_trans(log, trans, dp, len, ohead->oh_flags, pass, buffer_list); } /* * There are two valid states of the r_state field. 0 indicates that the * transaction structure is in a normal state. We have either seen the * start of the transaction or the last operation we added was not a partial * operation. If the last operation we added to the transaction was a * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. * * NOTE: skip LRs with 0 data length. */ STATIC int xlog_recover_process_data( struct xlog *log, struct hlist_head rhash[], struct xlog_rec_header *rhead, char *dp, int pass, struct list_head *buffer_list) { struct xlog_op_header *ohead; char *end; int num_logops; int error; end = dp + be32_to_cpu(rhead->h_len); num_logops = be32_to_cpu(rhead->h_num_logops); /* check the log format matches our own - else we can't recover */ if (xlog_header_check_recover(log->l_mp, rhead)) return -EIO; trace_xfs_log_recover_record(log, rhead, pass); while ((dp < end) && num_logops) { ohead = (struct xlog_op_header *)dp; dp += sizeof(*ohead); ASSERT(dp <= end); /* errors will abort recovery */ error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, dp, end, pass, buffer_list); if (error) return error; dp += be32_to_cpu(ohead->oh_len); num_logops--; } return 0; } /* Recover the EFI if necessary. */ STATIC int xlog_recover_process_efi( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_efi_log_item *efip; int error; /* * Skip EFIs that we've already processed. */ efip = container_of(lip, struct xfs_efi_log_item, efi_item); if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) return 0; spin_unlock(&ailp->ail_lock); error = xfs_efi_recover(mp, efip); spin_lock(&ailp->ail_lock); return error; } /* Release the EFI since we're cancelling everything. */ STATIC void xlog_recover_cancel_efi( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_efi_log_item *efip; efip = container_of(lip, struct xfs_efi_log_item, efi_item); spin_unlock(&ailp->ail_lock); xfs_efi_release(efip); spin_lock(&ailp->ail_lock); } /* Recover the RUI if necessary. */ STATIC int xlog_recover_process_rui( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_rui_log_item *ruip; int error; /* * Skip RUIs that we've already processed. */ ruip = container_of(lip, struct xfs_rui_log_item, rui_item); if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) return 0; spin_unlock(&ailp->ail_lock); error = xfs_rui_recover(mp, ruip); spin_lock(&ailp->ail_lock); return error; } /* Release the RUI since we're cancelling everything. */ STATIC void xlog_recover_cancel_rui( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_rui_log_item *ruip; ruip = container_of(lip, struct xfs_rui_log_item, rui_item); spin_unlock(&ailp->ail_lock); xfs_rui_release(ruip); spin_lock(&ailp->ail_lock); } /* Recover the CUI if necessary. */ STATIC int xlog_recover_process_cui( struct xfs_trans *parent_tp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_cui_log_item *cuip; int error; /* * Skip CUIs that we've already processed. */ cuip = container_of(lip, struct xfs_cui_log_item, cui_item); if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) return 0; spin_unlock(&ailp->ail_lock); error = xfs_cui_recover(parent_tp, cuip); spin_lock(&ailp->ail_lock); return error; } /* Release the CUI since we're cancelling everything. */ STATIC void xlog_recover_cancel_cui( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_cui_log_item *cuip; cuip = container_of(lip, struct xfs_cui_log_item, cui_item); spin_unlock(&ailp->ail_lock); xfs_cui_release(cuip); spin_lock(&ailp->ail_lock); } /* Recover the BUI if necessary. */ STATIC int xlog_recover_process_bui( struct xfs_trans *parent_tp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_bui_log_item *buip; int error; /* * Skip BUIs that we've already processed. */ buip = container_of(lip, struct xfs_bui_log_item, bui_item); if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) return 0; spin_unlock(&ailp->ail_lock); error = xfs_bui_recover(parent_tp, buip); spin_lock(&ailp->ail_lock); return error; } /* Release the BUI since we're cancelling everything. */ STATIC void xlog_recover_cancel_bui( struct xfs_mount *mp, struct xfs_ail *ailp, struct xfs_log_item *lip) { struct xfs_bui_log_item *buip; buip = container_of(lip, struct xfs_bui_log_item, bui_item); spin_unlock(&ailp->ail_lock); xfs_bui_release(buip); spin_lock(&ailp->ail_lock); } /* Is this log item a deferred action intent? */ static inline bool xlog_item_is_intent(struct xfs_log_item *lip) { switch (lip->li_type) { case XFS_LI_EFI: case XFS_LI_RUI: case XFS_LI_CUI: case XFS_LI_BUI: return true; default: return false; } } /* Take all the collected deferred ops and finish them in order. */ static int xlog_finish_defer_ops( struct xfs_trans *parent_tp) { struct xfs_mount *mp = parent_tp->t_mountp; struct xfs_trans *tp; int64_t freeblks; uint resblks; int error; /* * We're finishing the defer_ops that accumulated as a result of * recovering unfinished intent items during log recovery. We * reserve an itruncate transaction because it is the largest * permanent transaction type. Since we're the only user of the fs * right now, take 93% (15/16) of the available free blocks. Use * weird math to avoid a 64-bit division. */ freeblks = percpu_counter_sum(&mp->m_fdblocks); if (freeblks <= 0) return -ENOSPC; resblks = min_t(int64_t, UINT_MAX, freeblks); resblks = (resblks * 15) >> 4; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; /* transfer all collected dfops to this transaction */ xfs_defer_move(tp, parent_tp); return xfs_trans_commit(tp); } /* * When this is called, all of the log intent items which did not have * corresponding log done items should be in the AIL. What we do now * is update the data structures associated with each one. * * Since we process the log intent items in normal transactions, they * will be removed at some point after the commit. This prevents us * from just walking down the list processing each one. We'll use a * flag in the intent item to skip those that we've already processed * and use the AIL iteration mechanism's generation count to try to * speed this up at least a bit. * * When we start, we know that the intents are the only things in the * AIL. As we process them, however, other items are added to the * AIL. */ STATIC int xlog_recover_process_intents( struct xlog *log) { struct xfs_trans *parent_tp; struct xfs_ail_cursor cur; struct xfs_log_item *lip; struct xfs_ail *ailp; int error; #if defined(DEBUG) || defined(XFS_WARN) xfs_lsn_t last_lsn; #endif /* * The intent recovery handlers commit transactions to complete recovery * for individual intents, but any new deferred operations that are * queued during that process are held off until the very end. The * purpose of this transaction is to serve as a container for deferred * operations. Each intent recovery handler must transfer dfops here * before its local transaction commits, and we'll finish the entire * list below. */ error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); if (error) return error; ailp = log->l_ailp; spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); #if defined(DEBUG) || defined(XFS_WARN) last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); #endif while (lip != NULL) { /* * We're done when we see something other than an intent. * There should be no intents left in the AIL now. */ if (!xlog_item_is_intent(lip)) { #ifdef DEBUG for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) ASSERT(!xlog_item_is_intent(lip)); #endif break; } /* * We should never see a redo item with a LSN higher than * the last transaction we found in the log at the start * of recovery. */ ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); /* * NOTE: If your intent processing routine can create more * deferred ops, you /must/ attach them to the dfops in this * routine or else those subsequent intents will get * replayed in the wrong order! */ switch (lip->li_type) { case XFS_LI_EFI: error = xlog_recover_process_efi(log->l_mp, ailp, lip); break; case XFS_LI_RUI: error = xlog_recover_process_rui(log->l_mp, ailp, lip); break; case XFS_LI_CUI: error = xlog_recover_process_cui(parent_tp, ailp, lip); break; case XFS_LI_BUI: error = xlog_recover_process_bui(parent_tp, ailp, lip); break; } if (error) goto out; lip = xfs_trans_ail_cursor_next(ailp, &cur); } out: xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); if (!error) error = xlog_finish_defer_ops(parent_tp); xfs_trans_cancel(parent_tp); return error; } /* * A cancel occurs when the mount has failed and we're bailing out. * Release all pending log intent items so they don't pin the AIL. */ STATIC void xlog_recover_cancel_intents( struct xlog *log) { struct xfs_log_item *lip; struct xfs_ail_cursor cur; struct xfs_ail *ailp; ailp = log->l_ailp; spin_lock(&ailp->ail_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { /* * We're done when we see something other than an intent. * There should be no intents left in the AIL now. */ if (!xlog_item_is_intent(lip)) { #ifdef DEBUG for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) ASSERT(!xlog_item_is_intent(lip)); #endif break; } switch (lip->li_type) { case XFS_LI_EFI: xlog_recover_cancel_efi(log->l_mp, ailp, lip); break; case XFS_LI_RUI: xlog_recover_cancel_rui(log->l_mp, ailp, lip); break; case XFS_LI_CUI: xlog_recover_cancel_cui(log->l_mp, ailp, lip); break; case XFS_LI_BUI: xlog_recover_cancel_bui(log->l_mp, ailp, lip); break; } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(&cur); spin_unlock(&ailp->ail_lock); } /* * This routine performs a transaction to null out a bad inode pointer * in an agi unlinked inode hash bucket. */ STATIC void xlog_recover_clear_agi_bucket( xfs_mount_t *mp, xfs_agnumber_t agno, int bucket) { xfs_trans_t *tp; xfs_agi_t *agi; xfs_buf_t *agibp; int offset; int error; error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); if (error) goto out_error; error = xfs_read_agi(mp, tp, agno, &agibp); if (error) goto out_abort; agi = agibp->b_addr; agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); error = xfs_trans_commit(tp); if (error) goto out_error; return; out_abort: xfs_trans_cancel(tp); out_error: xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); return; } STATIC xfs_agino_t xlog_recover_process_one_iunlink( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t agino, int bucket) { struct xfs_buf *ibp; struct xfs_dinode *dip; struct xfs_inode *ip; xfs_ino_t ino; int error; ino = XFS_AGINO_TO_INO(mp, agno, agino); error = xfs_iget(mp, NULL, ino, 0, 0, &ip); if (error) goto fail; /* * Get the on disk inode to find the next inode in the bucket. */ error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0); if (error) goto fail_iput; xfs_iflags_clear(ip, XFS_IRECOVERY); ASSERT(VFS_I(ip)->i_nlink == 0); ASSERT(VFS_I(ip)->i_mode != 0); /* setup for the next pass */ agino = be32_to_cpu(dip->di_next_unlinked); xfs_buf_relse(ibp); /* * Prevent any DMAPI event from being sent when the reference on * the inode is dropped. */ ip->i_d.di_dmevmask = 0; xfs_irele(ip); return agino; fail_iput: xfs_irele(ip); fail: /* * We can't read in the inode this bucket points to, or this inode * is messed up. Just ditch this bucket of inodes. We will lose * some inodes and space, but at least we won't hang. * * Call xlog_recover_clear_agi_bucket() to perform a transaction to * clear the inode pointer in the bucket. */ xlog_recover_clear_agi_bucket(mp, agno, bucket); return NULLAGINO; } /* * Recover AGI unlinked lists * * This is called during recovery to process any inodes which we unlinked but * not freed when the system crashed. These inodes will be on the lists in the * AGI blocks. What we do here is scan all the AGIs and fully truncate and free * any inodes found on the lists. Each inode is removed from the lists when it * has been fully truncated and is freed. The freeing of the inode and its * removal from the list must be atomic. * * If everything we touch in the agi processing loop is already in memory, this * loop can hold the cpu for a long time. It runs without lock contention, * memory allocation contention, the need wait for IO, etc, and so will run * until we either run out of inodes to process, run low on memory or we run out * of log space. * * This behaviour is bad for latency on single CPU and non-preemptible kernels, * and can prevent other filesytem work (such as CIL pushes) from running. This * can lead to deadlocks if the recovery process runs out of log reservation * space. Hence we need to yield the CPU when there is other kernel work * scheduled on this CPU to ensure other scheduled work can run without undue * latency. */ STATIC void xlog_recover_process_iunlinks( struct xlog *log) { xfs_mount_t *mp; xfs_agnumber_t agno; xfs_agi_t *agi; xfs_buf_t *agibp; xfs_agino_t agino; int bucket; int error; mp = log->l_mp; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { /* * Find the agi for this ag. */ error = xfs_read_agi(mp, NULL, agno, &agibp); if (error) { /* * AGI is b0rked. Don't process it. * * We should probably mark the filesystem as corrupt * after we've recovered all the ag's we can.... */ continue; } /* * Unlock the buffer so that it can be acquired in the normal * course of the transaction to truncate and free each inode. * Because we are not racing with anyone else here for the AGI * buffer, we don't even need to hold it locked to read the * initial unlinked bucket entries out of the buffer. We keep * buffer reference though, so that it stays pinned in memory * while we need the buffer. */ agi = agibp->b_addr; xfs_buf_unlock(agibp); for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { agino = be32_to_cpu(agi->agi_unlinked[bucket]); while (agino != NULLAGINO) { agino = xlog_recover_process_one_iunlink(mp, agno, agino, bucket); cond_resched(); } } xfs_buf_rele(agibp); } } STATIC void xlog_unpack_data( struct xlog_rec_header *rhead, char *dp, struct xlog *log) { int i, j, k; for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; dp += BBSIZE; } if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; dp += BBSIZE; } } } /* * CRC check, unpack and process a log record. */ STATIC int xlog_recover_process( struct xlog *log, struct hlist_head rhash[], struct xlog_rec_header *rhead, char *dp, int pass, struct list_head *buffer_list) { __le32 old_crc = rhead->h_crc; __le32 crc; crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); /* * Nothing else to do if this is a CRC verification pass. Just return * if this a record with a non-zero crc. Unfortunately, mkfs always * sets old_crc to 0 so we must consider this valid even on v5 supers. * Otherwise, return EFSBADCRC on failure so the callers up the stack * know precisely what failed. */ if (pass == XLOG_RECOVER_CRCPASS) { if (old_crc && crc != old_crc) return -EFSBADCRC; return 0; } /* * We're in the normal recovery path. Issue a warning if and only if the * CRC in the header is non-zero. This is an advisory warning and the * zero CRC check prevents warnings from being emitted when upgrading * the kernel from one that does not add CRCs by default. */ if (crc != old_crc) { if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { xfs_alert(log->l_mp, "log record CRC mismatch: found 0x%x, expected 0x%x.", le32_to_cpu(old_crc), le32_to_cpu(crc)); xfs_hex_dump(dp, 32); } /* * If the filesystem is CRC enabled, this mismatch becomes a * fatal log corruption failure. */ if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); return -EFSCORRUPTED; } } xlog_unpack_data(rhead, dp, log); return xlog_recover_process_data(log, rhash, rhead, dp, pass, buffer_list); } STATIC int xlog_valid_rec_header( struct xlog *log, struct xlog_rec_header *rhead, xfs_daddr_t blkno) { int hlen; if (XFS_IS_CORRUPT(log->l_mp, rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) return -EFSCORRUPTED; if (XFS_IS_CORRUPT(log->l_mp, (!rhead->h_version || (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", __func__, be32_to_cpu(rhead->h_version)); return -EFSCORRUPTED; } /* LR body must have data or it wouldn't have been written */ hlen = be32_to_cpu(rhead->h_len); if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX)) return -EFSCORRUPTED; if (XFS_IS_CORRUPT(log->l_mp, blkno > log->l_logBBsize || blkno > INT_MAX)) return -EFSCORRUPTED; return 0; } /* * Read the log from tail to head and process the log records found. * Handle the two cases where the tail and head are in the same cycle * and where the active portion of the log wraps around the end of * the physical log separately. The pass parameter is passed through * to the routines called to process the data and is not looked at * here. */ STATIC int xlog_do_recovery_pass( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk, int pass, xfs_daddr_t *first_bad) /* out: first bad log rec */ { xlog_rec_header_t *rhead; xfs_daddr_t blk_no, rblk_no; xfs_daddr_t rhead_blk; char *offset; char *hbp, *dbp; int error = 0, h_size, h_len; int error2 = 0; int bblks, split_bblks; int hblks, split_hblks, wrapped_hblks; int i; struct hlist_head rhash[XLOG_RHASH_SIZE]; LIST_HEAD (buffer_list); ASSERT(head_blk != tail_blk); blk_no = rhead_blk = tail_blk; for (i = 0; i < XLOG_RHASH_SIZE; i++) INIT_HLIST_HEAD(&rhash[i]); /* * Read the header of the tail block and get the iclog buffer size from * h_size. Use this to tell how many sectors make up the log header. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { /* * When using variable length iclogs, read first sector of * iclog header and extract the header size from it. Get a * new hbp that is the correct size. */ hbp = xlog_alloc_buffer(log, 1); if (!hbp) return -ENOMEM; error = xlog_bread(log, tail_blk, 1, hbp, &offset); if (error) goto bread_err1; rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, tail_blk); if (error) goto bread_err1; /* * xfsprogs has a bug where record length is based on lsunit but * h_size (iclog size) is hardcoded to 32k. Now that we * unconditionally CRC verify the unmount record, this means the * log buffer can be too small for the record and cause an * overrun. * * Detect this condition here. Use lsunit for the buffer size as * long as this looks like the mkfs case. Otherwise, return an * error to avoid a buffer overrun. */ h_size = be32_to_cpu(rhead->h_size); h_len = be32_to_cpu(rhead->h_len); if (h_len > h_size) { if (h_len <= log->l_mp->m_logbsize && be32_to_cpu(rhead->h_num_logops) == 1) { xfs_warn(log->l_mp, "invalid iclog size (%d bytes), using lsunit (%d bytes)", h_size, log->l_mp->m_logbsize); h_size = log->l_mp->m_logbsize; } else { XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); error = -EFSCORRUPTED; goto bread_err1; } } if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && (h_size > XLOG_HEADER_CYCLE_SIZE)) { hblks = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) hblks++; kmem_free(hbp); hbp = xlog_alloc_buffer(log, hblks); } else { hblks = 1; } } else { ASSERT(log->l_sectBBsize == 1); hblks = 1; hbp = xlog_alloc_buffer(log, 1); h_size = XLOG_BIG_RECORD_BSIZE; } if (!hbp) return -ENOMEM; dbp = xlog_alloc_buffer(log, BTOBB(h_size)); if (!dbp) { kmem_free(hbp); return -ENOMEM; } memset(rhash, 0, sizeof(rhash)); if (tail_blk > head_blk) { /* * Perform recovery around the end of the physical log. * When the head is not on the same cycle number as the tail, * we can't do a sequential recovery. */ while (blk_no < log->l_logBBsize) { /* * Check for header wrapping around physical end-of-log */ offset = hbp; split_hblks = 0; wrapped_hblks = 0; if (blk_no + hblks <= log->l_logBBsize) { /* Read header in one read */ error = xlog_bread(log, blk_no, hblks, hbp, &offset); if (error) goto bread_err2; } else { /* This LR is split across physical log end */ if (blk_no != log->l_logBBsize) { /* some data before physical log end */ ASSERT(blk_no <= INT_MAX); split_hblks = log->l_logBBsize - (int)blk_no; ASSERT(split_hblks > 0); error = xlog_bread(log, blk_no, split_hblks, hbp, &offset); if (error) goto bread_err2; } /* * Note: this black magic still works with * large sector sizes (non-512) only because: * - we increased the buffer size originally * by 1 sector giving us enough extra space * for the second read; * - the log start is guaranteed to be sector * aligned; * - we read the log end (LR header start) * _first_, then the log start (LR header end) * - order is important. */ wrapped_hblks = hblks - split_hblks; error = xlog_bread_noalign(log, 0, wrapped_hblks, offset + BBTOB(split_hblks)); if (error) goto bread_err2; } rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, split_hblks ? blk_no : 0); if (error) goto bread_err2; bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); blk_no += hblks; /* * Read the log record data in multiple reads if it * wraps around the end of the log. Note that if the * header already wrapped, blk_no could point past the * end of the log. The record data is contiguous in * that case. */ if (blk_no + bblks <= log->l_logBBsize || blk_no >= log->l_logBBsize) { rblk_no = xlog_wrap_logbno(log, blk_no); error = xlog_bread(log, rblk_no, bblks, dbp, &offset); if (error) goto bread_err2; } else { /* This log record is split across the * physical end of log */ offset = dbp; split_bblks = 0; if (blk_no != log->l_logBBsize) { /* some data is before the physical * end of log */ ASSERT(!wrapped_hblks); ASSERT(blk_no <= INT_MAX); split_bblks = log->l_logBBsize - (int)blk_no; ASSERT(split_bblks > 0); error = xlog_bread(log, blk_no, split_bblks, dbp, &offset); if (error) goto bread_err2; } /* * Note: this black magic still works with * large sector sizes (non-512) only because: * - we increased the buffer size originally * by 1 sector giving us enough extra space * for the second read; * - the log start is guaranteed to be sector * aligned; * - we read the log end (LR header start) * _first_, then the log start (LR header end) * - order is important. */ error = xlog_bread_noalign(log, 0, bblks - split_bblks, offset + BBTOB(split_bblks)); if (error) goto bread_err2; } error = xlog_recover_process(log, rhash, rhead, offset, pass, &buffer_list); if (error) goto bread_err2; blk_no += bblks; rhead_blk = blk_no; } ASSERT(blk_no >= log->l_logBBsize); blk_no -= log->l_logBBsize; rhead_blk = blk_no; } /* read first part of physical log */ while (blk_no < head_blk) { error = xlog_bread(log, blk_no, hblks, hbp, &offset); if (error) goto bread_err2; rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, blk_no); if (error) goto bread_err2; /* blocks in data section */ bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); error = xlog_bread(log, blk_no+hblks, bblks, dbp, &offset); if (error) goto bread_err2; error = xlog_recover_process(log, rhash, rhead, offset, pass, &buffer_list); if (error) goto bread_err2; blk_no += bblks + hblks; rhead_blk = blk_no; } bread_err2: kmem_free(dbp); bread_err1: kmem_free(hbp); /* * Submit buffers that have been added from the last record processed, * regardless of error status. */ if (!list_empty(&buffer_list)) error2 = xfs_buf_delwri_submit(&buffer_list); if (error && first_bad) *first_bad = rhead_blk; /* * Transactions are freed at commit time but transactions without commit * records on disk are never committed. Free any that may be left in the * hash table. */ for (i = 0; i < XLOG_RHASH_SIZE; i++) { struct hlist_node *tmp; struct xlog_recover *trans; hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) xlog_recover_free_trans(trans); } return error ? error : error2; } /* * Do the recovery of the log. We actually do this in two phases. * The two passes are necessary in order to implement the function * of cancelling a record written into the log. The first pass * determines those things which have been cancelled, and the * second pass replays log items normally except for those which * have been cancelled. The handling of the replay and cancellations * takes place in the log item type specific routines. * * The table of items which have cancel records in the log is allocated * and freed at this level, since only here do we know when all of * the log recovery has been completed. */ STATIC int xlog_do_log_recovery( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk) { int error, i; ASSERT(head_blk != tail_blk); /* * First do a pass to find all of the cancelled buf log items. * Store them in the buf_cancel_table for use in the second pass. */ log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * sizeof(struct list_head), 0); for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); error = xlog_do_recovery_pass(log, head_blk, tail_blk, XLOG_RECOVER_PASS1, NULL); if (error != 0) { kmem_free(log->l_buf_cancel_table); log->l_buf_cancel_table = NULL; return error; } /* * Then do a second pass to actually recover the items in the log. * When it is complete free the table of buf cancel items. */ error = xlog_do_recovery_pass(log, head_blk, tail_blk, XLOG_RECOVER_PASS2, NULL); #ifdef DEBUG if (!error) { int i; for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) ASSERT(list_empty(&log->l_buf_cancel_table[i])); } #endif /* DEBUG */ kmem_free(log->l_buf_cancel_table); log->l_buf_cancel_table = NULL; return error; } /* * Do the actual recovery */ STATIC int xlog_do_recover( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk) { struct xfs_mount *mp = log->l_mp; int error; xfs_buf_t *bp; xfs_sb_t *sbp; trace_xfs_log_recover(log, head_blk, tail_blk); /* * First replay the images in the log. */ error = xlog_do_log_recovery(log, head_blk, tail_blk); if (error) return error; /* * If IO errors happened during recovery, bail out. */ if (XFS_FORCED_SHUTDOWN(mp)) { return -EIO; } /* * We now update the tail_lsn since much of the recovery has completed * and there may be space available to use. If there were no extent * or iunlinks, we can free up the entire log and set the tail_lsn to * be the last_sync_lsn. This was set in xlog_find_tail to be the * lsn of the last known good LR on disk. If there are extent frees * or iunlinks they will have some entries in the AIL; so we look at * the AIL to determine how to set the tail_lsn. */ xlog_assign_tail_lsn(mp); /* * Now that we've finished replaying all buffer and inode * updates, re-read in the superblock and reverify it. */ bp = xfs_getsb(mp); bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); ASSERT(!(bp->b_flags & XBF_WRITE)); bp->b_flags |= XBF_READ; bp->b_ops = &xfs_sb_buf_ops; error = xfs_buf_submit(bp); if (error) { if (!XFS_FORCED_SHUTDOWN(mp)) { xfs_buf_ioerror_alert(bp, __this_address); ASSERT(0); } xfs_buf_relse(bp); return error; } /* Convert superblock from on-disk format */ sbp = &mp->m_sb; xfs_sb_from_disk(sbp, bp->b_addr); xfs_buf_relse(bp); /* re-initialise in-core superblock and geometry structures */ xfs_reinit_percpu_counters(mp); error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); if (error) { xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); return error; } mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); xlog_recover_check_summary(log); /* Normal transactions can now occur */ log->l_flags &= ~XLOG_ACTIVE_RECOVERY; return 0; } /* * Perform recovery and re-initialize some log variables in xlog_find_tail. * * Return error or zero. */ int xlog_recover( struct xlog *log) { xfs_daddr_t head_blk, tail_blk; int error; /* find the tail of the log */ error = xlog_find_tail(log, &head_blk, &tail_blk); if (error) return error; /* * The superblock was read before the log was available and thus the LSN * could not be verified. Check the superblock LSN against the current * LSN now that it's known. */ if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) return -EINVAL; if (tail_blk != head_blk) { /* There used to be a comment here: * * disallow recovery on read-only mounts. note -- mount * checks for ENOSPC and turns it into an intelligent * error message. * ...but this is no longer true. Now, unless you specify * NORECOVERY (in which case this function would never be * called), we just go ahead and recover. We do this all * under the vfs layer, so we can get away with it unless * the device itself is read-only, in which case we fail. */ if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { return error; } /* * Version 5 superblock log feature mask validation. We know the * log is dirty so check if there are any unknown log features * in what we need to recover. If there are unknown features * (e.g. unsupported transactions, then simply reject the * attempt at recovery before touching anything. */ if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { xfs_warn(log->l_mp, "Superblock has unknown incompatible log features (0x%x) enabled.", (log->l_mp->m_sb.sb_features_log_incompat & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); xfs_warn(log->l_mp, "The log can not be fully and/or safely recovered by this kernel."); xfs_warn(log->l_mp, "Please recover the log on a kernel that supports the unknown features."); return -EINVAL; } /* * Delay log recovery if the debug hook is set. This is debug * instrumention to coordinate simulation of I/O failures with * log recovery. */ if (xfs_globals.log_recovery_delay) { xfs_notice(log->l_mp, "Delaying log recovery for %d seconds.", xfs_globals.log_recovery_delay); msleep(xfs_globals.log_recovery_delay * 1000); } xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", log->l_mp->m_logname ? log->l_mp->m_logname : "internal"); error = xlog_do_recover(log, head_blk, tail_blk); log->l_flags |= XLOG_RECOVERY_NEEDED; } return error; } /* * In the first part of recovery we replay inodes and buffers and build * up the list of extent free items which need to be processed. Here * we process the extent free items and clean up the on disk unlinked * inode lists. This is separated from the first part of recovery so * that the root and real-time bitmap inodes can be read in from disk in * between the two stages. This is necessary so that we can free space * in the real-time portion of the file system. */ int xlog_recover_finish( struct xlog *log) { /* * Now we're ready to do the transactions needed for the * rest of recovery. Start with completing all the extent * free intent records and then process the unlinked inode * lists. At this point, we essentially run in normal mode * except that we're still performing recovery actions * rather than accepting new requests. */ if (log->l_flags & XLOG_RECOVERY_NEEDED) { int error; error = xlog_recover_process_intents(log); if (error) { xfs_alert(log->l_mp, "Failed to recover intents"); return error; } /* * Sync the log to get all the intents out of the AIL. * This isn't absolutely necessary, but it helps in * case the unlink transactions would have problems * pushing the intents out of the way. */ xfs_log_force(log->l_mp, XFS_LOG_SYNC); xlog_recover_process_iunlinks(log); xlog_recover_check_summary(log); xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", log->l_mp->m_logname ? log->l_mp->m_logname : "internal"); log->l_flags &= ~XLOG_RECOVERY_NEEDED; } else { xfs_info(log->l_mp, "Ending clean mount"); } return 0; } void xlog_recover_cancel( struct xlog *log) { if (log->l_flags & XLOG_RECOVERY_NEEDED) xlog_recover_cancel_intents(log); } #if defined(DEBUG) /* * Read all of the agf and agi counters and check that they * are consistent with the superblock counters. */ STATIC void xlog_recover_check_summary( struct xlog *log) { xfs_mount_t *mp; xfs_buf_t *agfbp; xfs_buf_t *agibp; xfs_agnumber_t agno; uint64_t freeblks; uint64_t itotal; uint64_t ifree; int error; mp = log->l_mp; freeblks = 0LL; itotal = 0LL; ifree = 0LL; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); if (error) { xfs_alert(mp, "%s agf read failed agno %d error %d", __func__, agno, error); } else { struct xfs_agf *agfp = agfbp->b_addr; freeblks += be32_to_cpu(agfp->agf_freeblks) + be32_to_cpu(agfp->agf_flcount); xfs_buf_relse(agfbp); } error = xfs_read_agi(mp, NULL, agno, &agibp); if (error) { xfs_alert(mp, "%s agi read failed agno %d error %d", __func__, agno, error); } else { struct xfs_agi *agi = agibp->b_addr; itotal += be32_to_cpu(agi->agi_count); ifree += be32_to_cpu(agi->agi_freecount); xfs_buf_relse(agibp); } } } #endif /* DEBUG */