/* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_alloc.h" #include "xfs_error.h" /* * Prototypes for internal functions. */ STATIC void xfs_alloc_log_block(xfs_trans_t *, xfs_buf_t *, int); STATIC void xfs_alloc_log_keys(xfs_btree_cur_t *, xfs_buf_t *, int, int); STATIC void xfs_alloc_log_ptrs(xfs_btree_cur_t *, xfs_buf_t *, int, int); STATIC void xfs_alloc_log_recs(xfs_btree_cur_t *, xfs_buf_t *, int, int); STATIC int xfs_alloc_lshift(xfs_btree_cur_t *, int, int *); STATIC int xfs_alloc_newroot(xfs_btree_cur_t *, int *); STATIC int xfs_alloc_rshift(xfs_btree_cur_t *, int, int *); STATIC int xfs_alloc_split(xfs_btree_cur_t *, int, xfs_agblock_t *, xfs_alloc_key_t *, xfs_btree_cur_t **, int *); STATIC int xfs_alloc_updkey(xfs_btree_cur_t *, xfs_alloc_key_t *, int); /* * Internal functions. */ /* * Single level of the xfs_alloc_delete record deletion routine. * Delete record pointed to by cur/level. * Remove the record from its block then rebalance the tree. * Return 0 for error, 1 for done, 2 to go on to the next level. */ STATIC int /* error */ xfs_alloc_delrec( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level removing record from */ int *stat) /* fail/done/go-on */ { xfs_agf_t *agf; /* allocation group freelist header */ xfs_alloc_block_t *block; /* btree block record/key lives in */ xfs_agblock_t bno; /* btree block number */ xfs_buf_t *bp; /* buffer for block */ int error; /* error return value */ int i; /* loop index */ xfs_alloc_key_t key; /* kp points here if block is level 0 */ xfs_agblock_t lbno; /* left block's block number */ xfs_buf_t *lbp; /* left block's buffer pointer */ xfs_alloc_block_t *left; /* left btree block */ xfs_alloc_key_t *lkp=NULL; /* left block key pointer */ xfs_alloc_ptr_t *lpp=NULL; /* left block address pointer */ int lrecs=0; /* number of records in left block */ xfs_alloc_rec_t *lrp; /* left block record pointer */ xfs_mount_t *mp; /* mount structure */ int ptr; /* index in btree block for this rec */ xfs_agblock_t rbno; /* right block's block number */ xfs_buf_t *rbp; /* right block's buffer pointer */ xfs_alloc_block_t *right; /* right btree block */ xfs_alloc_key_t *rkp; /* right block key pointer */ xfs_alloc_ptr_t *rpp; /* right block address pointer */ int rrecs=0; /* number of records in right block */ int numrecs; xfs_alloc_rec_t *rrp; /* right block record pointer */ xfs_btree_cur_t *tcur; /* temporary btree cursor */ /* * Get the index of the entry being deleted, check for nothing there. */ ptr = cur->bc_ptrs[level]; if (ptr == 0) { *stat = 0; return 0; } /* * Get the buffer & block containing the record or key/ptr. */ bp = cur->bc_bufs[level]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; #endif /* * Fail if we're off the end of the block. */ numrecs = be16_to_cpu(block->bb_numrecs); if (ptr > numrecs) { *stat = 0; return 0; } XFS_STATS_INC(xs_abt_delrec); /* * It's a nonleaf. Excise the key and ptr being deleted, by * sliding the entries past them down one. * Log the changed areas of the block. */ if (level > 0) { lkp = XFS_ALLOC_KEY_ADDR(block, 1, cur); lpp = XFS_ALLOC_PTR_ADDR(block, 1, cur); #ifdef DEBUG for (i = ptr; i < numrecs; i++) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level))) return error; } #endif if (ptr < numrecs) { memmove(&lkp[ptr - 1], &lkp[ptr], (numrecs - ptr) * sizeof(*lkp)); memmove(&lpp[ptr - 1], &lpp[ptr], (numrecs - ptr) * sizeof(*lpp)); xfs_alloc_log_ptrs(cur, bp, ptr, numrecs - 1); xfs_alloc_log_keys(cur, bp, ptr, numrecs - 1); } } /* * It's a leaf. Excise the record being deleted, by sliding the * entries past it down one. Log the changed areas of the block. */ else { lrp = XFS_ALLOC_REC_ADDR(block, 1, cur); if (ptr < numrecs) { memmove(&lrp[ptr - 1], &lrp[ptr], (numrecs - ptr) * sizeof(*lrp)); xfs_alloc_log_recs(cur, bp, ptr, numrecs - 1); } /* * If it's the first record in the block, we'll need a key * structure to pass up to the next level (updkey). */ if (ptr == 1) { key.ar_startblock = lrp->ar_startblock; key.ar_blockcount = lrp->ar_blockcount; lkp = &key; } } /* * Decrement and log the number of entries in the block. */ numrecs--; block->bb_numrecs = cpu_to_be16(numrecs); xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS); /* * See if the longest free extent in the allocation group was * changed by this operation. True if it's the by-size btree, and * this is the leaf level, and there is no right sibling block, * and this was the last record. */ agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); mp = cur->bc_mp; if (level == 0 && cur->bc_btnum == XFS_BTNUM_CNT && be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && ptr > numrecs) { ASSERT(ptr == numrecs + 1); /* * There are still records in the block. Grab the size * from the last one. */ if (numrecs) { rrp = XFS_ALLOC_REC_ADDR(block, numrecs, cur); agf->agf_longest = rrp->ar_blockcount; } /* * No free extents left. */ else agf->agf_longest = 0; mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest = be32_to_cpu(agf->agf_longest); xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST); } /* * Is this the root level? If so, we're almost done. */ if (level == cur->bc_nlevels - 1) { /* * If this is the root level, * and there's only one entry left, * and it's NOT the leaf level, * then we can get rid of this level. */ if (numrecs == 1 && level > 0) { /* * lpp is still set to the first pointer in the block. * Make it the new root of the btree. */ bno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]); agf->agf_roots[cur->bc_btnum] = *lpp; be32_add_cpu(&agf->agf_levels[cur->bc_btnum], -1); mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_levels[cur->bc_btnum]--; /* * Put this buffer/block on the ag's freelist. */ error = xfs_alloc_put_freelist(cur->bc_tp, cur->bc_private.a.agbp, NULL, bno, 1); if (error) return error; /* * Since blocks move to the free list without the * coordination used in xfs_bmap_finish, we can't allow * block to be available for reallocation and * non-transaction writing (user data) until we know * that the transaction that moved it to the free list * is permanently on disk. We track the blocks by * declaring these blocks as "busy"; the busy list is * maintained on a per-ag basis and each transaction * records which entries should be removed when the * iclog commits to disk. If a busy block is * allocated, the iclog is pushed up to the LSN * that freed the block. */ xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1); xfs_trans_agbtree_delta(cur->bc_tp, -1); xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); /* * Update the cursor so there's one fewer level. */ xfs_btree_setbuf(cur, level, NULL); cur->bc_nlevels--; } else if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) return error; *stat = 1; return 0; } /* * If we deleted the leftmost entry in the block, update the * key values above us in the tree. */ if (ptr == 1 && (error = xfs_alloc_updkey(cur, lkp, level + 1))) return error; /* * If the number of records remaining in the block is at least * the minimum, we're done. */ if (numrecs >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) { if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) return error; *stat = 1; return 0; } /* * Otherwise, we have to move some records around to keep the * tree balanced. Look at the left and right sibling blocks to * see if we can re-balance by moving only one record. */ rbno = be32_to_cpu(block->bb_rightsib); lbno = be32_to_cpu(block->bb_leftsib); bno = NULLAGBLOCK; ASSERT(rbno != NULLAGBLOCK || lbno != NULLAGBLOCK); /* * Duplicate the cursor so our btree manipulations here won't * disrupt the next level up. */ if ((error = xfs_btree_dup_cursor(cur, &tcur))) return error; /* * If there's a right sibling, see if it's ok to shift an entry * out of it. */ if (rbno != NULLAGBLOCK) { /* * Move the temp cursor to the last entry in the next block. * Actually any entry but the first would suffice. */ i = xfs_btree_lastrec(tcur, level); XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_alloc_increment(tcur, level, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); i = xfs_btree_lastrec(tcur, level); XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Grab a pointer to the block. */ rbp = tcur->bc_bufs[level]; right = XFS_BUF_TO_ALLOC_BLOCK(rbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) goto error0; #endif /* * Grab the current block number, for future use. */ bno = be32_to_cpu(right->bb_leftsib); /* * If right block is full enough so that removing one entry * won't make it too empty, and left-shifting an entry out * of right to us works, we're done. */ if (be16_to_cpu(right->bb_numrecs) - 1 >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) { if ((error = xfs_alloc_lshift(tcur, level, &i))) goto error0; if (i) { ASSERT(be16_to_cpu(block->bb_numrecs) >= XFS_ALLOC_BLOCK_MINRECS(level, cur)); xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) return error; *stat = 1; return 0; } } /* * Otherwise, grab the number of records in right for * future reference, and fix up the temp cursor to point * to our block again (last record). */ rrecs = be16_to_cpu(right->bb_numrecs); if (lbno != NULLAGBLOCK) { i = xfs_btree_firstrec(tcur, level); XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_alloc_decrement(tcur, level, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } } /* * If there's a left sibling, see if it's ok to shift an entry * out of it. */ if (lbno != NULLAGBLOCK) { /* * Move the temp cursor to the first entry in the * previous block. */ i = xfs_btree_firstrec(tcur, level); XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_alloc_decrement(tcur, level, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_btree_firstrec(tcur, level); /* * Grab a pointer to the block. */ lbp = tcur->bc_bufs[level]; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) goto error0; #endif /* * Grab the current block number, for future use. */ bno = be32_to_cpu(left->bb_rightsib); /* * If left block is full enough so that removing one entry * won't make it too empty, and right-shifting an entry out * of left to us works, we're done. */ if (be16_to_cpu(left->bb_numrecs) - 1 >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) { if ((error = xfs_alloc_rshift(tcur, level, &i))) goto error0; if (i) { ASSERT(be16_to_cpu(block->bb_numrecs) >= XFS_ALLOC_BLOCK_MINRECS(level, cur)); xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); if (level == 0) cur->bc_ptrs[0]++; *stat = 1; return 0; } } /* * Otherwise, grab the number of records in right for * future reference. */ lrecs = be16_to_cpu(left->bb_numrecs); } /* * Delete the temp cursor, we're done with it. */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); /* * If here, we need to do a join to keep the tree balanced. */ ASSERT(bno != NULLAGBLOCK); /* * See if we can join with the left neighbor block. */ if (lbno != NULLAGBLOCK && lrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { /* * Set "right" to be the starting block, * "left" to be the left neighbor. */ rbno = bno; right = block; rrecs = be16_to_cpu(right->bb_numrecs); rbp = bp; if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, lbno, 0, &lbp, XFS_ALLOC_BTREE_REF))) return error; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); lrecs = be16_to_cpu(left->bb_numrecs); if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) return error; } /* * If that won't work, see if we can join with the right neighbor block. */ else if (rbno != NULLAGBLOCK && rrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { /* * Set "left" to be the starting block, * "right" to be the right neighbor. */ lbno = bno; left = block; lrecs = be16_to_cpu(left->bb_numrecs); lbp = bp; if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, rbno, 0, &rbp, XFS_ALLOC_BTREE_REF))) return error; right = XFS_BUF_TO_ALLOC_BLOCK(rbp); rrecs = be16_to_cpu(right->bb_numrecs); if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) return error; } /* * Otherwise, we can't fix the imbalance. * Just return. This is probably a logic error, but it's not fatal. */ else { if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) return error; *stat = 1; return 0; } /* * We're now going to join "left" and "right" by moving all the stuff * in "right" to "left" and deleting "right". */ if (level > 0) { /* * It's a non-leaf. Move keys and pointers. */ lkp = XFS_ALLOC_KEY_ADDR(left, lrecs + 1, cur); lpp = XFS_ALLOC_PTR_ADDR(left, lrecs + 1, cur); rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); #ifdef DEBUG for (i = 0; i < rrecs; i++) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level))) return error; } #endif memcpy(lkp, rkp, rrecs * sizeof(*lkp)); memcpy(lpp, rpp, rrecs * sizeof(*lpp)); xfs_alloc_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); xfs_alloc_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); } else { /* * It's a leaf. Move records. */ lrp = XFS_ALLOC_REC_ADDR(left, lrecs + 1, cur); rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); memcpy(lrp, rrp, rrecs * sizeof(*lrp)); xfs_alloc_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); } /* * If we joined with the left neighbor, set the buffer in the * cursor to the left block, and fix up the index. */ if (bp != lbp) { xfs_btree_setbuf(cur, level, lbp); cur->bc_ptrs[level] += lrecs; } /* * If we joined with the right neighbor and there's a level above * us, increment the cursor at that level. */ else if (level + 1 < cur->bc_nlevels && (error = xfs_alloc_increment(cur, level + 1, &i))) return error; /* * Fix up the number of records in the surviving block. */ lrecs += rrecs; left->bb_numrecs = cpu_to_be16(lrecs); /* * Fix up the right block pointer in the surviving block, and log it. */ left->bb_rightsib = right->bb_rightsib; xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); /* * If there is a right sibling now, make it point to the * remaining block. */ if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) { xfs_alloc_block_t *rrblock; xfs_buf_t *rrbp; if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0, &rrbp, XFS_ALLOC_BTREE_REF))) return error; rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp); if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp))) return error; rrblock->bb_leftsib = cpu_to_be32(lbno); xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB); } /* * Free the deleting block by putting it on the freelist. */ error = xfs_alloc_put_freelist(cur->bc_tp, cur->bc_private.a.agbp, NULL, rbno, 1); if (error) return error; /* * Since blocks move to the free list without the coordination * used in xfs_bmap_finish, we can't allow block to be available * for reallocation and non-transaction writing (user data) * until we know that the transaction that moved it to the free * list is permanently on disk. We track the blocks by declaring * these blocks as "busy"; the busy list is maintained on a * per-ag basis and each transaction records which entries * should be removed when the iclog commits to disk. If a * busy block is allocated, the iclog is pushed up to the * LSN that freed the block. */ xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1); xfs_trans_agbtree_delta(cur->bc_tp, -1); /* * Adjust the current level's cursor so that we're left referring * to the right node, after we're done. * If this leaves the ptr value 0 our caller will fix it up. */ if (level > 0) cur->bc_ptrs[level]--; /* * Return value means the next level up has something to do. */ *stat = 2; return 0; error0: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); return error; } /* * Insert one record/level. Return information to the caller * allowing the next level up to proceed if necessary. */ STATIC int /* error */ xfs_alloc_insrec( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level to insert record at */ xfs_agblock_t *bnop, /* i/o: block number inserted */ xfs_alloc_rec_t *recp, /* i/o: record data inserted */ xfs_btree_cur_t **curp, /* output: new cursor replacing cur */ int *stat) /* output: success/failure */ { xfs_agf_t *agf; /* allocation group freelist header */ xfs_alloc_block_t *block; /* btree block record/key lives in */ xfs_buf_t *bp; /* buffer for block */ int error; /* error return value */ int i; /* loop index */ xfs_alloc_key_t key; /* key value being inserted */ xfs_alloc_key_t *kp; /* pointer to btree keys */ xfs_agblock_t nbno; /* block number of allocated block */ xfs_btree_cur_t *ncur; /* new cursor to be used at next lvl */ xfs_alloc_key_t nkey; /* new key value, from split */ xfs_alloc_rec_t nrec; /* new record value, for caller */ int numrecs; int optr; /* old ptr value */ xfs_alloc_ptr_t *pp; /* pointer to btree addresses */ int ptr; /* index in btree block for this rec */ xfs_alloc_rec_t *rp; /* pointer to btree records */ ASSERT(be32_to_cpu(recp->ar_blockcount) > 0); /* * GCC doesn't understand the (arguably complex) control flow in * this function and complains about uninitialized structure fields * without this. */ memset(&nrec, 0, sizeof(nrec)); /* * If we made it to the root level, allocate a new root block * and we're done. */ if (level >= cur->bc_nlevels) { XFS_STATS_INC(xs_abt_insrec); if ((error = xfs_alloc_newroot(cur, &i))) return error; *bnop = NULLAGBLOCK; *stat = i; return 0; } /* * Make a key out of the record data to be inserted, and save it. */ key.ar_startblock = recp->ar_startblock; key.ar_blockcount = recp->ar_blockcount; optr = ptr = cur->bc_ptrs[level]; /* * If we're off the left edge, return failure. */ if (ptr == 0) { *stat = 0; return 0; } XFS_STATS_INC(xs_abt_insrec); /* * Get pointers to the btree buffer and block. */ bp = cur->bc_bufs[level]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); numrecs = be16_to_cpu(block->bb_numrecs); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; /* * Check that the new entry is being inserted in the right place. */ if (ptr <= numrecs) { if (level == 0) { rp = XFS_ALLOC_REC_ADDR(block, ptr, cur); xfs_btree_check_rec(cur->bc_btnum, recp, rp); } else { kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur); xfs_btree_check_key(cur->bc_btnum, &key, kp); } } #endif nbno = NULLAGBLOCK; ncur = NULL; /* * If the block is full, we can't insert the new entry until we * make the block un-full. */ if (numrecs == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { /* * First, try shifting an entry to the right neighbor. */ if ((error = xfs_alloc_rshift(cur, level, &i))) return error; if (i) { /* nothing */ } /* * Next, try shifting an entry to the left neighbor. */ else { if ((error = xfs_alloc_lshift(cur, level, &i))) return error; if (i) optr = ptr = cur->bc_ptrs[level]; else { /* * Next, try splitting the current block in * half. If this works we have to re-set our * variables because we could be in a * different block now. */ if ((error = xfs_alloc_split(cur, level, &nbno, &nkey, &ncur, &i))) return error; if (i) { bp = cur->bc_bufs[level]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; #endif ptr = cur->bc_ptrs[level]; nrec.ar_startblock = nkey.ar_startblock; nrec.ar_blockcount = nkey.ar_blockcount; } /* * Otherwise the insert fails. */ else { *stat = 0; return 0; } } } } /* * At this point we know there's room for our new entry in the block * we're pointing at. */ numrecs = be16_to_cpu(block->bb_numrecs); if (level > 0) { /* * It's a non-leaf entry. Make a hole for the new data * in the key and ptr regions of the block. */ kp = XFS_ALLOC_KEY_ADDR(block, 1, cur); pp = XFS_ALLOC_PTR_ADDR(block, 1, cur); #ifdef DEBUG for (i = numrecs; i >= ptr; i--) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(pp[i - 1]), level))) return error; } #endif memmove(&kp[ptr], &kp[ptr - 1], (numrecs - ptr + 1) * sizeof(*kp)); memmove(&pp[ptr], &pp[ptr - 1], (numrecs - ptr + 1) * sizeof(*pp)); #ifdef DEBUG if ((error = xfs_btree_check_sptr(cur, *bnop, level))) return error; #endif /* * Now stuff the new data in, bump numrecs and log the new data. */ kp[ptr - 1] = key; pp[ptr - 1] = cpu_to_be32(*bnop); numrecs++; block->bb_numrecs = cpu_to_be16(numrecs); xfs_alloc_log_keys(cur, bp, ptr, numrecs); xfs_alloc_log_ptrs(cur, bp, ptr, numrecs); #ifdef DEBUG if (ptr < numrecs) xfs_btree_check_key(cur->bc_btnum, kp + ptr - 1, kp + ptr); #endif } else { /* * It's a leaf entry. Make a hole for the new record. */ rp = XFS_ALLOC_REC_ADDR(block, 1, cur); memmove(&rp[ptr], &rp[ptr - 1], (numrecs - ptr + 1) * sizeof(*rp)); /* * Now stuff the new record in, bump numrecs * and log the new data. */ rp[ptr - 1] = *recp; numrecs++; block->bb_numrecs = cpu_to_be16(numrecs); xfs_alloc_log_recs(cur, bp, ptr, numrecs); #ifdef DEBUG if (ptr < numrecs) xfs_btree_check_rec(cur->bc_btnum, rp + ptr - 1, rp + ptr); #endif } /* * Log the new number of records in the btree header. */ xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS); /* * If we inserted at the start of a block, update the parents' keys. */ if (optr == 1 && (error = xfs_alloc_updkey(cur, &key, level + 1))) return error; /* * Look to see if the longest extent in the allocation group * needs to be updated. */ agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); if (level == 0 && cur->bc_btnum == XFS_BTNUM_CNT && be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && be32_to_cpu(recp->ar_blockcount) > be32_to_cpu(agf->agf_longest)) { /* * If this is a leaf in the by-size btree and there * is no right sibling block and this block is bigger * than the previous longest block, update it. */ agf->agf_longest = recp->ar_blockcount; cur->bc_mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest = be32_to_cpu(recp->ar_blockcount); xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST); } /* * Return the new block number, if any. * If there is one, give back a record value and a cursor too. */ *bnop = nbno; if (nbno != NULLAGBLOCK) { *recp = nrec; *curp = ncur; } *stat = 1; return 0; } /* * Log header fields from a btree block. */ STATIC void xfs_alloc_log_block( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *bp, /* buffer containing btree block */ int fields) /* mask of fields: XFS_BB_... */ { int first; /* first byte offset logged */ int last; /* last byte offset logged */ static const short offsets[] = { /* table of offsets */ offsetof(xfs_alloc_block_t, bb_magic), offsetof(xfs_alloc_block_t, bb_level), offsetof(xfs_alloc_block_t, bb_numrecs), offsetof(xfs_alloc_block_t, bb_leftsib), offsetof(xfs_alloc_block_t, bb_rightsib), sizeof(xfs_alloc_block_t) }; xfs_btree_offsets(fields, offsets, XFS_BB_NUM_BITS, &first, &last); xfs_trans_log_buf(tp, bp, first, last); } /* * Log keys from a btree block (nonleaf). */ STATIC void xfs_alloc_log_keys( xfs_btree_cur_t *cur, /* btree cursor */ xfs_buf_t *bp, /* buffer containing btree block */ int kfirst, /* index of first key to log */ int klast) /* index of last key to log */ { xfs_alloc_block_t *block; /* btree block to log from */ int first; /* first byte offset logged */ xfs_alloc_key_t *kp; /* key pointer in btree block */ int last; /* last byte offset logged */ block = XFS_BUF_TO_ALLOC_BLOCK(bp); kp = XFS_ALLOC_KEY_ADDR(block, 1, cur); first = (int)((xfs_caddr_t)&kp[kfirst - 1] - (xfs_caddr_t)block); last = (int)(((xfs_caddr_t)&kp[klast] - 1) - (xfs_caddr_t)block); xfs_trans_log_buf(cur->bc_tp, bp, first, last); } /* * Log block pointer fields from a btree block (nonleaf). */ STATIC void xfs_alloc_log_ptrs( xfs_btree_cur_t *cur, /* btree cursor */ xfs_buf_t *bp, /* buffer containing btree block */ int pfirst, /* index of first pointer to log */ int plast) /* index of last pointer to log */ { xfs_alloc_block_t *block; /* btree block to log from */ int first; /* first byte offset logged */ int last; /* last byte offset logged */ xfs_alloc_ptr_t *pp; /* block-pointer pointer in btree blk */ block = XFS_BUF_TO_ALLOC_BLOCK(bp); pp = XFS_ALLOC_PTR_ADDR(block, 1, cur); first = (int)((xfs_caddr_t)&pp[pfirst - 1] - (xfs_caddr_t)block); last = (int)(((xfs_caddr_t)&pp[plast] - 1) - (xfs_caddr_t)block); xfs_trans_log_buf(cur->bc_tp, bp, first, last); } /* * Log records from a btree block (leaf). */ STATIC void xfs_alloc_log_recs( xfs_btree_cur_t *cur, /* btree cursor */ xfs_buf_t *bp, /* buffer containing btree block */ int rfirst, /* index of first record to log */ int rlast) /* index of last record to log */ { xfs_alloc_block_t *block; /* btree block to log from */ int first; /* first byte offset logged */ int last; /* last byte offset logged */ xfs_alloc_rec_t *rp; /* record pointer for btree block */ block = XFS_BUF_TO_ALLOC_BLOCK(bp); rp = XFS_ALLOC_REC_ADDR(block, 1, cur); #ifdef DEBUG { xfs_agf_t *agf; xfs_alloc_rec_t *p; agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); for (p = &rp[rfirst - 1]; p <= &rp[rlast - 1]; p++) ASSERT(be32_to_cpu(p->ar_startblock) + be32_to_cpu(p->ar_blockcount) <= be32_to_cpu(agf->agf_length)); } #endif first = (int)((xfs_caddr_t)&rp[rfirst - 1] - (xfs_caddr_t)block); last = (int)(((xfs_caddr_t)&rp[rlast] - 1) - (xfs_caddr_t)block); xfs_trans_log_buf(cur->bc_tp, bp, first, last); } /* * Lookup the record. The cursor is made to point to it, based on dir. * Return 0 if can't find any such record, 1 for success. */ STATIC int /* error */ xfs_alloc_lookup( xfs_btree_cur_t *cur, /* btree cursor */ xfs_lookup_t dir, /* <=, ==, or >= */ int *stat) /* success/failure */ { xfs_agblock_t agbno; /* a.g. relative btree block number */ xfs_agnumber_t agno; /* allocation group number */ xfs_alloc_block_t *block=NULL; /* current btree block */ int diff; /* difference for the current key */ int error; /* error return value */ int keyno=0; /* current key number */ int level; /* level in the btree */ xfs_mount_t *mp; /* file system mount point */ XFS_STATS_INC(xs_abt_lookup); /* * Get the allocation group header, and the root block number. */ mp = cur->bc_mp; { xfs_agf_t *agf; /* a.g. freespace header */ agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); agno = be32_to_cpu(agf->agf_seqno); agbno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]); } /* * Iterate over each level in the btree, starting at the root. * For each level above the leaves, find the key we need, based * on the lookup record, then follow the corresponding block * pointer down to the next level. */ for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { xfs_buf_t *bp; /* buffer pointer for btree block */ xfs_daddr_t d; /* disk address of btree block */ /* * Get the disk address we're looking for. */ d = XFS_AGB_TO_DADDR(mp, agno, agbno); /* * If the old buffer at this level is for a different block, * throw it away, otherwise just use it. */ bp = cur->bc_bufs[level]; if (bp && XFS_BUF_ADDR(bp) != d) bp = NULL; if (!bp) { /* * Need to get a new buffer. Read it, then * set it in the cursor, releasing the old one. */ if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, agno, agbno, 0, &bp, XFS_ALLOC_BTREE_REF))) return error; xfs_btree_setbuf(cur, level, bp); /* * Point to the btree block, now that we have the buffer */ block = XFS_BUF_TO_ALLOC_BLOCK(bp); if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; } else block = XFS_BUF_TO_ALLOC_BLOCK(bp); /* * If we already had a key match at a higher level, we know * we need to use the first entry in this block. */ if (diff == 0) keyno = 1; /* * Otherwise we need to search this block. Do a binary search. */ else { int high; /* high entry number */ xfs_alloc_key_t *kkbase=NULL;/* base of keys in block */ xfs_alloc_rec_t *krbase=NULL;/* base of records in block */ int low; /* low entry number */ /* * Get a pointer to keys or records. */ if (level > 0) kkbase = XFS_ALLOC_KEY_ADDR(block, 1, cur); else krbase = XFS_ALLOC_REC_ADDR(block, 1, cur); /* * Set low and high entry numbers, 1-based. */ low = 1; if (!(high = be16_to_cpu(block->bb_numrecs))) { /* * If the block is empty, the tree must * be an empty leaf. */ ASSERT(level == 0 && cur->bc_nlevels == 1); cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; *stat = 0; return 0; } /* * Binary search the block. */ while (low <= high) { xfs_extlen_t blockcount; /* key value */ xfs_agblock_t startblock; /* key value */ XFS_STATS_INC(xs_abt_compare); /* * keyno is average of low and high. */ keyno = (low + high) >> 1; /* * Get startblock & blockcount. */ if (level > 0) { xfs_alloc_key_t *kkp; kkp = kkbase + keyno - 1; startblock = be32_to_cpu(kkp->ar_startblock); blockcount = be32_to_cpu(kkp->ar_blockcount); } else { xfs_alloc_rec_t *krp; krp = krbase + keyno - 1; startblock = be32_to_cpu(krp->ar_startblock); blockcount = be32_to_cpu(krp->ar_blockcount); } /* * Compute difference to get next direction. */ if (cur->bc_btnum == XFS_BTNUM_BNO) diff = (int)startblock - (int)cur->bc_rec.a.ar_startblock; else if (!(diff = (int)blockcount - (int)cur->bc_rec.a.ar_blockcount)) diff = (int)startblock - (int)cur->bc_rec.a.ar_startblock; /* * Less than, move right. */ if (diff < 0) low = keyno + 1; /* * Greater than, move left. */ else if (diff > 0) high = keyno - 1; /* * Equal, we're done. */ else break; } } /* * If there are more levels, set up for the next level * by getting the block number and filling in the cursor. */ if (level > 0) { /* * If we moved left, need the previous key number, * unless there isn't one. */ if (diff > 0 && --keyno < 1) keyno = 1; agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, keyno, cur)); #ifdef DEBUG if ((error = xfs_btree_check_sptr(cur, agbno, level))) return error; #endif cur->bc_ptrs[level] = keyno; } } /* * Done with the search. * See if we need to adjust the results. */ if (dir != XFS_LOOKUP_LE && diff < 0) { keyno++; /* * If ge search and we went off the end of the block, but it's * not the last block, we're in the wrong block. */ if (dir == XFS_LOOKUP_GE && keyno > be16_to_cpu(block->bb_numrecs) && be32_to_cpu(block->bb_rightsib) != NULLAGBLOCK) { int i; cur->bc_ptrs[0] = keyno; if ((error = xfs_alloc_increment(cur, 0, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); *stat = 1; return 0; } } else if (dir == XFS_LOOKUP_LE && diff > 0) keyno--; cur->bc_ptrs[0] = keyno; /* * Return if we succeeded or not. */ if (keyno == 0 || keyno > be16_to_cpu(block->bb_numrecs)) *stat = 0; else *stat = ((dir != XFS_LOOKUP_EQ) || (diff == 0)); return 0; } /* * Move 1 record left from cur/level if possible. * Update cur to reflect the new path. */ STATIC int /* error */ xfs_alloc_lshift( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level to shift record on */ int *stat) /* success/failure */ { int error; /* error return value */ #ifdef DEBUG int i; /* loop index */ #endif xfs_alloc_key_t key; /* key value for leaf level upward */ xfs_buf_t *lbp; /* buffer for left neighbor block */ xfs_alloc_block_t *left; /* left neighbor btree block */ int nrec; /* new number of left block entries */ xfs_buf_t *rbp; /* buffer for right (current) block */ xfs_alloc_block_t *right; /* right (current) btree block */ xfs_alloc_key_t *rkp=NULL; /* key pointer for right block */ xfs_alloc_ptr_t *rpp=NULL; /* address pointer for right block */ xfs_alloc_rec_t *rrp=NULL; /* record pointer for right block */ /* * Set up variables for this block as "right". */ rbp = cur->bc_bufs[level]; right = XFS_BUF_TO_ALLOC_BLOCK(rbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) return error; #endif /* * If we've got no left sibling then we can't shift an entry left. */ if (be32_to_cpu(right->bb_leftsib) == NULLAGBLOCK) { *stat = 0; return 0; } /* * If the cursor entry is the one that would be moved, don't * do it... it's too complicated. */ if (cur->bc_ptrs[level] <= 1) { *stat = 0; return 0; } /* * Set up the left neighbor as "left". */ if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, be32_to_cpu(right->bb_leftsib), 0, &lbp, XFS_ALLOC_BTREE_REF))) return error; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) return error; /* * If it's full, it can't take another entry. */ if (be16_to_cpu(left->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { *stat = 0; return 0; } nrec = be16_to_cpu(left->bb_numrecs) + 1; /* * If non-leaf, copy a key and a ptr to the left block. */ if (level > 0) { xfs_alloc_key_t *lkp; /* key pointer for left block */ xfs_alloc_ptr_t *lpp; /* address pointer for left block */ lkp = XFS_ALLOC_KEY_ADDR(left, nrec, cur); rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); *lkp = *rkp; xfs_alloc_log_keys(cur, lbp, nrec, nrec); lpp = XFS_ALLOC_PTR_ADDR(left, nrec, cur); rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); #ifdef DEBUG if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*rpp), level))) return error; #endif *lpp = *rpp; xfs_alloc_log_ptrs(cur, lbp, nrec, nrec); xfs_btree_check_key(cur->bc_btnum, lkp - 1, lkp); } /* * If leaf, copy a record to the left block. */ else { xfs_alloc_rec_t *lrp; /* record pointer for left block */ lrp = XFS_ALLOC_REC_ADDR(left, nrec, cur); rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); *lrp = *rrp; xfs_alloc_log_recs(cur, lbp, nrec, nrec); xfs_btree_check_rec(cur->bc_btnum, lrp - 1, lrp); } /* * Bump and log left's numrecs, decrement and log right's numrecs. */ be16_add_cpu(&left->bb_numrecs, 1); xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS); be16_add_cpu(&right->bb_numrecs, -1); xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS); /* * Slide the contents of right down one entry. */ if (level > 0) { #ifdef DEBUG for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i + 1]), level))) return error; } #endif memmove(rkp, rkp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); memmove(rpp, rpp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); } else { memmove(rrp, rrp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); key.ar_startblock = rrp->ar_startblock; key.ar_blockcount = rrp->ar_blockcount; rkp = &key; } /* * Update the parent key values of right. */ if ((error = xfs_alloc_updkey(cur, rkp, level + 1))) return error; /* * Slide the cursor value left one. */ cur->bc_ptrs[level]--; *stat = 1; return 0; } /* * Allocate a new root block, fill it in. */ STATIC int /* error */ xfs_alloc_newroot( xfs_btree_cur_t *cur, /* btree cursor */ int *stat) /* success/failure */ { int error; /* error return value */ xfs_agblock_t lbno; /* left block number */ xfs_buf_t *lbp; /* left btree buffer */ xfs_alloc_block_t *left; /* left btree block */ xfs_mount_t *mp; /* mount structure */ xfs_agblock_t nbno; /* new block number */ xfs_buf_t *nbp; /* new (root) buffer */ xfs_alloc_block_t *new; /* new (root) btree block */ int nptr; /* new value for key index, 1 or 2 */ xfs_agblock_t rbno; /* right block number */ xfs_buf_t *rbp; /* right btree buffer */ xfs_alloc_block_t *right; /* right btree block */ mp = cur->bc_mp; ASSERT(cur->bc_nlevels < XFS_AG_MAXLEVELS(mp)); /* * Get a buffer from the freelist blocks, for the new root. */ error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, &nbno, 1); if (error) return error; /* * None available, we fail. */ if (nbno == NULLAGBLOCK) { *stat = 0; return 0; } xfs_trans_agbtree_delta(cur->bc_tp, 1); nbp = xfs_btree_get_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, nbno, 0); new = XFS_BUF_TO_ALLOC_BLOCK(nbp); /* * Set the root data in the a.g. freespace structure. */ { xfs_agf_t *agf; /* a.g. freespace header */ xfs_agnumber_t seqno; agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); agf->agf_roots[cur->bc_btnum] = cpu_to_be32(nbno); be32_add_cpu(&agf->agf_levels[cur->bc_btnum], 1); seqno = be32_to_cpu(agf->agf_seqno); mp->m_perag[seqno].pagf_levels[cur->bc_btnum]++; xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); } /* * At the previous root level there are now two blocks: the old * root, and the new block generated when it was split. * We don't know which one the cursor is pointing at, so we * set up variables "left" and "right" for each case. */ lbp = cur->bc_bufs[cur->bc_nlevels - 1]; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp))) return error; #endif if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) { /* * Our block is left, pick up the right block. */ lbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(lbp)); rbno = be32_to_cpu(left->bb_rightsib); if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, rbno, 0, &rbp, XFS_ALLOC_BTREE_REF))) return error; right = XFS_BUF_TO_ALLOC_BLOCK(rbp); if ((error = xfs_btree_check_sblock(cur, right, cur->bc_nlevels - 1, rbp))) return error; nptr = 1; } else { /* * Our block is right, pick up the left block. */ rbp = lbp; right = left; rbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(rbp)); lbno = be32_to_cpu(right->bb_leftsib); if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, lbno, 0, &lbp, XFS_ALLOC_BTREE_REF))) return error; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp))) return error; nptr = 2; } /* * Fill in the new block's btree header and log it. */ new->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]); new->bb_level = cpu_to_be16(cur->bc_nlevels); new->bb_numrecs = cpu_to_be16(2); new->bb_leftsib = cpu_to_be32(NULLAGBLOCK); new->bb_rightsib = cpu_to_be32(NULLAGBLOCK); xfs_alloc_log_block(cur->bc_tp, nbp, XFS_BB_ALL_BITS); ASSERT(lbno != NULLAGBLOCK && rbno != NULLAGBLOCK); /* * Fill in the key data in the new root. */ { xfs_alloc_key_t *kp; /* btree key pointer */ kp = XFS_ALLOC_KEY_ADDR(new, 1, cur); if (be16_to_cpu(left->bb_level) > 0) { kp[0] = *XFS_ALLOC_KEY_ADDR(left, 1, cur); kp[1] = *XFS_ALLOC_KEY_ADDR(right, 1, cur); } else { xfs_alloc_rec_t *rp; /* btree record pointer */ rp = XFS_ALLOC_REC_ADDR(left, 1, cur); kp[0].ar_startblock = rp->ar_startblock; kp[0].ar_blockcount = rp->ar_blockcount; rp = XFS_ALLOC_REC_ADDR(right, 1, cur); kp[1].ar_startblock = rp->ar_startblock; kp[1].ar_blockcount = rp->ar_blockcount; } } xfs_alloc_log_keys(cur, nbp, 1, 2); /* * Fill in the pointer data in the new root. */ { xfs_alloc_ptr_t *pp; /* btree address pointer */ pp = XFS_ALLOC_PTR_ADDR(new, 1, cur); pp[0] = cpu_to_be32(lbno); pp[1] = cpu_to_be32(rbno); } xfs_alloc_log_ptrs(cur, nbp, 1, 2); /* * Fix up the cursor. */ xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); cur->bc_ptrs[cur->bc_nlevels] = nptr; cur->bc_nlevels++; *stat = 1; return 0; } /* * Move 1 record right from cur/level if possible. * Update cur to reflect the new path. */ STATIC int /* error */ xfs_alloc_rshift( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level to shift record on */ int *stat) /* success/failure */ { int error; /* error return value */ int i; /* loop index */ xfs_alloc_key_t key; /* key value for leaf level upward */ xfs_buf_t *lbp; /* buffer for left (current) block */ xfs_alloc_block_t *left; /* left (current) btree block */ xfs_buf_t *rbp; /* buffer for right neighbor block */ xfs_alloc_block_t *right; /* right neighbor btree block */ xfs_alloc_key_t *rkp; /* key pointer for right block */ xfs_btree_cur_t *tcur; /* temporary cursor */ /* * Set up variables for this block as "left". */ lbp = cur->bc_bufs[level]; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) return error; #endif /* * If we've got no right sibling then we can't shift an entry right. */ if (be32_to_cpu(left->bb_rightsib) == NULLAGBLOCK) { *stat = 0; return 0; } /* * If the cursor entry is the one that would be moved, don't * do it... it's too complicated. */ if (cur->bc_ptrs[level] >= be16_to_cpu(left->bb_numrecs)) { *stat = 0; return 0; } /* * Set up the right neighbor as "right". */ if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0, &rbp, XFS_ALLOC_BTREE_REF))) return error; right = XFS_BUF_TO_ALLOC_BLOCK(rbp); if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) return error; /* * If it's full, it can't take another entry. */ if (be16_to_cpu(right->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { *stat = 0; return 0; } /* * Make a hole at the start of the right neighbor block, then * copy the last left block entry to the hole. */ if (level > 0) { xfs_alloc_key_t *lkp; /* key pointer for left block */ xfs_alloc_ptr_t *lpp; /* address pointer for left block */ xfs_alloc_ptr_t *rpp; /* address pointer for right block */ lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); #ifdef DEBUG for (i = be16_to_cpu(right->bb_numrecs) - 1; i >= 0; i--) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level))) return error; } #endif memmove(rkp + 1, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); memmove(rpp + 1, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); #ifdef DEBUG if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*lpp), level))) return error; #endif *rkp = *lkp; *rpp = *lpp; xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); xfs_btree_check_key(cur->bc_btnum, rkp, rkp + 1); } else { xfs_alloc_rec_t *lrp; /* record pointer for left block */ xfs_alloc_rec_t *rrp; /* record pointer for right block */ lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); memmove(rrp + 1, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); *rrp = *lrp; xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); key.ar_startblock = rrp->ar_startblock; key.ar_blockcount = rrp->ar_blockcount; rkp = &key; xfs_btree_check_rec(cur->bc_btnum, rrp, rrp + 1); } /* * Decrement and log left's numrecs, bump and log right's numrecs. */ be16_add_cpu(&left->bb_numrecs, -1); xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS); be16_add_cpu(&right->bb_numrecs, 1); xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS); /* * Using a temporary cursor, update the parent key values of the * block on the right. */ if ((error = xfs_btree_dup_cursor(cur, &tcur))) return error; i = xfs_btree_lastrec(tcur, level); XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_alloc_increment(tcur, level, &i)) || (error = xfs_alloc_updkey(tcur, rkp, level + 1))) goto error0; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); *stat = 1; return 0; error0: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); return error; } /* * Split cur/level block in half. * Return new block number and its first record (to be inserted into parent). */ STATIC int /* error */ xfs_alloc_split( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level to split */ xfs_agblock_t *bnop, /* output: block number allocated */ xfs_alloc_key_t *keyp, /* output: first key of new block */ xfs_btree_cur_t **curp, /* output: new cursor */ int *stat) /* success/failure */ { int error; /* error return value */ int i; /* loop index/record number */ xfs_agblock_t lbno; /* left (current) block number */ xfs_buf_t *lbp; /* buffer for left block */ xfs_alloc_block_t *left; /* left (current) btree block */ xfs_agblock_t rbno; /* right (new) block number */ xfs_buf_t *rbp; /* buffer for right block */ xfs_alloc_block_t *right; /* right (new) btree block */ /* * Allocate the new block from the freelist. * If we can't do it, we're toast. Give up. */ error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, &rbno, 1); if (error) return error; if (rbno == NULLAGBLOCK) { *stat = 0; return 0; } xfs_trans_agbtree_delta(cur->bc_tp, 1); rbp = xfs_btree_get_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, rbno, 0); /* * Set up the new block as "right". */ right = XFS_BUF_TO_ALLOC_BLOCK(rbp); /* * "Left" is the current (according to the cursor) block. */ lbp = cur->bc_bufs[level]; left = XFS_BUF_TO_ALLOC_BLOCK(lbp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) return error; #endif /* * Fill in the btree header for the new block. */ right->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]); right->bb_level = left->bb_level; right->bb_numrecs = cpu_to_be16(be16_to_cpu(left->bb_numrecs) / 2); /* * Make sure that if there's an odd number of entries now, that * each new block will have the same number of entries. */ if ((be16_to_cpu(left->bb_numrecs) & 1) && cur->bc_ptrs[level] <= be16_to_cpu(right->bb_numrecs) + 1) be16_add_cpu(&right->bb_numrecs, 1); i = be16_to_cpu(left->bb_numrecs) - be16_to_cpu(right->bb_numrecs) + 1; /* * For non-leaf blocks, copy keys and addresses over to the new block. */ if (level > 0) { xfs_alloc_key_t *lkp; /* left btree key pointer */ xfs_alloc_ptr_t *lpp; /* left btree address pointer */ xfs_alloc_key_t *rkp; /* right btree key pointer */ xfs_alloc_ptr_t *rpp; /* right btree address pointer */ lkp = XFS_ALLOC_KEY_ADDR(left, i, cur); lpp = XFS_ALLOC_PTR_ADDR(left, i, cur); rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); #ifdef DEBUG for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) { if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level))) return error; } #endif memcpy(rkp, lkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); memcpy(rpp, lpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); *keyp = *rkp; } /* * For leaf blocks, copy records over to the new block. */ else { xfs_alloc_rec_t *lrp; /* left btree record pointer */ xfs_alloc_rec_t *rrp; /* right btree record pointer */ lrp = XFS_ALLOC_REC_ADDR(left, i, cur); rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); memcpy(rrp, lrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); keyp->ar_startblock = rrp->ar_startblock; keyp->ar_blockcount = rrp->ar_blockcount; } /* * Find the left block number by looking in the buffer. * Adjust numrecs, sibling pointers. */ lbno = XFS_DADDR_TO_AGBNO(cur->bc_mp, XFS_BUF_ADDR(lbp)); be16_add_cpu(&left->bb_numrecs, -(be16_to_cpu(right->bb_numrecs))); right->bb_rightsib = left->bb_rightsib; left->bb_rightsib = cpu_to_be32(rbno); right->bb_leftsib = cpu_to_be32(lbno); xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_ALL_BITS); xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); /* * If there's a block to the new block's right, make that block * point back to right instead of to left. */ if (be32_to_cpu(right->bb_rightsib) != NULLAGBLOCK) { xfs_alloc_block_t *rrblock; /* rr btree block */ xfs_buf_t *rrbp; /* buffer for rrblock */ if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, be32_to_cpu(right->bb_rightsib), 0, &rrbp, XFS_ALLOC_BTREE_REF))) return error; rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp); if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp))) return error; rrblock->bb_leftsib = cpu_to_be32(rbno); xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB); } /* * If the cursor is really in the right block, move it there. * If it's just pointing past the last entry in left, then we'll * insert there, so don't change anything in that case. */ if (cur->bc_ptrs[level] > be16_to_cpu(left->bb_numrecs) + 1) { xfs_btree_setbuf(cur, level, rbp); cur->bc_ptrs[level] -= be16_to_cpu(left->bb_numrecs); } /* * If there are more levels, we'll need another cursor which refers to * the right block, no matter where this cursor was. */ if (level + 1 < cur->bc_nlevels) { if ((error = xfs_btree_dup_cursor(cur, curp))) return error; (*curp)->bc_ptrs[level + 1]++; } *bnop = rbno; *stat = 1; return 0; } /* * Update keys at all levels from here to the root along the cursor's path. */ STATIC int /* error */ xfs_alloc_updkey( xfs_btree_cur_t *cur, /* btree cursor */ xfs_alloc_key_t *keyp, /* new key value to update to */ int level) /* starting level for update */ { int ptr; /* index of key in block */ /* * Go up the tree from this level toward the root. * At each level, update the key value to the value input. * Stop when we reach a level where the cursor isn't pointing * at the first entry in the block. */ for (ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { xfs_alloc_block_t *block; /* btree block */ xfs_buf_t *bp; /* buffer for block */ #ifdef DEBUG int error; /* error return value */ #endif xfs_alloc_key_t *kp; /* ptr to btree block keys */ bp = cur->bc_bufs[level]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; #endif ptr = cur->bc_ptrs[level]; kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur); *kp = *keyp; xfs_alloc_log_keys(cur, bp, ptr, ptr); } return 0; } /* * Externally visible routines. */ /* * Decrement cursor by one record at the level. * For nonzero levels the leaf-ward information is untouched. */ int /* error */ xfs_alloc_decrement( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level in btree, 0 is leaf */ int *stat) /* success/failure */ { xfs_alloc_block_t *block; /* btree block */ int error; /* error return value */ int lev; /* btree level */ ASSERT(level < cur->bc_nlevels); /* * Read-ahead to the left at this level. */ xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); /* * Decrement the ptr at this level. If we're still in the block * then we're done. */ if (--cur->bc_ptrs[level] > 0) { *stat = 1; return 0; } /* * Get a pointer to the btree block. */ block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[level]); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, cur->bc_bufs[level]))) return error; #endif /* * If we just went off the left edge of the tree, return failure. */ if (be32_to_cpu(block->bb_leftsib) == NULLAGBLOCK) { *stat = 0; return 0; } /* * March up the tree decrementing pointers. * Stop when we don't go off the left edge of a block. */ for (lev = level + 1; lev < cur->bc_nlevels; lev++) { if (--cur->bc_ptrs[lev] > 0) break; /* * Read-ahead the left block, we're going to read it * in the next loop. */ xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); } /* * If we went off the root then we are seriously confused. */ ASSERT(lev < cur->bc_nlevels); /* * Now walk back down the tree, fixing up the cursor's buffer * pointers and key numbers. */ for (block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[lev]); lev > level; ) { xfs_agblock_t agbno; /* block number of btree block */ xfs_buf_t *bp; /* buffer pointer for block */ agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur)); if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, agbno, 0, &bp, XFS_ALLOC_BTREE_REF))) return error; lev--; xfs_btree_setbuf(cur, lev, bp); block = XFS_BUF_TO_ALLOC_BLOCK(bp); if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) return error; cur->bc_ptrs[lev] = be16_to_cpu(block->bb_numrecs); } *stat = 1; return 0; } /* * Delete the record pointed to by cur. * The cursor refers to the place where the record was (could be inserted) * when the operation returns. */ int /* error */ xfs_alloc_delete( xfs_btree_cur_t *cur, /* btree cursor */ int *stat) /* success/failure */ { int error; /* error return value */ int i; /* result code */ int level; /* btree level */ /* * Go up the tree, starting at leaf level. * If 2 is returned then a join was done; go to the next level. * Otherwise we are done. */ for (level = 0, i = 2; i == 2; level++) { if ((error = xfs_alloc_delrec(cur, level, &i))) return error; } if (i == 0) { for (level = 1; level < cur->bc_nlevels; level++) { if (cur->bc_ptrs[level] == 0) { if ((error = xfs_alloc_decrement(cur, level, &i))) return error; break; } } } *stat = i; return 0; } /* * Get the data from the pointed-to record. */ int /* error */ xfs_alloc_get_rec( xfs_btree_cur_t *cur, /* btree cursor */ xfs_agblock_t *bno, /* output: starting block of extent */ xfs_extlen_t *len, /* output: length of extent */ int *stat) /* output: success/failure */ { xfs_alloc_block_t *block; /* btree block */ #ifdef DEBUG int error; /* error return value */ #endif int ptr; /* record number */ ptr = cur->bc_ptrs[0]; block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0]))) return error; #endif /* * Off the right end or left end, return failure. */ if (ptr > be16_to_cpu(block->bb_numrecs) || ptr <= 0) { *stat = 0; return 0; } /* * Point to the record and extract its data. */ { xfs_alloc_rec_t *rec; /* record data */ rec = XFS_ALLOC_REC_ADDR(block, ptr, cur); *bno = be32_to_cpu(rec->ar_startblock); *len = be32_to_cpu(rec->ar_blockcount); } *stat = 1; return 0; } /* * Increment cursor by one record at the level. * For nonzero levels the leaf-ward information is untouched. */ int /* error */ xfs_alloc_increment( xfs_btree_cur_t *cur, /* btree cursor */ int level, /* level in btree, 0 is leaf */ int *stat) /* success/failure */ { xfs_alloc_block_t *block; /* btree block */ xfs_buf_t *bp; /* tree block buffer */ int error; /* error return value */ int lev; /* btree level */ ASSERT(level < cur->bc_nlevels); /* * Read-ahead to the right at this level. */ xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); /* * Get a pointer to the btree block. */ bp = cur->bc_bufs[level]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, level, bp))) return error; #endif /* * Increment the ptr at this level. If we're still in the block * then we're done. */ if (++cur->bc_ptrs[level] <= be16_to_cpu(block->bb_numrecs)) { *stat = 1; return 0; } /* * If we just went off the right edge of the tree, return failure. */ if (be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK) { *stat = 0; return 0; } /* * March up the tree incrementing pointers. * Stop when we don't go off the right edge of a block. */ for (lev = level + 1; lev < cur->bc_nlevels; lev++) { bp = cur->bc_bufs[lev]; block = XFS_BUF_TO_ALLOC_BLOCK(bp); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) return error; #endif if (++cur->bc_ptrs[lev] <= be16_to_cpu(block->bb_numrecs)) break; /* * Read-ahead the right block, we're going to read it * in the next loop. */ xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); } /* * If we went off the root then we are seriously confused. */ ASSERT(lev < cur->bc_nlevels); /* * Now walk back down the tree, fixing up the cursor's buffer * pointers and key numbers. */ for (bp = cur->bc_bufs[lev], block = XFS_BUF_TO_ALLOC_BLOCK(bp); lev > level; ) { xfs_agblock_t agbno; /* block number of btree block */ agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur)); if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, agbno, 0, &bp, XFS_ALLOC_BTREE_REF))) return error; lev--; xfs_btree_setbuf(cur, lev, bp); block = XFS_BUF_TO_ALLOC_BLOCK(bp); if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) return error; cur->bc_ptrs[lev] = 1; } *stat = 1; return 0; } /* * Insert the current record at the point referenced by cur. * The cursor may be inconsistent on return if splits have been done. */ int /* error */ xfs_alloc_insert( xfs_btree_cur_t *cur, /* btree cursor */ int *stat) /* success/failure */ { int error; /* error return value */ int i; /* result value, 0 for failure */ int level; /* current level number in btree */ xfs_agblock_t nbno; /* new block number (split result) */ xfs_btree_cur_t *ncur; /* new cursor (split result) */ xfs_alloc_rec_t nrec; /* record being inserted this level */ xfs_btree_cur_t *pcur; /* previous level's cursor */ level = 0; nbno = NULLAGBLOCK; nrec.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock); nrec.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount); ncur = NULL; pcur = cur; /* * Loop going up the tree, starting at the leaf level. * Stop when we don't get a split block, that must mean that * the insert is finished with this level. */ do { /* * Insert nrec/nbno into this level of the tree. * Note if we fail, nbno will be null. */ if ((error = xfs_alloc_insrec(pcur, level++, &nbno, &nrec, &ncur, &i))) { if (pcur != cur) xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); return error; } /* * See if the cursor we just used is trash. * Can't trash the caller's cursor, but otherwise we should * if ncur is a new cursor or we're about to be done. */ if (pcur != cur && (ncur || nbno == NULLAGBLOCK)) { cur->bc_nlevels = pcur->bc_nlevels; xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); } /* * If we got a new cursor, switch to it. */ if (ncur) { pcur = ncur; ncur = NULL; } } while (nbno != NULLAGBLOCK); *stat = i; return 0; } /* * Lookup the record equal to [bno, len] in the btree given by cur. */ int /* error */ xfs_alloc_lookup_eq( xfs_btree_cur_t *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, stat); } /* * Lookup the first record greater than or equal to [bno, len] * in the btree given by cur. */ int /* error */ xfs_alloc_lookup_ge( xfs_btree_cur_t *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, stat); } /* * Lookup the first record less than or equal to [bno, len] * in the btree given by cur. */ int /* error */ xfs_alloc_lookup_le( xfs_btree_cur_t *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, stat); } /* * Update the record referred to by cur, to the value given by [bno, len]. * This either works (return 0) or gets an EFSCORRUPTED error. */ int /* error */ xfs_alloc_update( xfs_btree_cur_t *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len) /* length of extent */ { xfs_alloc_block_t *block; /* btree block to update */ int error; /* error return value */ int ptr; /* current record number (updating) */ ASSERT(len > 0); /* * Pick up the a.g. freelist struct and the current block. */ block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]); #ifdef DEBUG if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0]))) return error; #endif /* * Get the address of the rec to be updated. */ ptr = cur->bc_ptrs[0]; { xfs_alloc_rec_t *rp; /* pointer to updated record */ rp = XFS_ALLOC_REC_ADDR(block, ptr, cur); /* * Fill in the new contents and log them. */ rp->ar_startblock = cpu_to_be32(bno); rp->ar_blockcount = cpu_to_be32(len); xfs_alloc_log_recs(cur, cur->bc_bufs[0], ptr, ptr); } /* * If it's the by-size btree and it's the last leaf block and * it's the last record... then update the size of the longest * extent in the a.g., which we cache in the a.g. freelist header. */ if (cur->bc_btnum == XFS_BTNUM_CNT && be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && ptr == be16_to_cpu(block->bb_numrecs)) { xfs_agf_t *agf; /* a.g. freespace header */ xfs_agnumber_t seqno; agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); seqno = be32_to_cpu(agf->agf_seqno); cur->bc_mp->m_perag[seqno].pagf_longest = len; agf->agf_longest = cpu_to_be32(len); xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST); } /* * Updating first record in leaf. Pass new key value up to our parent. */ if (ptr == 1) { xfs_alloc_key_t key; /* key containing [bno, len] */ key.ar_startblock = cpu_to_be32(bno); key.ar_blockcount = cpu_to_be32(len); if ((error = xfs_alloc_updkey(cur, &key, 1))) return error; } return 0; } STATIC struct xfs_btree_cur * xfs_allocbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agbp, cur->bc_private.a.agno, cur->bc_btnum); } STATIC int xfs_allocbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_alloc_mxr[level != 0]; } #ifdef XFS_BTREE_TRACE ktrace_t *xfs_allocbt_trace_buf; STATIC void xfs_allocbt_trace_enter( struct xfs_btree_cur *cur, const char *func, char *s, int type, int line, __psunsigned_t a0, __psunsigned_t a1, __psunsigned_t a2, __psunsigned_t a3, __psunsigned_t a4, __psunsigned_t a5, __psunsigned_t a6, __psunsigned_t a7, __psunsigned_t a8, __psunsigned_t a9, __psunsigned_t a10) { ktrace_enter(xfs_allocbt_trace_buf, (void *)(__psint_t)type, (void *)func, (void *)s, NULL, (void *)cur, (void *)a0, (void *)a1, (void *)a2, (void *)a3, (void *)a4, (void *)a5, (void *)a6, (void *)a7, (void *)a8, (void *)a9, (void *)a10); } STATIC void xfs_allocbt_trace_cursor( struct xfs_btree_cur *cur, __uint32_t *s0, __uint64_t *l0, __uint64_t *l1) { *s0 = cur->bc_private.a.agno; *l0 = cur->bc_rec.a.ar_startblock; *l1 = cur->bc_rec.a.ar_blockcount; } STATIC void xfs_allocbt_trace_key( struct xfs_btree_cur *cur, union xfs_btree_key *key, __uint64_t *l0, __uint64_t *l1) { *l0 = be32_to_cpu(key->alloc.ar_startblock); *l1 = be32_to_cpu(key->alloc.ar_blockcount); } STATIC void xfs_allocbt_trace_record( struct xfs_btree_cur *cur, union xfs_btree_rec *rec, __uint64_t *l0, __uint64_t *l1, __uint64_t *l2) { *l0 = be32_to_cpu(rec->alloc.ar_startblock); *l1 = be32_to_cpu(rec->alloc.ar_blockcount); *l2 = 0; } #endif /* XFS_BTREE_TRACE */ static const struct xfs_btree_ops xfs_allocbt_ops = { .rec_len = sizeof(xfs_alloc_rec_t), .key_len = sizeof(xfs_alloc_key_t), .dup_cursor = xfs_allocbt_dup_cursor, .get_maxrecs = xfs_allocbt_get_maxrecs, #ifdef XFS_BTREE_TRACE .trace_enter = xfs_allocbt_trace_enter, .trace_cursor = xfs_allocbt_trace_cursor, .trace_key = xfs_allocbt_trace_key, .trace_record = xfs_allocbt_trace_record, #endif }; /* * Allocate a new allocation btree cursor. */ struct xfs_btree_cur * /* new alloc btree cursor */ xfs_allocbt_init_cursor( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ struct xfs_buf *agbp, /* buffer for agf structure */ xfs_agnumber_t agno, /* allocation group number */ xfs_btnum_t btnum) /* btree identifier */ { struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); struct xfs_btree_cur *cur; ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT); cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_nlevels = be32_to_cpu(agf->agf_levels[btnum]); cur->bc_btnum = btnum; cur->bc_blocklog = mp->m_sb.sb_blocklog; cur->bc_ops = &xfs_allocbt_ops; cur->bc_private.a.agbp = agbp; cur->bc_private.a.agno = agno; return cur; }