/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Adrian Hunter * Artem Bityutskiy (Битюцкий Артём) */ /* * This file implements functions needed to recover from unclean un-mounts. * When UBIFS is mounted, it checks a flag on the master node to determine if * an un-mount was completed successfully. If not, the process of mounting * incorparates additional checking and fixing of on-flash data structures. * UBIFS always cleans away all remnants of an unclean un-mount, so that * errors do not accumulate. However UBIFS defers recovery if it is mounted * read-only, and the flash is not modified in that case. */ #include <linux/crc32.h> #include "ubifs.h" /** * is_empty - determine whether a buffer is empty (contains all 0xff). * @buf: buffer to clean * @len: length of buffer * * This function returns %1 if the buffer is empty (contains all 0xff) otherwise * %0 is returned. */ static int is_empty(void *buf, int len) { uint8_t *p = buf; int i; for (i = 0; i < len; i++) if (*p++ != 0xff) return 0; return 1; } /** * first_non_ff - find offset of the first non-0xff byte. * @buf: buffer to search in * @len: length of buffer * * This function returns offset of the first non-0xff byte in @buf or %-1 if * the buffer contains only 0xff bytes. */ static int first_non_ff(void *buf, int len) { uint8_t *p = buf; int i; for (i = 0; i < len; i++) if (*p++ != 0xff) return i; return -1; } /** * get_master_node - get the last valid master node allowing for corruption. * @c: UBIFS file-system description object * @lnum: LEB number * @pbuf: buffer containing the LEB read, is returned here * @mst: master node, if found, is returned here * @cor: corruption, if found, is returned here * * This function allocates a buffer, reads the LEB into it, and finds and * returns the last valid master node allowing for one area of corruption. * The corrupt area, if there is one, must be consistent with the assumption * that it is the result of an unclean unmount while the master node was being * written. Under those circumstances, it is valid to use the previously written * master node. * * This function returns %0 on success and a negative error code on failure. */ static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, struct ubifs_mst_node **mst, void **cor) { const int sz = c->mst_node_alsz; int err, offs, len; void *sbuf, *buf; sbuf = vmalloc(c->leb_size); if (!sbuf) return -ENOMEM; err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); if (err && err != -EBADMSG) goto out_free; /* Find the first position that is definitely not a node */ offs = 0; buf = sbuf; len = c->leb_size; while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { struct ubifs_ch *ch = buf; if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) break; offs += sz; buf += sz; len -= sz; } /* See if there was a valid master node before that */ if (offs) { int ret; offs -= sz; buf -= sz; len += sz; ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); if (ret != SCANNED_A_NODE && offs) { /* Could have been corruption so check one place back */ offs -= sz; buf -= sz; len += sz; ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); if (ret != SCANNED_A_NODE) /* * We accept only one area of corruption because * we are assuming that it was caused while * trying to write a master node. */ goto out_err; } if (ret == SCANNED_A_NODE) { struct ubifs_ch *ch = buf; if (ch->node_type != UBIFS_MST_NODE) goto out_err; dbg_rcvry("found a master node at %d:%d", lnum, offs); *mst = buf; offs += sz; buf += sz; len -= sz; } } /* Check for corruption */ if (offs < c->leb_size) { if (!is_empty(buf, min_t(int, len, sz))) { *cor = buf; dbg_rcvry("found corruption at %d:%d", lnum, offs); } offs += sz; buf += sz; len -= sz; } /* Check remaining empty space */ if (offs < c->leb_size) if (!is_empty(buf, len)) goto out_err; *pbuf = sbuf; return 0; out_err: err = -EINVAL; out_free: vfree(sbuf); *mst = NULL; *cor = NULL; return err; } /** * write_rcvrd_mst_node - write recovered master node. * @c: UBIFS file-system description object * @mst: master node * * This function returns %0 on success and a negative error code on failure. */ static int write_rcvrd_mst_node(struct ubifs_info *c, struct ubifs_mst_node *mst) { int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; __le32 save_flags; dbg_rcvry("recovery"); save_flags = mst->flags; mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); if (err) goto out; err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); if (err) goto out; out: mst->flags = save_flags; return err; } /** * ubifs_recover_master_node - recover the master node. * @c: UBIFS file-system description object * * This function recovers the master node from corruption that may occur due to * an unclean unmount. * * This function returns %0 on success and a negative error code on failure. */ int ubifs_recover_master_node(struct ubifs_info *c) { void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; const int sz = c->mst_node_alsz; int err, offs1, offs2; dbg_rcvry("recovery"); err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); if (err) goto out_free; err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); if (err) goto out_free; if (mst1) { offs1 = (void *)mst1 - buf1; if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && (offs1 == 0 && !cor1)) { /* * mst1 was written by recovery at offset 0 with no * corruption. */ dbg_rcvry("recovery recovery"); mst = mst1; } else if (mst2) { offs2 = (void *)mst2 - buf2; if (offs1 == offs2) { /* Same offset, so must be the same */ if (memcmp((void *)mst1 + UBIFS_CH_SZ, (void *)mst2 + UBIFS_CH_SZ, UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) goto out_err; mst = mst1; } else if (offs2 + sz == offs1) { /* 1st LEB was written, 2nd was not */ if (cor1) goto out_err; mst = mst1; } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { /* 1st LEB was unmapped and written, 2nd not */ if (cor1) goto out_err; mst = mst1; } else goto out_err; } else { /* * 2nd LEB was unmapped and about to be written, so * there must be only one master node in the first LEB * and no corruption. */ if (offs1 != 0 || cor1) goto out_err; mst = mst1; } } else { if (!mst2) goto out_err; /* * 1st LEB was unmapped and about to be written, so there must * be no room left in 2nd LEB. */ offs2 = (void *)mst2 - buf2; if (offs2 + sz + sz <= c->leb_size) goto out_err; mst = mst2; } ubifs_msg("recovered master node from LEB %d", (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); if ((c->vfs_sb->s_flags & MS_RDONLY)) { /* Read-only mode. Keep a copy for switching to rw mode */ c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); if (!c->rcvrd_mst_node) { err = -ENOMEM; goto out_free; } memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); } else { /* Write the recovered master node */ c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; err = write_rcvrd_mst_node(c, c->mst_node); if (err) goto out_free; } vfree(buf2); vfree(buf1); return 0; out_err: err = -EINVAL; out_free: ubifs_err("failed to recover master node"); if (mst1) { dbg_err("dumping first master node"); dbg_dump_node(c, mst1); } if (mst2) { dbg_err("dumping second master node"); dbg_dump_node(c, mst2); } vfree(buf2); vfree(buf1); return err; } /** * ubifs_write_rcvrd_mst_node - write the recovered master node. * @c: UBIFS file-system description object * * This function writes the master node that was recovered during mounting in * read-only mode and must now be written because we are remounting rw. * * This function returns %0 on success and a negative error code on failure. */ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) { int err; if (!c->rcvrd_mst_node) return 0; c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); if (err) return err; kfree(c->rcvrd_mst_node); c->rcvrd_mst_node = NULL; return 0; } /** * is_last_write - determine if an offset was in the last write to a LEB. * @c: UBIFS file-system description object * @buf: buffer to check * @offs: offset to check * * This function returns %1 if @offs was in the last write to the LEB whose data * is in @buf, otherwise %0 is returned. The determination is made by checking * for subsequent empty space starting from the next @c->min_io_size boundary. */ static int is_last_write(const struct ubifs_info *c, void *buf, int offs) { int empty_offs, check_len; uint8_t *p; /* * Round up to the next @c->min_io_size boundary i.e. @offs is in the * last wbuf written. After that should be empty space. */ empty_offs = ALIGN(offs + 1, c->min_io_size); check_len = c->leb_size - empty_offs; p = buf + empty_offs - offs; return is_empty(p, check_len); } /** * clean_buf - clean the data from an LEB sitting in a buffer. * @c: UBIFS file-system description object * @buf: buffer to clean * @lnum: LEB number to clean * @offs: offset from which to clean * @len: length of buffer * * This function pads up to the next min_io_size boundary (if there is one) and * sets empty space to all 0xff. @buf, @offs and @len are updated to the next * @c->min_io_size boundary. */ static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, int *offs, int *len) { int empty_offs, pad_len; lnum = lnum; dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); ubifs_assert(!(*offs & 7)); empty_offs = ALIGN(*offs, c->min_io_size); pad_len = empty_offs - *offs; ubifs_pad(c, *buf, pad_len); *offs += pad_len; *buf += pad_len; *len -= pad_len; memset(*buf, 0xff, c->leb_size - empty_offs); } /** * no_more_nodes - determine if there are no more nodes in a buffer. * @c: UBIFS file-system description object * @buf: buffer to check * @len: length of buffer * @lnum: LEB number of the LEB from which @buf was read * @offs: offset from which @buf was read * * This function ensures that the corrupted node at @offs is the last thing * written to a LEB. This function returns %1 if more data is not found and * %0 if more data is found. */ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, int lnum, int offs) { struct ubifs_ch *ch = buf; int skip, dlen = le32_to_cpu(ch->len); /* Check for empty space after the corrupt node's common header */ skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; if (is_empty(buf + skip, len - skip)) return 1; /* * The area after the common header size is not empty, so the common * header must be intact. Check it. */ if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); return 0; } /* Now we know the corrupt node's length we can skip over it */ skip = ALIGN(offs + dlen, c->min_io_size) - offs; /* After which there should be empty space */ if (is_empty(buf + skip, len - skip)) return 1; dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); return 0; } /** * fix_unclean_leb - fix an unclean LEB. * @c: UBIFS file-system description object * @sleb: scanned LEB information * @start: offset where scan started */ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, int start) { int lnum = sleb->lnum, endpt = start; /* Get the end offset of the last node we are keeping */ if (!list_empty(&sleb->nodes)) { struct ubifs_scan_node *snod; snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list); endpt = snod->offs + snod->len; } if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { /* Add to recovery list */ struct ubifs_unclean_leb *ucleb; dbg_rcvry("need to fix LEB %d start %d endpt %d", lnum, start, sleb->endpt); ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); if (!ucleb) return -ENOMEM; ucleb->lnum = lnum; ucleb->endpt = endpt; list_add_tail(&ucleb->list, &c->unclean_leb_list); } else { /* Write the fixed LEB back to flash */ int err; dbg_rcvry("fixing LEB %d start %d endpt %d", lnum, start, sleb->endpt); if (endpt == 0) { err = ubifs_leb_unmap(c, lnum); if (err) return err; } else { int len = ALIGN(endpt, c->min_io_size); if (start) { err = ubi_read(c->ubi, lnum, sleb->buf, 0, start); if (err) return err; } /* Pad to min_io_size */ if (len > endpt) { int pad_len = len - ALIGN(endpt, 8); if (pad_len > 0) { void *buf = sleb->buf + len - pad_len; ubifs_pad(c, buf, pad_len); } } err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, UBI_UNKNOWN); if (err) return err; } } return 0; } /** * drop_incomplete_group - drop nodes from an incomplete group. * @sleb: scanned LEB information * @offs: offset of dropped nodes is returned here * * This function returns %1 if nodes are dropped and %0 otherwise. */ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) { int dropped = 0; while (!list_empty(&sleb->nodes)) { struct ubifs_scan_node *snod; struct ubifs_ch *ch; snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list); ch = snod->node; if (ch->group_type != UBIFS_IN_NODE_GROUP) return dropped; dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); *offs = snod->offs; list_del(&snod->list); kfree(snod); sleb->nodes_cnt -= 1; dropped = 1; } return dropped; } /** * ubifs_recover_leb - scan and recover a LEB. * @c: UBIFS file-system description object * @lnum: LEB number * @offs: offset * @sbuf: LEB-sized buffer to use * @grouped: nodes may be grouped for recovery * * This function does a scan of a LEB, but caters for errors that might have * been caused by the unclean unmount from which we are attempting to recover. * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is * found, and a negative error code in case of failure. */ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf, int grouped) { int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; int empty_chkd = 0, start = offs; struct ubifs_scan_leb *sleb; void *buf = sbuf + offs; dbg_rcvry("%d:%d", lnum, offs); sleb = ubifs_start_scan(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return sleb; if (sleb->ecc) need_clean = 1; while (len >= 8) { int ret; dbg_scan("look at LEB %d:%d (%d bytes left)", lnum, offs, len); cond_resched(); /* * Scan quietly until there is an error from which we cannot * recover */ ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); if (ret == SCANNED_A_NODE) { /* A valid node, and not a padding node */ struct ubifs_ch *ch = buf; int node_len; err = ubifs_add_snod(c, sleb, buf, offs); if (err) goto error; node_len = ALIGN(le32_to_cpu(ch->len), 8); offs += node_len; buf += node_len; len -= node_len; continue; } if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; buf += ret; len -= ret; continue; } if (ret == SCANNED_EMPTY_SPACE) { if (!is_empty(buf, len)) { if (!is_last_write(c, buf, offs)) break; clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; } empty_chkd = 1; break; } if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) if (is_last_write(c, buf, offs)) { clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; empty_chkd = 1; break; } if (ret == SCANNED_A_CORRUPT_NODE) if (no_more_nodes(c, buf, len, lnum, offs)) { clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; empty_chkd = 1; break; } if (quiet) { /* Redo the last scan but noisily */ quiet = 0; continue; } switch (ret) { case SCANNED_GARBAGE: dbg_err("garbage"); goto corrupted; case SCANNED_A_CORRUPT_NODE: case SCANNED_A_BAD_PAD_NODE: dbg_err("bad node"); goto corrupted; default: dbg_err("unknown"); err = -EINVAL; goto error; } } if (!empty_chkd && !is_empty(buf, len)) { if (is_last_write(c, buf, offs)) { clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; } else { int corruption = first_non_ff(buf, len); ubifs_err("corrupt empty space LEB %d:%d, corruption " "starts at %d", lnum, offs, corruption); /* Make sure we dump interesting non-0xFF data */ offs = corruption; buf += corruption; goto corrupted; } } /* Drop nodes from incomplete group */ if (grouped && drop_incomplete_group(sleb, &offs)) { buf = sbuf + offs; len = c->leb_size - offs; clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; } if (offs % c->min_io_size) { clean_buf(c, &buf, lnum, &offs, &len); need_clean = 1; } ubifs_end_scan(c, sleb, lnum, offs); if (need_clean) { err = fix_unclean_leb(c, sleb, start); if (err) goto error; } return sleb; corrupted: ubifs_scanned_corruption(c, lnum, offs, buf); err = -EUCLEAN; error: ubifs_err("LEB %d scanning failed", lnum); ubifs_scan_destroy(sleb); return ERR_PTR(err); } /** * get_cs_sqnum - get commit start sequence number. * @c: UBIFS file-system description object * @lnum: LEB number of commit start node * @offs: offset of commit start node * @cs_sqnum: commit start sequence number is returned here * * This function returns %0 on success and a negative error code on failure. */ static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, unsigned long long *cs_sqnum) { struct ubifs_cs_node *cs_node = NULL; int err, ret; dbg_rcvry("at %d:%d", lnum, offs); cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); if (!cs_node) return -ENOMEM; if (c->leb_size - offs < UBIFS_CS_NODE_SZ) goto out_err; err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); if (err && err != -EBADMSG) goto out_free; ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); if (ret != SCANNED_A_NODE) { dbg_err("Not a valid node"); goto out_err; } if (cs_node->ch.node_type != UBIFS_CS_NODE) { dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); goto out_err; } if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { dbg_err("CS node cmt_no %llu != current cmt_no %llu", (unsigned long long)le64_to_cpu(cs_node->cmt_no), c->cmt_no); goto out_err; } *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); dbg_rcvry("commit start sqnum %llu", *cs_sqnum); kfree(cs_node); return 0; out_err: err = -EINVAL; out_free: ubifs_err("failed to get CS sqnum"); kfree(cs_node); return err; } /** * ubifs_recover_log_leb - scan and recover a log LEB. * @c: UBIFS file-system description object * @lnum: LEB number * @offs: offset * @sbuf: LEB-sized buffer to use * * This function does a scan of a LEB, but caters for errors that might have * been caused by the unclean unmount from which we are attempting to recover. * * This function returns %0 on success and a negative error code on failure. */ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) { struct ubifs_scan_leb *sleb; int next_lnum; dbg_rcvry("LEB %d", lnum); next_lnum = lnum + 1; if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) next_lnum = UBIFS_LOG_LNUM; if (next_lnum != c->ltail_lnum) { /* * We can only recover at the end of the log, so check that the * next log LEB is empty or out of date. */ sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); if (IS_ERR(sleb)) return sleb; if (sleb->nodes_cnt) { struct ubifs_scan_node *snod; unsigned long long cs_sqnum = c->cs_sqnum; snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); if (cs_sqnum == 0) { int err; err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); if (err) { ubifs_scan_destroy(sleb); return ERR_PTR(err); } } if (snod->sqnum > cs_sqnum) { ubifs_err("unrecoverable log corruption " "in LEB %d", lnum); ubifs_scan_destroy(sleb); return ERR_PTR(-EUCLEAN); } } ubifs_scan_destroy(sleb); } return ubifs_recover_leb(c, lnum, offs, sbuf, 0); } /** * recover_head - recover a head. * @c: UBIFS file-system description object * @lnum: LEB number of head to recover * @offs: offset of head to recover * @sbuf: LEB-sized buffer to use * * This function ensures that there is no data on the flash at a head location. * * This function returns %0 on success and a negative error code on failure. */ static int recover_head(const struct ubifs_info *c, int lnum, int offs, void *sbuf) { int len, err; if (c->min_io_size > 1) len = c->min_io_size; else len = 512; if (offs + len > c->leb_size) len = c->leb_size - offs; if (!len) return 0; /* Read at the head location and check it is empty flash */ err = ubi_read(c->ubi, lnum, sbuf, offs, len); if (err || !is_empty(sbuf, len)) { dbg_rcvry("cleaning head at %d:%d", lnum, offs); if (offs == 0) return ubifs_leb_unmap(c, lnum); err = ubi_read(c->ubi, lnum, sbuf, 0, offs); if (err) return err; return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); } return 0; } /** * ubifs_recover_inl_heads - recover index and LPT heads. * @c: UBIFS file-system description object * @sbuf: LEB-sized buffer to use * * This function ensures that there is no data on the flash at the index and * LPT head locations. * * This deals with the recovery of a half-completed journal commit. UBIFS is * careful never to overwrite the last version of the index or the LPT. Because * the index and LPT are wandering trees, data from a half-completed commit will * not be referenced anywhere in UBIFS. The data will be either in LEBs that are * assumed to be empty and will be unmapped anyway before use, or in the index * and LPT heads. * * This function returns %0 on success and a negative error code on failure. */ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) { int err; ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); if (err) return err; dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); if (err) return err; return 0; } /** * clean_an_unclean_leb - read and write a LEB to remove corruption. * @c: UBIFS file-system description object * @ucleb: unclean LEB information * @sbuf: LEB-sized buffer to use * * This function reads a LEB up to a point pre-determined by the mount recovery, * checks the nodes, and writes the result back to the flash, thereby cleaning * off any following corruption, or non-fatal ECC errors. * * This function returns %0 on success and a negative error code on failure. */ static int clean_an_unclean_leb(const struct ubifs_info *c, struct ubifs_unclean_leb *ucleb, void *sbuf) { int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; void *buf = sbuf; dbg_rcvry("LEB %d len %d", lnum, len); if (len == 0) { /* Nothing to read, just unmap it */ err = ubifs_leb_unmap(c, lnum); if (err) return err; return 0; } err = ubi_read(c->ubi, lnum, buf, offs, len); if (err && err != -EBADMSG) return err; while (len >= 8) { int ret; cond_resched(); /* Scan quietly until there is an error */ ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); if (ret == SCANNED_A_NODE) { /* A valid node, and not a padding node */ struct ubifs_ch *ch = buf; int node_len; node_len = ALIGN(le32_to_cpu(ch->len), 8); offs += node_len; buf += node_len; len -= node_len; continue; } if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; buf += ret; len -= ret; continue; } if (ret == SCANNED_EMPTY_SPACE) { ubifs_err("unexpected empty space at %d:%d", lnum, offs); return -EUCLEAN; } if (quiet) { /* Redo the last scan but noisily */ quiet = 0; continue; } ubifs_scanned_corruption(c, lnum, offs, buf); return -EUCLEAN; } /* Pad to min_io_size */ len = ALIGN(ucleb->endpt, c->min_io_size); if (len > ucleb->endpt) { int pad_len = len - ALIGN(ucleb->endpt, 8); if (pad_len > 0) { buf = c->sbuf + len - pad_len; ubifs_pad(c, buf, pad_len); } } /* Write back the LEB atomically */ err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); if (err) return err; dbg_rcvry("cleaned LEB %d", lnum); return 0; } /** * ubifs_clean_lebs - clean LEBs recovered during read-only mount. * @c: UBIFS file-system description object * @sbuf: LEB-sized buffer to use * * This function cleans a LEB identified during recovery that needs to be * written but was not because UBIFS was mounted read-only. This happens when * remounting to read-write mode. * * This function returns %0 on success and a negative error code on failure. */ int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) { dbg_rcvry("recovery"); while (!list_empty(&c->unclean_leb_list)) { struct ubifs_unclean_leb *ucleb; int err; ucleb = list_entry(c->unclean_leb_list.next, struct ubifs_unclean_leb, list); err = clean_an_unclean_leb(c, ucleb, sbuf); if (err) return err; list_del(&ucleb->list); kfree(ucleb); } return 0; } /** * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. * @c: UBIFS file-system description object * * Out-of-place garbage collection requires always one empty LEB with which to * start garbage collection. The LEB number is recorded in c->gc_lnum and is * written to the master node on unmounting. In the case of an unclean unmount * the value of gc_lnum recorded in the master node is out of date and cannot * be used. Instead, recovery must allocate an empty LEB for this purpose. * However, there may not be enough empty space, in which case it must be * possible to GC the dirtiest LEB into the GC head LEB. * * This function also runs the commit which causes the TNC updates from * size-recovery and orphans to be written to the flash. That is important to * ensure correct replay order for subsequent mounts. * * This function returns %0 on success and a negative error code on failure. */ int ubifs_rcvry_gc_commit(struct ubifs_info *c) { struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; struct ubifs_lprops lp; int lnum, err; c->gc_lnum = -1; if (wbuf->lnum == -1) { dbg_rcvry("no GC head LEB"); goto find_free; } /* * See whether the used space in the dirtiest LEB fits in the GC head * LEB. */ if (wbuf->offs == c->leb_size) { dbg_rcvry("no room in GC head LEB"); goto find_free; } err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); if (err) { if (err == -ENOSPC) dbg_err("could not find a dirty LEB"); return err; } ubifs_assert(!(lp.flags & LPROPS_INDEX)); lnum = lp.lnum; if (lp.free + lp.dirty == c->leb_size) { /* An empty LEB was returned */ if (lp.free != c->leb_size) { err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); if (err) return err; } err = ubifs_leb_unmap(c, lnum); if (err) return err; c->gc_lnum = lnum; dbg_rcvry("allocated LEB %d for GC", lnum); /* Run the commit */ dbg_rcvry("committing"); return ubifs_run_commit(c); } /* * There was no empty LEB so the used space in the dirtiest LEB must fit * in the GC head LEB. */ if (lp.free + lp.dirty < wbuf->offs) { dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", lnum, wbuf->lnum, wbuf->offs); err = ubifs_return_leb(c, lnum); if (err) return err; goto find_free; } /* * We run the commit before garbage collection otherwise subsequent * mounts will see the GC and orphan deletion in a different order. */ dbg_rcvry("committing"); err = ubifs_run_commit(c); if (err) return err; /* * The data in the dirtiest LEB fits in the GC head LEB, so do the GC * - use locking to keep 'ubifs_assert()' happy. */ dbg_rcvry("GC'ing LEB %d", lnum); mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); err = ubifs_garbage_collect_leb(c, &lp); if (err >= 0) { int err2 = ubifs_wbuf_sync_nolock(wbuf); if (err2) err = err2; } mutex_unlock(&wbuf->io_mutex); if (err < 0) { dbg_err("GC failed, error %d", err); if (err == -EAGAIN) err = -EINVAL; return err; } if (err != LEB_RETAINED) { dbg_err("GC returned %d", err); return -EINVAL; } err = ubifs_leb_unmap(c, c->gc_lnum); if (err) return err; dbg_rcvry("allocated LEB %d for GC", lnum); return 0; find_free: /* * There is no GC head LEB or the free space in the GC head LEB is too * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so * GC is not run. */ lnum = ubifs_find_free_leb_for_idx(c); if (lnum < 0) { dbg_err("could not find an empty LEB"); return lnum; } /* And reset the index flag */ err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, LPROPS_INDEX, 0); if (err) return err; c->gc_lnum = lnum; dbg_rcvry("allocated LEB %d for GC", lnum); /* Run the commit */ dbg_rcvry("committing"); return ubifs_run_commit(c); } /** * struct size_entry - inode size information for recovery. * @rb: link in the RB-tree of sizes * @inum: inode number * @i_size: size on inode * @d_size: maximum size based on data nodes * @exists: indicates whether the inode exists * @inode: inode if pinned in memory awaiting rw mode to fix it */ struct size_entry { struct rb_node rb; ino_t inum; loff_t i_size; loff_t d_size; int exists; struct inode *inode; }; /** * add_ino - add an entry to the size tree. * @c: UBIFS file-system description object * @inum: inode number * @i_size: size on inode * @d_size: maximum size based on data nodes * @exists: indicates whether the inode exists */ static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, loff_t d_size, int exists) { struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; struct size_entry *e; while (*p) { parent = *p; e = rb_entry(parent, struct size_entry, rb); if (inum < e->inum) p = &(*p)->rb_left; else p = &(*p)->rb_right; } e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); if (!e) return -ENOMEM; e->inum = inum; e->i_size = i_size; e->d_size = d_size; e->exists = exists; rb_link_node(&e->rb, parent, p); rb_insert_color(&e->rb, &c->size_tree); return 0; } /** * find_ino - find an entry on the size tree. * @c: UBIFS file-system description object * @inum: inode number */ static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) { struct rb_node *p = c->size_tree.rb_node; struct size_entry *e; while (p) { e = rb_entry(p, struct size_entry, rb); if (inum < e->inum) p = p->rb_left; else if (inum > e->inum) p = p->rb_right; else return e; } return NULL; } /** * remove_ino - remove an entry from the size tree. * @c: UBIFS file-system description object * @inum: inode number */ static void remove_ino(struct ubifs_info *c, ino_t inum) { struct size_entry *e = find_ino(c, inum); if (!e) return; rb_erase(&e->rb, &c->size_tree); kfree(e); } /** * ubifs_destroy_size_tree - free resources related to the size tree. * @c: UBIFS file-system description object */ void ubifs_destroy_size_tree(struct ubifs_info *c) { struct rb_node *this = c->size_tree.rb_node; struct size_entry *e; while (this) { if (this->rb_left) { this = this->rb_left; continue; } else if (this->rb_right) { this = this->rb_right; continue; } e = rb_entry(this, struct size_entry, rb); if (e->inode) iput(e->inode); this = rb_parent(this); if (this) { if (this->rb_left == &e->rb) this->rb_left = NULL; else this->rb_right = NULL; } kfree(e); } c->size_tree = RB_ROOT; } /** * ubifs_recover_size_accum - accumulate inode sizes for recovery. * @c: UBIFS file-system description object * @key: node key * @deletion: node is for a deletion * @new_size: inode size * * This function has two purposes: * 1) to ensure there are no data nodes that fall outside the inode size * 2) to ensure there are no data nodes for inodes that do not exist * To accomplish those purposes, a rb-tree is constructed containing an entry * for each inode number in the journal that has not been deleted, and recording * the size from the inode node, the maximum size of any data node (also altered * by truncations) and a flag indicating a inode number for which no inode node * was present in the journal. * * Note that there is still the possibility that there are data nodes that have * been committed that are beyond the inode size, however the only way to find * them would be to scan the entire index. Alternatively, some provision could * be made to record the size of inodes at the start of commit, which would seem * very cumbersome for a scenario that is quite unlikely and the only negative * consequence of which is wasted space. * * This functions returns %0 on success and a negative error code on failure. */ int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, int deletion, loff_t new_size) { ino_t inum = key_inum(c, key); struct size_entry *e; int err; switch (key_type(c, key)) { case UBIFS_INO_KEY: if (deletion) remove_ino(c, inum); else { e = find_ino(c, inum); if (e) { e->i_size = new_size; e->exists = 1; } else { err = add_ino(c, inum, new_size, 0, 1); if (err) return err; } } break; case UBIFS_DATA_KEY: e = find_ino(c, inum); if (e) { if (new_size > e->d_size) e->d_size = new_size; } else { err = add_ino(c, inum, 0, new_size, 0); if (err) return err; } break; case UBIFS_TRUN_KEY: e = find_ino(c, inum); if (e) e->d_size = new_size; break; } return 0; } /** * fix_size_in_place - fix inode size in place on flash. * @c: UBIFS file-system description object * @e: inode size information for recovery */ static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) { struct ubifs_ino_node *ino = c->sbuf; unsigned char *p; union ubifs_key key; int err, lnum, offs, len; loff_t i_size; uint32_t crc; /* Locate the inode node LEB number and offset */ ino_key_init(c, &key, e->inum); err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); if (err) goto out; /* * If the size recorded on the inode node is greater than the size that * was calculated from nodes in the journal then don't change the inode. */ i_size = le64_to_cpu(ino->size); if (i_size >= e->d_size) return 0; /* Read the LEB */ err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); if (err) goto out; /* Change the size field and recalculate the CRC */ ino = c->sbuf + offs; ino->size = cpu_to_le64(e->d_size); len = le32_to_cpu(ino->ch.len); crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); ino->ch.crc = cpu_to_le32(crc); /* Work out where data in the LEB ends and free space begins */ p = c->sbuf; len = c->leb_size - 1; while (p[len] == 0xff) len -= 1; len = ALIGN(len + 1, c->min_io_size); /* Atomically write the fixed LEB back again */ err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); if (err) goto out; dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", (unsigned long)e->inum, lnum, offs, i_size, e->d_size); return 0; out: ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", (unsigned long)e->inum, e->i_size, e->d_size, err); return err; } /** * ubifs_recover_size - recover inode size. * @c: UBIFS file-system description object * * This function attempts to fix inode size discrepancies identified by the * 'ubifs_recover_size_accum()' function. * * This functions returns %0 on success and a negative error code on failure. */ int ubifs_recover_size(struct ubifs_info *c) { struct rb_node *this = rb_first(&c->size_tree); while (this) { struct size_entry *e; int err; e = rb_entry(this, struct size_entry, rb); if (!e->exists) { union ubifs_key key; ino_key_init(c, &key, e->inum); err = ubifs_tnc_lookup(c, &key, c->sbuf); if (err && err != -ENOENT) return err; if (err == -ENOENT) { /* Remove data nodes that have no inode */ dbg_rcvry("removing ino %lu", (unsigned long)e->inum); err = ubifs_tnc_remove_ino(c, e->inum); if (err) return err; } else { struct ubifs_ino_node *ino = c->sbuf; e->exists = 1; e->i_size = le64_to_cpu(ino->size); } } if (e->exists && e->i_size < e->d_size) { if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { /* Fix the inode size and pin it in memory */ struct inode *inode; inode = ubifs_iget(c->vfs_sb, e->inum); if (IS_ERR(inode)) return PTR_ERR(inode); if (inode->i_size < e->d_size) { dbg_rcvry("ino %lu size %lld -> %lld", (unsigned long)e->inum, e->d_size, inode->i_size); inode->i_size = e->d_size; ubifs_inode(inode)->ui_size = e->d_size; e->inode = inode; this = rb_next(this); continue; } iput(inode); } else { /* Fix the size in place */ err = fix_size_in_place(c, e); if (err) return err; if (e->inode) iput(e->inode); } } this = rb_next(this); rb_erase(&e->rb, &c->size_tree); kfree(e); } return 0; }