/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2007 Oracle. All rights reserved. */ #ifndef BTRFS_CTREE_H #define BTRFS_CTREE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "extent-io-tree.h" #include "extent_io.h" #include "extent_map.h" #include "async-thread.h" #include "block-rsv.h" #include "locking.h" struct btrfs_trans_handle; struct btrfs_transaction; struct btrfs_pending_snapshot; struct btrfs_delayed_ref_root; struct btrfs_space_info; struct btrfs_block_group; extern struct kmem_cache *btrfs_trans_handle_cachep; extern struct kmem_cache *btrfs_bit_radix_cachep; extern struct kmem_cache *btrfs_path_cachep; extern struct kmem_cache *btrfs_free_space_cachep; extern struct kmem_cache *btrfs_free_space_bitmap_cachep; struct btrfs_ordered_sum; struct btrfs_ref; struct btrfs_bio; struct btrfs_ioctl_encoded_io_args; #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ /* * Maximum number of mirrors that can be available for all profiles counting * the target device of dev-replace as one. During an active device replace * procedure, the target device of the copy operation is a mirror for the * filesystem data as well that can be used to read data in order to repair * read errors on other disks. * * Current value is derived from RAID1C4 with 4 copies. */ #define BTRFS_MAX_MIRRORS (4 + 1) #define BTRFS_MAX_LEVEL 8 #define BTRFS_OLDEST_GENERATION 0ULL /* * we can actually store much bigger names, but lets not confuse the rest * of linux */ #define BTRFS_NAME_LEN 255 /* * Theoretical limit is larger, but we keep this down to a sane * value. That should limit greatly the possibility of collisions on * inode ref items. */ #define BTRFS_LINK_MAX 65535U #define BTRFS_EMPTY_DIR_SIZE 0 /* ioprio of readahead is set to idle */ #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) #define BTRFS_DIRTY_METADATA_THRESH SZ_32M /* * Use large batch size to reduce overhead of metadata updates. On the reader * side, we only read it when we are close to ENOSPC and the read overhead is * mostly related to the number of CPUs, so it is OK to use arbitrary large * value here. */ #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M #define BTRFS_MAX_EXTENT_SIZE SZ_128M /* * Deltas are an effective way to populate global statistics. Give macro names * to make it clear what we're doing. An example is discard_extents in * btrfs_free_space_ctl. */ #define BTRFS_STAT_NR_ENTRIES 2 #define BTRFS_STAT_CURR 0 #define BTRFS_STAT_PREV 1 /* * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size */ static inline u32 count_max_extents(u64 size) { return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); } static inline unsigned long btrfs_chunk_item_size(int num_stripes) { BUG_ON(num_stripes == 0); return sizeof(struct btrfs_chunk) + sizeof(struct btrfs_stripe) * (num_stripes - 1); } /* * Runtime (in-memory) states of filesystem */ enum { /* Global indicator of serious filesystem errors */ BTRFS_FS_STATE_ERROR, /* * Filesystem is being remounted, allow to skip some operations, like * defrag */ BTRFS_FS_STATE_REMOUNTING, /* Filesystem in RO mode */ BTRFS_FS_STATE_RO, /* Track if a transaction abort has been reported on this filesystem */ BTRFS_FS_STATE_TRANS_ABORTED, /* * Bio operations should be blocked on this filesystem because a source * or target device is being destroyed as part of a device replace */ BTRFS_FS_STATE_DEV_REPLACING, /* The btrfs_fs_info created for self-tests */ BTRFS_FS_STATE_DUMMY_FS_INFO, BTRFS_FS_STATE_NO_CSUMS, /* Indicates there was an error cleaning up a log tree. */ BTRFS_FS_STATE_LOG_CLEANUP_ERROR, BTRFS_FS_STATE_COUNT }; #define BTRFS_BACKREF_REV_MAX 256 #define BTRFS_BACKREF_REV_SHIFT 56 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ BTRFS_BACKREF_REV_SHIFT) #define BTRFS_OLD_BACKREF_REV 0 #define BTRFS_MIXED_BACKREF_REV 1 /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { /* these first four must match the super block */ u8 csum[BTRFS_CSUM_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ __le64 bytenr; /* which block this node is supposed to live in */ __le64 flags; /* allowed to be different from the super from here on down */ u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; __le64 generation; __le64 owner; __le32 nritems; u8 level; } __attribute__ ((__packed__)); /* * this is a very generous portion of the super block, giving us * room to translate 14 chunks with 3 stripes each. */ #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 /* * just in case we somehow lose the roots and are not able to mount, * we store an array of the roots from previous transactions * in the super. */ #define BTRFS_NUM_BACKUP_ROOTS 4 struct btrfs_root_backup { __le64 tree_root; __le64 tree_root_gen; __le64 chunk_root; __le64 chunk_root_gen; __le64 extent_root; __le64 extent_root_gen; __le64 fs_root; __le64 fs_root_gen; __le64 dev_root; __le64 dev_root_gen; __le64 csum_root; __le64 csum_root_gen; __le64 total_bytes; __le64 bytes_used; __le64 num_devices; /* future */ __le64 unused_64[4]; u8 tree_root_level; u8 chunk_root_level; u8 extent_root_level; u8 fs_root_level; u8 dev_root_level; u8 csum_root_level; /* future and to align */ u8 unused_8[10]; } __attribute__ ((__packed__)); #define BTRFS_SUPER_INFO_OFFSET SZ_64K #define BTRFS_SUPER_INFO_SIZE 4096 /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct btrfs_super_block { /* the first 4 fields must match struct btrfs_header */ u8 csum[BTRFS_CSUM_SIZE]; /* FS specific UUID, visible to user */ u8 fsid[BTRFS_FSID_SIZE]; __le64 bytenr; /* this block number */ __le64 flags; /* allowed to be different from the btrfs_header from here own down */ __le64 magic; __le64 generation; __le64 root; __le64 chunk_root; __le64 log_root; /* this will help find the new super based on the log root */ __le64 log_root_transid; __le64 total_bytes; __le64 bytes_used; __le64 root_dir_objectid; __le64 num_devices; __le32 sectorsize; __le32 nodesize; __le32 __unused_leafsize; __le32 stripesize; __le32 sys_chunk_array_size; __le64 chunk_root_generation; __le64 compat_flags; __le64 compat_ro_flags; __le64 incompat_flags; __le16 csum_type; u8 root_level; u8 chunk_root_level; u8 log_root_level; struct btrfs_dev_item dev_item; char label[BTRFS_LABEL_SIZE]; __le64 cache_generation; __le64 uuid_tree_generation; /* the UUID written into btree blocks */ u8 metadata_uuid[BTRFS_FSID_SIZE]; /* Extent tree v2 */ __le64 block_group_root; __le64 block_group_root_generation; u8 block_group_root_level; /* future expansion */ u8 reserved8[7]; __le64 reserved[25]; u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; /* Padded to 4096 bytes */ u8 padding[565]; } __attribute__ ((__packed__)); static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); /* * Compat flags that we support. If any incompat flags are set other than the * ones specified below then we will fail to mount */ #define BTRFS_FEATURE_COMPAT_SUPP 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL #define BTRFS_FEATURE_COMPAT_RO_SUPP \ (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ BTRFS_FEATURE_COMPAT_RO_VERITY) #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL #ifdef CONFIG_BTRFS_DEBUG /* * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG */ #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ BTRFS_FEATURE_INCOMPAT_ZONED | \ BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) #else #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ BTRFS_FEATURE_INCOMPAT_ZONED) #endif #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL /* * A leaf is full of items. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le32 offset; __le32 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct btrfs_key_ptr { struct btrfs_disk_key key; __le64 blockptr; __le64 generation; } __attribute__ ((__packed__)); struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; } __attribute__ ((__packed__)); /* Read ahead values for struct btrfs_path.reada */ enum { READA_NONE, READA_BACK, READA_FORWARD, /* * Similar to READA_FORWARD but unlike it: * * 1) It will trigger readahead even for leaves that are not close to * each other on disk; * 2) It also triggers readahead for nodes; * 3) During a search, even when a node or leaf is already in memory, it * will still trigger readahead for other nodes and leaves that follow * it. * * This is meant to be used only when we know we are iterating over the * entire tree or a very large part of it. */ READA_FORWARD_ALWAYS, }; /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; /* if there is real range locking, this locks field will change */ u8 locks[BTRFS_MAX_LEVEL]; u8 reada; /* keep some upper locks as we walk down */ u8 lowest_level; /* * set by btrfs_split_item, tells search_slot to keep all locks * and to force calls to keep space in the nodes */ unsigned int search_for_split:1; unsigned int keep_locks:1; unsigned int skip_locking:1; unsigned int search_commit_root:1; unsigned int need_commit_sem:1; unsigned int skip_release_on_error:1; /* * Indicate that new item (btrfs_search_slot) is extending already * existing item and ins_len contains only the data size and not item * header (ie. sizeof(struct btrfs_item) is not included). */ unsigned int search_for_extension:1; }; #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ sizeof(struct btrfs_item)) struct btrfs_dev_replace { u64 replace_state; /* see #define above */ time64_t time_started; /* seconds since 1-Jan-1970 */ time64_t time_stopped; /* seconds since 1-Jan-1970 */ atomic64_t num_write_errors; atomic64_t num_uncorrectable_read_errors; u64 cursor_left; u64 committed_cursor_left; u64 cursor_left_last_write_of_item; u64 cursor_right; u64 cont_reading_from_srcdev_mode; /* see #define above */ int is_valid; int item_needs_writeback; struct btrfs_device *srcdev; struct btrfs_device *tgtdev; struct mutex lock_finishing_cancel_unmount; struct rw_semaphore rwsem; struct btrfs_scrub_progress scrub_progress; struct percpu_counter bio_counter; wait_queue_head_t replace_wait; }; /* * free clusters are used to claim free space in relatively large chunks, * allowing us to do less seeky writes. They are used for all metadata * allocations. In ssd_spread mode they are also used for data allocations. */ struct btrfs_free_cluster { spinlock_t lock; spinlock_t refill_lock; struct rb_root root; /* largest extent in this cluster */ u64 max_size; /* first extent starting offset */ u64 window_start; /* We did a full search and couldn't create a cluster */ bool fragmented; struct btrfs_block_group *block_group; /* * when a cluster is allocated from a block group, we put the * cluster onto a list in the block group so that it can * be freed before the block group is freed. */ struct list_head block_group_list; }; enum btrfs_caching_type { BTRFS_CACHE_NO, BTRFS_CACHE_STARTED, BTRFS_CACHE_FAST, BTRFS_CACHE_FINISHED, BTRFS_CACHE_ERROR, }; /* * Tree to record all locked full stripes of a RAID5/6 block group */ struct btrfs_full_stripe_locks_tree { struct rb_root root; struct mutex lock; }; /* Discard control. */ /* * Async discard uses multiple lists to differentiate the discard filter * parameters. Index 0 is for completely free block groups where we need to * ensure the entire block group is trimmed without being lossy. Indices * afterwards represent monotonically decreasing discard filter sizes to * prioritize what should be discarded next. */ #define BTRFS_NR_DISCARD_LISTS 3 #define BTRFS_DISCARD_INDEX_UNUSED 0 #define BTRFS_DISCARD_INDEX_START 1 struct btrfs_discard_ctl { struct workqueue_struct *discard_workers; struct delayed_work work; spinlock_t lock; struct btrfs_block_group *block_group; struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; u64 prev_discard; u64 prev_discard_time; atomic_t discardable_extents; atomic64_t discardable_bytes; u64 max_discard_size; u64 delay_ms; u32 iops_limit; u32 kbps_limit; u64 discard_extent_bytes; u64 discard_bitmap_bytes; atomic64_t discard_bytes_saved; }; void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); /* fs_info */ struct reloc_control; struct btrfs_device; struct btrfs_fs_devices; struct btrfs_balance_control; struct btrfs_delayed_root; /* * Block group or device which contains an active swapfile. Used for preventing * unsafe operations while a swapfile is active. * * These are sorted on (ptr, inode) (note that a block group or device can * contain more than one swapfile). We compare the pointer values because we * don't actually care what the object is, we just need a quick check whether * the object exists in the rbtree. */ struct btrfs_swapfile_pin { struct rb_node node; void *ptr; struct inode *inode; /* * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr * points to a struct btrfs_device. */ bool is_block_group; /* * Only used when 'is_block_group' is true and it is the number of * extents used by a swapfile for this block group ('ptr' field). */ int bg_extent_count; }; bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); enum { BTRFS_FS_CLOSING_START, BTRFS_FS_CLOSING_DONE, BTRFS_FS_LOG_RECOVERING, BTRFS_FS_OPEN, BTRFS_FS_QUOTA_ENABLED, BTRFS_FS_UPDATE_UUID_TREE_GEN, BTRFS_FS_CREATING_FREE_SPACE_TREE, BTRFS_FS_BTREE_ERR, BTRFS_FS_LOG1_ERR, BTRFS_FS_LOG2_ERR, BTRFS_FS_QUOTA_OVERRIDE, /* Used to record internally whether fs has been frozen */ BTRFS_FS_FROZEN, /* * Indicate that balance has been set up from the ioctl and is in the * main phase. The fs_info::balance_ctl is initialized. */ BTRFS_FS_BALANCE_RUNNING, /* * Indicate that relocation of a chunk has started, it's set per chunk * and is toggled between chunks. */ BTRFS_FS_RELOC_RUNNING, /* Indicate that the cleaner thread is awake and doing something. */ BTRFS_FS_CLEANER_RUNNING, /* * The checksumming has an optimized version and is considered fast, * so we don't need to offload checksums to workqueues. */ BTRFS_FS_CSUM_IMPL_FAST, /* Indicate that the discard workqueue can service discards. */ BTRFS_FS_DISCARD_RUNNING, /* Indicate that we need to cleanup space cache v1 */ BTRFS_FS_CLEANUP_SPACE_CACHE_V1, /* Indicate that we can't trust the free space tree for caching yet */ BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, /* Indicate whether there are any tree modification log users */ BTRFS_FS_TREE_MOD_LOG_USERS, /* Indicate that we want the transaction kthread to commit right now. */ BTRFS_FS_COMMIT_TRANS, /* Indicate we have half completed snapshot deletions pending. */ BTRFS_FS_UNFINISHED_DROPS, #if BITS_PER_LONG == 32 /* Indicate if we have error/warn message printed on 32bit systems */ BTRFS_FS_32BIT_ERROR, BTRFS_FS_32BIT_WARN, #endif }; /* * Exclusive operations (device replace, resize, device add/remove, balance) */ enum btrfs_exclusive_operation { BTRFS_EXCLOP_NONE, BTRFS_EXCLOP_BALANCE_PAUSED, BTRFS_EXCLOP_BALANCE, BTRFS_EXCLOP_DEV_ADD, BTRFS_EXCLOP_DEV_REMOVE, BTRFS_EXCLOP_DEV_REPLACE, BTRFS_EXCLOP_RESIZE, BTRFS_EXCLOP_SWAP_ACTIVATE, }; struct btrfs_fs_info { u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; unsigned long flags; struct btrfs_root *tree_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *fs_root; struct btrfs_root *quota_root; struct btrfs_root *uuid_root; struct btrfs_root *data_reloc_root; struct btrfs_root *block_group_root; /* the log root tree is a directory of all the other log roots */ struct btrfs_root *log_root_tree; /* The tree that holds the global roots (csum, extent, etc) */ rwlock_t global_root_lock; struct rb_root global_root_tree; spinlock_t fs_roots_radix_lock; struct radix_tree_root fs_roots_radix; /* block group cache stuff */ spinlock_t block_group_cache_lock; u64 first_logical_byte; struct rb_root block_group_cache_tree; /* keep track of unallocated space */ atomic64_t free_chunk_space; /* Track ranges which are used by log trees blocks/logged data extents */ struct extent_io_tree excluded_extents; /* logical->physical extent mapping */ struct extent_map_tree mapping_tree; /* * block reservation for extent, checksum, root tree and * delayed dir index item */ struct btrfs_block_rsv global_block_rsv; /* block reservation for metadata operations */ struct btrfs_block_rsv trans_block_rsv; /* block reservation for chunk tree */ struct btrfs_block_rsv chunk_block_rsv; /* block reservation for delayed operations */ struct btrfs_block_rsv delayed_block_rsv; /* block reservation for delayed refs */ struct btrfs_block_rsv delayed_refs_rsv; struct btrfs_block_rsv empty_block_rsv; u64 generation; u64 last_trans_committed; /* * Generation of the last transaction used for block group relocation * since the filesystem was last mounted (or 0 if none happened yet). * Must be written and read while holding btrfs_fs_info::commit_root_sem. */ u64 last_reloc_trans; u64 avg_delayed_ref_runtime; /* * this is updated to the current trans every time a full commit * is required instead of the faster short fsync log commits */ u64 last_trans_log_full_commit; unsigned long mount_opt; /* * Track requests for actions that need to be done during transaction * commit (like for some mount options). */ unsigned long pending_changes; unsigned long compress_type:4; unsigned int compress_level; u32 commit_interval; /* * It is a suggestive number, the read side is safe even it gets a * wrong number because we will write out the data into a regular * extent. The write side(mount/remount) is under ->s_umount lock, * so it is also safe. */ u64 max_inline; struct btrfs_transaction *running_transaction; wait_queue_head_t transaction_throttle; wait_queue_head_t transaction_wait; wait_queue_head_t transaction_blocked_wait; wait_queue_head_t async_submit_wait; /* * Used to protect the incompat_flags, compat_flags, compat_ro_flags * when they are updated. * * Because we do not clear the flags for ever, so we needn't use * the lock on the read side. * * We also needn't use the lock when we mount the fs, because * there is no other task which will update the flag. */ spinlock_t super_lock; struct btrfs_super_block *super_copy; struct btrfs_super_block *super_for_commit; struct super_block *sb; struct inode *btree_inode; struct mutex tree_log_mutex; struct mutex transaction_kthread_mutex; struct mutex cleaner_mutex; struct mutex chunk_mutex; /* * this is taken to make sure we don't set block groups ro after * the free space cache has been allocated on them */ struct mutex ro_block_group_mutex; /* this is used during read/modify/write to make sure * no two ios are trying to mod the same stripe at the same * time */ struct btrfs_stripe_hash_table *stripe_hash_table; /* * this protects the ordered operations list only while we are * processing all of the entries on it. This way we make * sure the commit code doesn't find the list temporarily empty * because another function happens to be doing non-waiting preflush * before jumping into the main commit. */ struct mutex ordered_operations_mutex; struct rw_semaphore commit_root_sem; struct rw_semaphore cleanup_work_sem; struct rw_semaphore subvol_sem; spinlock_t trans_lock; /* * the reloc mutex goes with the trans lock, it is taken * during commit to protect us from the relocation code */ struct mutex reloc_mutex; struct list_head trans_list; struct list_head dead_roots; struct list_head caching_block_groups; spinlock_t delayed_iput_lock; struct list_head delayed_iputs; atomic_t nr_delayed_iputs; wait_queue_head_t delayed_iputs_wait; atomic64_t tree_mod_seq; /* this protects tree_mod_log and tree_mod_seq_list */ rwlock_t tree_mod_log_lock; struct rb_root tree_mod_log; struct list_head tree_mod_seq_list; atomic_t async_delalloc_pages; /* * this is used to protect the following list -- ordered_roots. */ spinlock_t ordered_root_lock; /* * all fs/file tree roots in which there are data=ordered extents * pending writeback are added into this list. * * these can span multiple transactions and basically include * every dirty data page that isn't from nodatacow */ struct list_head ordered_roots; struct mutex delalloc_root_mutex; spinlock_t delalloc_root_lock; /* all fs/file tree roots that have delalloc inodes. */ struct list_head delalloc_roots; /* * there is a pool of worker threads for checksumming during writes * and a pool for checksumming after reads. This is because readers * can run with FS locks held, and the writers may be waiting for * those locks. We don't want ordering in the pending list to cause * deadlocks, and so the two are serviced separately. * * A third pool does submit_bio to avoid deadlocking with the other * two */ struct btrfs_workqueue *workers; struct btrfs_workqueue *delalloc_workers; struct btrfs_workqueue *flush_workers; struct btrfs_workqueue *endio_workers; struct btrfs_workqueue *endio_meta_workers; struct btrfs_workqueue *endio_raid56_workers; struct btrfs_workqueue *rmw_workers; struct btrfs_workqueue *endio_meta_write_workers; struct btrfs_workqueue *endio_write_workers; struct btrfs_workqueue *endio_freespace_worker; struct btrfs_workqueue *caching_workers; /* * fixup workers take dirty pages that didn't properly go through * the cow mechanism and make them safe to write. It happens * for the sys_munmap function call path */ struct btrfs_workqueue *fixup_workers; struct btrfs_workqueue *delayed_workers; struct task_struct *transaction_kthread; struct task_struct *cleaner_kthread; u32 thread_pool_size; struct kobject *space_info_kobj; struct kobject *qgroups_kobj; /* used to keep from writing metadata until there is a nice batch */ struct percpu_counter dirty_metadata_bytes; struct percpu_counter delalloc_bytes; struct percpu_counter ordered_bytes; s32 dirty_metadata_batch; s32 delalloc_batch; struct list_head dirty_cowonly_roots; struct btrfs_fs_devices *fs_devices; /* * The space_info list is effectively read only after initial * setup. It is populated at mount time and cleaned up after * all block groups are removed. RCU is used to protect it. */ struct list_head space_info; struct btrfs_space_info *data_sinfo; struct reloc_control *reloc_ctl; /* data_alloc_cluster is only used in ssd_spread mode */ struct btrfs_free_cluster data_alloc_cluster; /* all metadata allocations go through this cluster */ struct btrfs_free_cluster meta_alloc_cluster; /* auto defrag inodes go here */ spinlock_t defrag_inodes_lock; struct rb_root defrag_inodes; atomic_t defrag_running; /* Used to protect avail_{data, metadata, system}_alloc_bits */ seqlock_t profiles_lock; /* * these three are in extended format (availability of single * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) */ u64 avail_data_alloc_bits; u64 avail_metadata_alloc_bits; u64 avail_system_alloc_bits; /* restriper state */ spinlock_t balance_lock; struct mutex balance_mutex; atomic_t balance_pause_req; atomic_t balance_cancel_req; struct btrfs_balance_control *balance_ctl; wait_queue_head_t balance_wait_q; /* Cancellation requests for chunk relocation */ atomic_t reloc_cancel_req; u32 data_chunk_allocations; u32 metadata_ratio; void *bdev_holder; /* private scrub information */ struct mutex scrub_lock; atomic_t scrubs_running; atomic_t scrub_pause_req; atomic_t scrubs_paused; atomic_t scrub_cancel_req; wait_queue_head_t scrub_pause_wait; /* * The worker pointers are NULL iff the refcount is 0, ie. scrub is not * running. */ refcount_t scrub_workers_refcnt; struct btrfs_workqueue *scrub_workers; struct btrfs_workqueue *scrub_wr_completion_workers; struct btrfs_workqueue *scrub_parity_workers; struct btrfs_subpage_info *subpage_info; struct btrfs_discard_ctl discard_ctl; #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY u32 check_integrity_print_mask; #endif /* is qgroup tracking in a consistent state? */ u64 qgroup_flags; /* holds configuration and tracking. Protected by qgroup_lock */ struct rb_root qgroup_tree; spinlock_t qgroup_lock; /* * used to avoid frequently calling ulist_alloc()/ulist_free() * when doing qgroup accounting, it must be protected by qgroup_lock. */ struct ulist *qgroup_ulist; /* * Protect user change for quota operations. If a transaction is needed, * it must be started before locking this lock. */ struct mutex qgroup_ioctl_lock; /* list of dirty qgroups to be written at next commit */ struct list_head dirty_qgroups; /* used by qgroup for an efficient tree traversal */ u64 qgroup_seq; /* qgroup rescan items */ struct mutex qgroup_rescan_lock; /* protects the progress item */ struct btrfs_key qgroup_rescan_progress; struct btrfs_workqueue *qgroup_rescan_workers; struct completion qgroup_rescan_completion; struct btrfs_work qgroup_rescan_work; bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ /* filesystem state */ unsigned long fs_state; struct btrfs_delayed_root *delayed_root; /* Extent buffer radix tree */ spinlock_t buffer_lock; /* Entries are eb->start / sectorsize */ struct radix_tree_root buffer_radix; /* next backup root to be overwritten */ int backup_root_index; /* device replace state */ struct btrfs_dev_replace dev_replace; struct semaphore uuid_tree_rescan_sem; /* Used to reclaim the metadata space in the background. */ struct work_struct async_reclaim_work; struct work_struct async_data_reclaim_work; struct work_struct preempt_reclaim_work; /* Reclaim partially filled block groups in the background */ struct work_struct reclaim_bgs_work; struct list_head reclaim_bgs; int bg_reclaim_threshold; spinlock_t unused_bgs_lock; struct list_head unused_bgs; struct mutex unused_bg_unpin_mutex; /* Protect block groups that are going to be deleted */ struct mutex reclaim_bgs_lock; /* Cached block sizes */ u32 nodesize; u32 sectorsize; /* ilog2 of sectorsize, use to avoid 64bit division */ u32 sectorsize_bits; u32 csum_size; u32 csums_per_leaf; u32 stripesize; /* Block groups and devices containing active swapfiles. */ spinlock_t swapfile_pins_lock; struct rb_root swapfile_pins; struct crypto_shash *csum_shash; /* Type of exclusive operation running, protected by super_lock */ enum btrfs_exclusive_operation exclusive_operation; /* * Zone size > 0 when in ZONED mode, otherwise it's used for a check * if the mode is enabled */ union { u64 zone_size; u64 zoned; }; struct mutex zoned_meta_io_lock; spinlock_t treelog_bg_lock; u64 treelog_bg; /* * Start of the dedicated data relocation block group, protected by * relocation_bg_lock. */ spinlock_t relocation_bg_lock; u64 data_reloc_bg; struct mutex zoned_data_reloc_io_lock; u64 nr_global_roots; spinlock_t zone_active_bgs_lock; struct list_head zone_active_bgs; #ifdef CONFIG_BTRFS_FS_REF_VERIFY spinlock_t ref_verify_lock; struct rb_root block_tree; #endif #ifdef CONFIG_BTRFS_DEBUG struct kobject *debug_kobj; struct kobject *discard_debug_kobj; struct list_head allocated_roots; spinlock_t eb_leak_lock; struct list_head allocated_ebs; #endif }; static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) { return sb->s_fs_info; } /* * The state of btrfs root */ enum { /* * btrfs_record_root_in_trans is a multi-step process, and it can race * with the balancing code. But the race is very small, and only the * first time the root is added to each transaction. So IN_TRANS_SETUP * is used to tell us when more checks are required */ BTRFS_ROOT_IN_TRANS_SETUP, /* * Set if tree blocks of this root can be shared by other roots. * Only subvolume trees and their reloc trees have this bit set. * Conflicts with TRACK_DIRTY bit. * * This affects two things: * * - How balance works * For shareable roots, we need to use reloc tree and do path * replacement for balance, and need various pre/post hooks for * snapshot creation to handle them. * * While for non-shareable trees, we just simply do a tree search * with COW. * * - How dirty roots are tracked * For shareable roots, btrfs_record_root_in_trans() is needed to * track them, while non-subvolume roots have TRACK_DIRTY bit, they * don't need to set this manually. */ BTRFS_ROOT_SHAREABLE, BTRFS_ROOT_TRACK_DIRTY, BTRFS_ROOT_IN_RADIX, BTRFS_ROOT_ORPHAN_ITEM_INSERTED, BTRFS_ROOT_DEFRAG_RUNNING, BTRFS_ROOT_FORCE_COW, BTRFS_ROOT_MULTI_LOG_TASKS, BTRFS_ROOT_DIRTY, BTRFS_ROOT_DELETING, /* * Reloc tree is orphan, only kept here for qgroup delayed subtree scan * * Set for the subvolume tree owning the reloc tree. */ BTRFS_ROOT_DEAD_RELOC_TREE, /* Mark dead root stored on device whose cleanup needs to be resumed */ BTRFS_ROOT_DEAD_TREE, /* The root has a log tree. Used for subvolume roots and the tree root. */ BTRFS_ROOT_HAS_LOG_TREE, /* Qgroup flushing is in progress */ BTRFS_ROOT_QGROUP_FLUSHING, /* We started the orphan cleanup for this root. */ BTRFS_ROOT_ORPHAN_CLEANUP, /* This root has a drop operation that was started previously. */ BTRFS_ROOT_UNFINISHED_DROP, }; static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) { clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); } /* * Record swapped tree blocks of a subvolume tree for delayed subtree trace * code. For detail check comment in fs/btrfs/qgroup.c. */ struct btrfs_qgroup_swapped_blocks { spinlock_t lock; /* RM_EMPTY_ROOT() of above blocks[] */ bool swapped; struct rb_root blocks[BTRFS_MAX_LEVEL]; }; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. */ struct btrfs_root { struct rb_node rb_node; struct extent_buffer *node; struct extent_buffer *commit_root; struct btrfs_root *log_root; struct btrfs_root *reloc_root; unsigned long state; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; struct extent_io_tree dirty_log_pages; struct mutex objectid_mutex; spinlock_t accounting_lock; struct btrfs_block_rsv *block_rsv; struct mutex log_mutex; wait_queue_head_t log_writer_wait; wait_queue_head_t log_commit_wait[2]; struct list_head log_ctxs[2]; /* Used only for log trees of subvolumes, not for the log root tree */ atomic_t log_writers; atomic_t log_commit[2]; /* Used only for log trees of subvolumes, not for the log root tree */ atomic_t log_batch; int log_transid; /* No matter the commit succeeds or not*/ int log_transid_committed; /* Just be updated when the commit succeeds. */ int last_log_commit; pid_t log_start_pid; u64 last_trans; u32 type; u64 free_objectid; struct btrfs_key defrag_progress; struct btrfs_key defrag_max; /* The dirty list is only used by non-shareable roots */ struct list_head dirty_list; struct list_head root_list; spinlock_t log_extents_lock[2]; struct list_head logged_list[2]; spinlock_t inode_lock; /* red-black tree that keeps track of in-memory inodes */ struct rb_root inode_tree; /* * radix tree that keeps track of delayed nodes of every inode, * protected by inode_lock */ struct radix_tree_root delayed_nodes_tree; /* * right now this just gets used so that a root has its own devid * for stat. It may be used for more later */ dev_t anon_dev; spinlock_t root_item_lock; refcount_t refs; struct mutex delalloc_mutex; spinlock_t delalloc_lock; /* * all of the inodes that have delalloc bytes. It is possible for * this list to be empty even when there is still dirty data=ordered * extents waiting to finish IO. */ struct list_head delalloc_inodes; struct list_head delalloc_root; u64 nr_delalloc_inodes; struct mutex ordered_extent_mutex; /* * this is used by the balancing code to wait for all the pending * ordered extents */ spinlock_t ordered_extent_lock; /* * all of the data=ordered extents pending writeback * these can span multiple transactions and basically include * every dirty data page that isn't from nodatacow */ struct list_head ordered_extents; struct list_head ordered_root; u64 nr_ordered_extents; /* * Not empty if this subvolume root has gone through tree block swap * (relocation) * * Will be used by reloc_control::dirty_subvol_roots. */ struct list_head reloc_dirty_list; /* * Number of currently running SEND ioctls to prevent * manipulation with the read-only status via SUBVOL_SETFLAGS */ int send_in_progress; /* * Number of currently running deduplication operations that have a * destination inode belonging to this root. Protected by the lock * root_item_lock. */ int dedupe_in_progress; /* For exclusion of snapshot creation and nocow writes */ struct btrfs_drew_lock snapshot_lock; atomic_t snapshot_force_cow; /* For qgroup metadata reserved space */ spinlock_t qgroup_meta_rsv_lock; u64 qgroup_meta_rsv_pertrans; u64 qgroup_meta_rsv_prealloc; wait_queue_head_t qgroup_flush_wait; /* Number of active swapfiles */ atomic_t nr_swapfiles; /* Record pairs of swapped blocks for qgroup */ struct btrfs_qgroup_swapped_blocks swapped_blocks; /* Used only by log trees, when logging csum items */ struct extent_io_tree log_csum_range; #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS u64 alloc_bytenr; #endif #ifdef CONFIG_BTRFS_DEBUG struct list_head leak_list; #endif }; /* * Structure that conveys information about an extent that is going to replace * all the extents in a file range. */ struct btrfs_replace_extent_info { u64 disk_offset; u64 disk_len; u64 data_offset; u64 data_len; u64 file_offset; /* Pointer to a file extent item of type regular or prealloc. */ char *extent_buf; /* * Set to true when attempting to replace a file range with a new extent * described by this structure, set to false when attempting to clone an * existing extent into a file range. */ bool is_new_extent; /* Meaningful only if is_new_extent is true. */ int qgroup_reserved; /* * Meaningful only if is_new_extent is true. * Used to track how many extent items we have already inserted in a * subvolume tree that refer to the extent described by this structure, * so that we know when to create a new delayed ref or update an existing * one. */ int insertions; }; /* Arguments for btrfs_drop_extents() */ struct btrfs_drop_extents_args { /* Input parameters */ /* * If NULL, btrfs_drop_extents() will allocate and free its own path. * If 'replace_extent' is true, this must not be NULL. Also the path * is always released except if 'replace_extent' is true and * btrfs_drop_extents() sets 'extent_inserted' to true, in which case * the path is kept locked. */ struct btrfs_path *path; /* Start offset of the range to drop extents from */ u64 start; /* End (exclusive, last byte + 1) of the range to drop extents from */ u64 end; /* If true drop all the extent maps in the range */ bool drop_cache; /* * If true it means we want to insert a new extent after dropping all * the extents in the range. If this is true, the 'extent_item_size' * parameter must be set as well and the 'extent_inserted' field will * be set to true by btrfs_drop_extents() if it could insert the new * extent. * Note: when this is set to true the path must not be NULL. */ bool replace_extent; /* * Used if 'replace_extent' is true. Size of the file extent item to * insert after dropping all existing extents in the range */ u32 extent_item_size; /* Output parameters */ /* * Set to the minimum between the input parameter 'end' and the end * (exclusive, last byte + 1) of the last dropped extent. This is always * set even if btrfs_drop_extents() returns an error. */ u64 drop_end; /* * The number of allocated bytes found in the range. This can be smaller * than the range's length when there are holes in the range. */ u64 bytes_found; /* * Only set if 'replace_extent' is true. Set to true if we were able * to insert a replacement extent after dropping all extents in the * range, otherwise set to false by btrfs_drop_extents(). * Also, if btrfs_drop_extents() has set this to true it means it * returned with the path locked, otherwise if it has set this to * false it has returned with the path released. */ bool extent_inserted; }; struct btrfs_file_private { void *filldir_buf; }; static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) { return info->nodesize - sizeof(struct btrfs_header); } #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) { return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); } static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) { return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); } #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ (offsetof(struct btrfs_file_extent_item, disk_bytenr)) static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) { return BTRFS_MAX_ITEM_SIZE(info) - BTRFS_FILE_EXTENT_INLINE_DATA_START; } static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) { return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); } /* * Flags for mount options. * * Note: don't forget to add new options to btrfs_show_options() */ enum { BTRFS_MOUNT_NODATASUM = (1UL << 0), BTRFS_MOUNT_NODATACOW = (1UL << 1), BTRFS_MOUNT_NOBARRIER = (1UL << 2), BTRFS_MOUNT_SSD = (1UL << 3), BTRFS_MOUNT_DEGRADED = (1UL << 4), BTRFS_MOUNT_COMPRESS = (1UL << 5), BTRFS_MOUNT_NOTREELOG = (1UL << 6), BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), BTRFS_MOUNT_NOSSD = (1UL << 9), BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), BTRFS_MOUNT_REF_VERIFY = (1UL << 27), BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), }; #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) #define BTRFS_DEFAULT_MAX_INLINE (2048) #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ BTRFS_MOUNT_##opt) #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ do { \ if (!btrfs_test_opt(fs_info, opt)) \ btrfs_info(fs_info, fmt, ##args); \ btrfs_set_opt(fs_info->mount_opt, opt); \ } while (0) #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ do { \ if (btrfs_test_opt(fs_info, opt)) \ btrfs_info(fs_info, fmt, ##args); \ btrfs_clear_opt(fs_info->mount_opt, opt); \ } while (0) /* * Requests for changes that need to be done during transaction commit. * * Internal mount options that are used for special handling of the real * mount options (eg. cannot be set during remount and have to be set during * transaction commit) */ #define BTRFS_PENDING_COMMIT (0) #define btrfs_test_pending(info, opt) \ test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) #define btrfs_set_pending(info, opt) \ set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) #define btrfs_clear_pending(info, opt) \ clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) /* * Helpers for setting pending mount option changes. * * Expects corresponding macros * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name */ #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ do { \ if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ btrfs_info((info), fmt, ##args); \ btrfs_set_pending((info), SET_##opt); \ btrfs_clear_pending((info), CLEAR_##opt); \ } \ } while(0) #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ do { \ if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ btrfs_info((info), fmt, ##args); \ btrfs_set_pending((info), CLEAR_##opt); \ btrfs_clear_pending((info), SET_##opt); \ } \ } while(0) /* * Inode flags */ #define BTRFS_INODE_NODATASUM (1U << 0) #define BTRFS_INODE_NODATACOW (1U << 1) #define BTRFS_INODE_READONLY (1U << 2) #define BTRFS_INODE_NOCOMPRESS (1U << 3) #define BTRFS_INODE_PREALLOC (1U << 4) #define BTRFS_INODE_SYNC (1U << 5) #define BTRFS_INODE_IMMUTABLE (1U << 6) #define BTRFS_INODE_APPEND (1U << 7) #define BTRFS_INODE_NODUMP (1U << 8) #define BTRFS_INODE_NOATIME (1U << 9) #define BTRFS_INODE_DIRSYNC (1U << 10) #define BTRFS_INODE_COMPRESS (1U << 11) #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) #define BTRFS_INODE_FLAG_MASK \ (BTRFS_INODE_NODATASUM | \ BTRFS_INODE_NODATACOW | \ BTRFS_INODE_READONLY | \ BTRFS_INODE_NOCOMPRESS | \ BTRFS_INODE_PREALLOC | \ BTRFS_INODE_SYNC | \ BTRFS_INODE_IMMUTABLE | \ BTRFS_INODE_APPEND | \ BTRFS_INODE_NODUMP | \ BTRFS_INODE_NOATIME | \ BTRFS_INODE_DIRSYNC | \ BTRFS_INODE_COMPRESS | \ BTRFS_INODE_ROOT_ITEM_INIT) #define BTRFS_INODE_RO_VERITY (1U << 0) #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) struct btrfs_map_token { struct extent_buffer *eb; char *kaddr; unsigned long offset; }; #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ ((bytes) >> (fs_info)->sectorsize_bits) static inline void btrfs_init_map_token(struct btrfs_map_token *token, struct extent_buffer *eb) { token->eb = eb; token->kaddr = page_address(eb->pages[0]); token->offset = 0; } /* some macros to generate set/get functions for the struct fields. This * assumes there is a lefoo_to_cpu for every type, so lets make a simple * one for u8: */ #define le8_to_cpu(v) (v) #define cpu_to_le8(v) (v) #define __le8 u8 static inline u8 get_unaligned_le8(const void *p) { return *(u8 *)p; } static inline void put_unaligned_le8(u8 val, void *p) { *(u8 *)p = val; } #define read_eb_member(eb, ptr, type, member, result) (\ read_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #define write_eb_member(eb, ptr, type, member, result) (\ write_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #define DECLARE_BTRFS_SETGET_BITS(bits) \ u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ const void *ptr, unsigned long off); \ void btrfs_set_token_##bits(struct btrfs_map_token *token, \ const void *ptr, unsigned long off, \ u##bits val); \ u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ const void *ptr, unsigned long off); \ void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ unsigned long off, u##bits val); DECLARE_BTRFS_SETGET_BITS(8) DECLARE_BTRFS_SETGET_BITS(16) DECLARE_BTRFS_SETGET_BITS(32) DECLARE_BTRFS_SETGET_BITS(64) #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ const type *s) \ { \ static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ return btrfs_get_##bits(eb, s, offsetof(type, member)); \ } \ static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ u##bits val) \ { \ static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ btrfs_set_##bits(eb, s, offsetof(type, member), val); \ } \ static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ const type *s) \ { \ static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ return btrfs_get_token_##bits(token, s, offsetof(type, member));\ } \ static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ type *s, u##bits val) \ { \ static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ } #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ { \ const type *p = page_address(eb->pages[0]) + \ offset_in_page(eb->start); \ return get_unaligned_le##bits(&p->member); \ } \ static inline void btrfs_set_##name(const struct extent_buffer *eb, \ u##bits val) \ { \ type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ put_unaligned_le##bits(val, &p->member); \ } #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(const type *s) \ { \ return get_unaligned_le##bits(&s->member); \ } \ static inline void btrfs_set_##name(type *s, u##bits val) \ { \ put_unaligned_le##bits(val, &s->member); \ } static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, struct btrfs_dev_item *s) { static_assert(sizeof(u64) == sizeof(((struct btrfs_dev_item *)0))->total_bytes); return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes)); } static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, struct btrfs_dev_item *s, u64 val) { static_assert(sizeof(u64) == sizeof(((struct btrfs_dev_item *)0))->total_bytes); WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); } BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, start_offset, 64); BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, generation, 64); static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) { return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); } static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) { return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); } BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) { return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); } BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, int nr) { unsigned long offset = (unsigned long)c; offset += offsetof(struct btrfs_chunk, stripe); offset += nr * sizeof(struct btrfs_stripe); return (struct btrfs_stripe *)offset; } static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) { return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); } static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); } static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); } /* struct btrfs_block_group_item */ BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(block_group_flags, struct btrfs_block_group_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, struct btrfs_block_group_item, flags, 64); /* struct btrfs_free_space_info */ BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, extent_count, 32); BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); /* struct btrfs_inode_ref */ BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); /* struct btrfs_inode_extref */ BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, parent_objectid, 64); BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, name_len, 16); BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); /* struct btrfs_inode_item */ BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, sequence, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, transid, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, nbytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); /* struct btrfs_dev_extent */ BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, chunk_tree, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, chunk_objectid, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, chunk_offset, 64); BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, generation, 64); BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); static inline void btrfs_tree_block_key(const struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, root, 64); BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, objectid, 64); BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, offset, 64); BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, count, 32); BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, count, 32); BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, type, 8); BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, offset, 64); static inline u32 btrfs_extent_inline_ref_size(int type) { if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) return sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_SHARED_DATA_REF_KEY) return sizeof(struct btrfs_shared_data_ref) + sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_EXTENT_DATA_REF_KEY) return sizeof(struct btrfs_extent_data_ref) + offsetof(struct btrfs_extent_inline_ref, offset); return 0; } /* struct btrfs_node */ BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, generation, 64); static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); } static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); } static inline unsigned long btrfs_node_key_ptr_offset(int nr) { return offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; } void btrfs_node_key(const struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr); static inline void btrfs_set_node_key(const struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { unsigned long ptr; ptr = btrfs_node_key_ptr_offset(nr); write_eb_member(eb, (struct btrfs_key_ptr *)ptr, struct btrfs_key_ptr, key, disk_key); } /* struct btrfs_item */ BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); static inline unsigned long btrfs_item_nr_offset(int nr) { return offsetof(struct btrfs_leaf, items) + sizeof(struct btrfs_item) * nr; } static inline struct btrfs_item *btrfs_item_nr(int nr) { return (struct btrfs_item *)btrfs_item_nr_offset(nr); } #define BTRFS_ITEM_SETGET_FUNCS(member) \ static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ int slot) \ { \ return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ } \ static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ int slot, u32 val) \ { \ btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ } \ static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ int slot) \ { \ struct btrfs_item *item = btrfs_item_nr(slot); \ return btrfs_token_raw_item_##member(token, item); \ } \ static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ int slot, u32 val) \ { \ struct btrfs_item *item = btrfs_item_nr(slot); \ btrfs_set_token_raw_item_##member(token, item, val); \ } BTRFS_ITEM_SETGET_FUNCS(offset) BTRFS_ITEM_SETGET_FUNCS(size); static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) { return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); } static inline void btrfs_item_key(const struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(nr); read_eb_member(eb, item, struct btrfs_item, key, disk_key); } static inline void btrfs_set_item_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(nr); write_eb_member(eb, item, struct btrfs_item, key, disk_key); } BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); /* * struct btrfs_root_ref */ BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); /* struct btrfs_dir_item */ BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, data_len, 16); BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, transid, 64); static inline void btrfs_dir_item_key(const struct extent_buffer *eb, const struct btrfs_dir_item *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_dir_item, location, key); } static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, struct btrfs_dir_item *item, const struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_dir_item, location, key); } BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, num_entries, 64); BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, num_bitmaps, 64); BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, generation, 64); static inline void btrfs_free_space_key(const struct extent_buffer *eb, const struct btrfs_free_space_header *h, struct btrfs_disk_key *key) { read_eb_member(eb, h, struct btrfs_free_space_header, location, key); } static inline void btrfs_set_free_space_key(struct extent_buffer *eb, struct btrfs_free_space_header *h, const struct btrfs_disk_key *key) { write_eb_member(eb, h, struct btrfs_free_space_header, location, key); } /* struct btrfs_disk_key */ BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, objectid, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); #ifdef __LITTLE_ENDIAN /* * Optimized helpers for little-endian architectures where CPU and on-disk * structures have the same endianness and we can skip conversions. */ static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, const struct btrfs_disk_key *disk_key) { memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, const struct btrfs_key *cpu_key) { memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); } static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, struct btrfs_key *cpu_key, int nr) { struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; btrfs_node_key(eb, disk_key, nr); } static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, struct btrfs_key *cpu_key, int nr) { struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; btrfs_item_key(eb, disk_key, nr); } static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, const struct btrfs_dir_item *item, struct btrfs_key *cpu_key) { struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; btrfs_dir_item_key(eb, item, disk_key); } #else static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, const struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->type = disk->type; cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, const struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->type = cpu->type; disk->objectid = cpu_to_le64(cpu->objectid); } static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_node_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_item_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, const struct btrfs_dir_item *item, struct btrfs_key *key) { struct btrfs_disk_key disk_key; btrfs_dir_item_key(eb, item, &disk_key); btrfs_disk_key_to_cpu(key, &disk_key); } #endif /* struct btrfs_header */ BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) { return (btrfs_header_flags(eb) & flag) == flag; } static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags | flag); } static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags & ~flag); } static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) { u64 flags = btrfs_header_flags(eb); return flags >> BTRFS_BACKREF_REV_SHIFT; } static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, int rev) { u64 flags = btrfs_header_flags(eb); flags &= ~BTRFS_BACKREF_REV_MASK; flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; btrfs_set_header_flags(eb, flags); } static inline int btrfs_is_leaf(const struct extent_buffer *eb) { return btrfs_header_level(eb) == 0; } /* struct btrfs_root_item */ BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, last_snapshot, 64); BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, generation_v2, 64); BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, ctransid, 64); BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, otransid, 64); BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, stransid, 64); BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, rtransid, 64); static inline bool btrfs_root_readonly(const struct btrfs_root *root) { /* Byte-swap the constant at compile time, root_item::flags is LE */ return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; } static inline bool btrfs_root_dead(const struct btrfs_root *root) { /* Byte-swap the constant at compile time, root_item::flags is LE */ return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; } static inline u64 btrfs_root_id(const struct btrfs_root *root) { return root->root_key.objectid; } /* struct btrfs_root_backup */ BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, tree_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, tree_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, tree_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, chunk_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, chunk_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, chunk_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, extent_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, extent_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, extent_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, fs_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, fs_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, fs_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, dev_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, dev_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, dev_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, csum_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, csum_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, csum_root_level, 8); BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, num_devices, 64); /* * For extent tree v2 we overload the extent root with the block group root, as * we will have multiple extent roots. */ BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, extent_root, 64); BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, extent_root_gen, 64); BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, struct btrfs_root_backup, extent_root_level, 8); /* struct btrfs_balance_item */ BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); static inline void btrfs_balance_data(const struct extent_buffer *eb, const struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); } static inline void btrfs_set_balance_data(struct extent_buffer *eb, struct btrfs_balance_item *bi, const struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); } static inline void btrfs_balance_meta(const struct extent_buffer *eb, const struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); } static inline void btrfs_set_balance_meta(struct extent_buffer *eb, struct btrfs_balance_item *bi, const struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); } static inline void btrfs_balance_sys(const struct extent_buffer *eb, const struct btrfs_balance_item *bi, struct btrfs_disk_balance_args *ba) { read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); } static inline void btrfs_set_balance_sys(struct extent_buffer *eb, struct btrfs_balance_item *bi, const struct btrfs_disk_balance_args *ba) { write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); } static inline void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, const struct btrfs_disk_balance_args *disk) { memset(cpu, 0, sizeof(*cpu)); cpu->profiles = le64_to_cpu(disk->profiles); cpu->usage = le64_to_cpu(disk->usage); cpu->devid = le64_to_cpu(disk->devid); cpu->pstart = le64_to_cpu(disk->pstart); cpu->pend = le64_to_cpu(disk->pend); cpu->vstart = le64_to_cpu(disk->vstart); cpu->vend = le64_to_cpu(disk->vend); cpu->target = le64_to_cpu(disk->target); cpu->flags = le64_to_cpu(disk->flags); cpu->limit = le64_to_cpu(disk->limit); cpu->stripes_min = le32_to_cpu(disk->stripes_min); cpu->stripes_max = le32_to_cpu(disk->stripes_max); } static inline void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, const struct btrfs_balance_args *cpu) { memset(disk, 0, sizeof(*disk)); disk->profiles = cpu_to_le64(cpu->profiles); disk->usage = cpu_to_le64(cpu->usage); disk->devid = cpu_to_le64(cpu->devid); disk->pstart = cpu_to_le64(cpu->pstart); disk->pend = cpu_to_le64(cpu->pend); disk->vstart = cpu_to_le64(cpu->vstart); disk->vend = cpu_to_le64(cpu->vend); disk->target = cpu_to_le64(cpu->target); disk->flags = cpu_to_le64(cpu->flags); disk->limit = cpu_to_le64(cpu->limit); disk->stripes_min = cpu_to_le32(cpu->stripes_min); disk->stripes_max = cpu_to_le32(cpu->stripes_max); } /* struct btrfs_super_block */ BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, struct btrfs_super_block, sys_chunk_array_size, 32); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, struct btrfs_super_block, chunk_root_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, chunk_root, 64); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, chunk_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, log_root, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, log_root_transid, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, log_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, sectorsize, 32); BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, nodesize, 32); BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, stripesize, 32); BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, root_dir_objectid, 64); BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, num_devices, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, compat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, compat_ro_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, incompat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, csum_type, 16); BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, cache_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, uuid_tree_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, block_group_root, 64); BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, struct btrfs_super_block, block_group_root_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, block_group_root_level, 8); int btrfs_super_csum_size(const struct btrfs_super_block *s); const char *btrfs_super_csum_name(u16 csum_type); const char *btrfs_super_csum_driver(u16 csum_type); size_t __attribute_const__ btrfs_get_num_csums(void); /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) { u32 nr = btrfs_header_nritems(leaf); if (nr == 0) return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); return btrfs_item_offset(leaf, nr - 1); } /* struct btrfs_file_extent_item */ BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, type, 8); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, struct btrfs_file_extent_item, ram_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, struct btrfs_file_extent_item, compression, 8); static inline unsigned long btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) { return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; } static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) { return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; } BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, ram_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, compression, 8); BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, encryption, 8); BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, other_encoding, 16); /* * this returns the number of bytes used by the item on disk, minus the * size of any extent headers. If a file is compressed on disk, this is * the compressed size */ static inline u32 btrfs_file_extent_inline_item_len( const struct extent_buffer *eb, int nr) { return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; } /* btrfs_qgroup_status_item */ BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, generation, 64); BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, version, 64); BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, flags, 64); BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, rescan, 64); /* btrfs_qgroup_info_item */ BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, generation, 64); BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, rfer_cmpr, 64); BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, excl_cmpr, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, struct btrfs_qgroup_info_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, rfer_cmpr, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, excl_cmpr, 64); /* btrfs_qgroup_limit_item */ BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, flags, 64); BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, max_rfer, 64); BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, max_excl, 64); BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, rsv_rfer, 64); BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, rsv_excl, 64); /* btrfs_dev_replace_item */ BTRFS_SETGET_FUNCS(dev_replace_src_devid, struct btrfs_dev_replace_item, src_devid, 64); BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 64); BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, replace_state, 64); BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, time_started, 64); BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, time_stopped, 64); BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, num_write_errors, 64); BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 64); BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, cursor_left, 64); BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, cursor_right, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, struct btrfs_dev_replace_item, src_devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, struct btrfs_dev_replace_item, replace_state, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, struct btrfs_dev_replace_item, time_started, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, struct btrfs_dev_replace_item, time_stopped, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, struct btrfs_dev_replace_item, num_write_errors, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, struct btrfs_dev_replace_item, cursor_left, 64); BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, struct btrfs_dev_replace_item, cursor_right, 64); /* helper function to cast into the data area of the leaf. */ #define btrfs_item_ptr(leaf, slot, type) \ ((type *)(BTRFS_LEAF_DATA_OFFSET + \ btrfs_item_offset(leaf, slot))) #define btrfs_item_ptr_offset(leaf, slot) \ ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ btrfs_item_offset(leaf, slot))) static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) { return crc32c(crc, address, length); } static inline void btrfs_crc32c_final(u32 crc, u8 *result) { put_unaligned_le32(~crc, result); } static inline u64 btrfs_name_hash(const char *name, int len) { return crc32c((u32)~1, name, len); } /* * Figure the key offset of an extended inode ref */ static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, int len) { return (u64) crc32c(parent_objectid, name, len); } static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) { return mapping_gfp_constraint(mapping, ~__GFP_FS); } /* extent-tree.c */ enum btrfs_inline_ref_type { BTRFS_REF_TYPE_INVALID, BTRFS_REF_TYPE_BLOCK, BTRFS_REF_TYPE_DATA, BTRFS_REF_TYPE_ANY, }; int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, struct btrfs_extent_inline_ref *iref, enum btrfs_inline_ref_type is_data); u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); /* * Take the number of bytes to be checksummmed and figure out how many leaves * it would require to store the csums for that many bytes. */ static inline u64 btrfs_csum_bytes_to_leaves( const struct btrfs_fs_info *fs_info, u64 csum_bytes) { const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); } /* * Use this if we would be adding new items, as we could split nodes as we cow * down the tree. */ static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, unsigned num_items) { return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; } /* * Doing a truncate or a modification won't result in new nodes or leaves, just * what we need for COW. */ static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, unsigned num_items) { return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; } int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, u64 start, u64 num_bytes); void btrfs_free_excluded_extents(struct btrfs_block_group *cache); int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, unsigned long count); void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head); int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 offset, int metadata, u64 *refs, u64 *flags); int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, int reserved); int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes); int btrfs_exclude_logged_extents(struct extent_buffer *eb); int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, u64 bytenr, bool strict); struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 parent, u64 root_objectid, const struct btrfs_disk_key *key, int level, u64 hint, u64 empty_size, enum btrfs_lock_nesting nest); void btrfs_free_tree_block(struct btrfs_trans_handle *trans, u64 root_id, struct extent_buffer *buf, u64 parent, int last_ref); int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner, u64 offset, u64 ram_bytes, struct btrfs_key *ins); int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins); int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, u64 min_alloc_size, u64 empty_size, u64 hint_byte, struct btrfs_key *ins, int is_data, int delalloc); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, struct extent_buffer *eb, u64 flags, int level, int is_data); int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len, int delalloc); int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, u64 len); int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_ref *generic_ref); void btrfs_clear_space_info_full(struct btrfs_fs_info *info); /* * Different levels for to flush space when doing space reservations. * * The higher the level, the more methods we try to reclaim space. */ enum btrfs_reserve_flush_enum { /* If we are in the transaction, we can't flush anything.*/ BTRFS_RESERVE_NO_FLUSH, /* * Flush space by: * - Running delayed inode items * - Allocating a new chunk */ BTRFS_RESERVE_FLUSH_LIMIT, /* * Flush space by: * - Running delayed inode items * - Running delayed refs * - Running delalloc and waiting for ordered extents * - Allocating a new chunk */ BTRFS_RESERVE_FLUSH_EVICT, /* * Flush space by above mentioned methods and by: * - Running delayed iputs * - Committing transaction * * Can be interrupted by a fatal signal. */ BTRFS_RESERVE_FLUSH_DATA, BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, BTRFS_RESERVE_FLUSH_ALL, /* * Pretty much the same as FLUSH_ALL, but can also steal space from * global rsv. * * Can be interrupted by a fatal signal. */ BTRFS_RESERVE_FLUSH_ALL_STEAL, }; enum btrfs_flush_state { FLUSH_DELAYED_ITEMS_NR = 1, FLUSH_DELAYED_ITEMS = 2, FLUSH_DELAYED_REFS_NR = 3, FLUSH_DELAYED_REFS = 4, FLUSH_DELALLOC = 5, FLUSH_DELALLOC_WAIT = 6, FLUSH_DELALLOC_FULL = 7, ALLOC_CHUNK = 8, ALLOC_CHUNK_FORCE = 9, RUN_DELAYED_IPUTS = 10, COMMIT_TRANS = 11, }; int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, struct btrfs_block_rsv *rsv, int nitems, bool use_global_rsv); void btrfs_subvolume_release_metadata(struct btrfs_root *root, struct btrfs_block_rsv *rsv); void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, u64 disk_num_bytes); u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end); int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes, u64 *actual_bytes); int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); int btrfs_init_space_info(struct btrfs_fs_info *fs_info); int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info); int btrfs_start_write_no_snapshotting(struct btrfs_root *root); void btrfs_end_write_no_snapshotting(struct btrfs_root *root); void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); /* ctree.c */ int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, int *slot); int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); int btrfs_previous_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid, int type); int btrfs_previous_extent_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid); void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, struct btrfs_path *path, const struct btrfs_key *new_key); struct extent_buffer *btrfs_root_node(struct btrfs_root *root); int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, int lowest_level, u64 min_trans); int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, struct btrfs_path *path, u64 min_trans); struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, int slot); int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret, enum btrfs_lock_nesting nest); int btrfs_copy_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer **cow_ret, u64 new_root_objectid); int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf); void btrfs_extend_item(struct btrfs_path *path, u32 data_size); void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); int btrfs_split_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *new_key, unsigned long split_offset); int btrfs_duplicate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *new_key); int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, u64 time_seq); int btrfs_search_slot_for_read(struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int find_higher, int return_any); int btrfs_realloc_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *parent, int start_slot, u64 *last_ret, struct btrfs_key *progress); void btrfs_release_path(struct btrfs_path *p); struct btrfs_path *btrfs_alloc_path(void); void btrfs_free_path(struct btrfs_path *p); int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int slot, int nr); static inline int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { return btrfs_del_items(trans, root, path, path->slots[0], 1); } /* * Describes a batch of items to insert in a btree. This is used by * btrfs_insert_empty_items(). */ struct btrfs_item_batch { /* * Pointer to an array containing the keys of the items to insert (in * sorted order). */ const struct btrfs_key *keys; /* Pointer to an array containing the data size for each item to insert. */ const u32 *data_sizes; /* * The sum of data sizes for all items. The caller can compute this while * setting up the data_sizes array, so it ends up being more efficient * than having btrfs_insert_empty_items() or setup_item_for_insert() * doing it, as it would avoid an extra loop over a potentially large * array, and in the case of setup_item_for_insert(), we would be doing * it while holding a write lock on a leaf and often on upper level nodes * too, unnecessarily increasing the size of a critical section. */ u32 total_data_size; /* Size of the keys and data_sizes arrays (number of items in the batch). */ int nr; }; void btrfs_setup_item_for_insert(struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *key, u32 data_size); int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_item_batch *batch); static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *key, u32 data_size) { struct btrfs_item_batch batch; batch.keys = key; batch.data_sizes = &data_size; batch.total_data_size = data_size; batch.nr = 1; return btrfs_insert_empty_items(trans, root, path, &batch); } int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *path); int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *path); /* * Search in @root for a given @key, and store the slot found in @found_key. * * @root: The root node of the tree. * @key: The key we are looking for. * @found_key: Will hold the found item. * @path: Holds the current slot/leaf. * @iter_ret: Contains the value returned from btrfs_search_slot or * btrfs_get_next_valid_item, whichever was executed last. * * The @iter_ret is an output variable that will contain the return value of * btrfs_search_slot, if it encountered an error, or the value returned from * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid * slot was found, 1 if there were no more leaves, and <0 if there was an error. * * It's recommended to use a separate variable for iter_ret and then use it to * set the function return value so there's no confusion of the 0/1/errno * values stemming from btrfs_search_slot. */ #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ (iter_ret) >= 0 && \ (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ (path)->slots[0]++ \ ) static inline int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *p, u64 time_seq) { ++p->slots[0]; if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) return btrfs_next_old_leaf(root, p, time_seq); return 0; } /* * Search the tree again to find a leaf with greater keys. * * Returns 0 if it found something or 1 if there are no greater leaves. * Returns < 0 on error. */ static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) { return btrfs_next_old_leaf(root, path, 0); } static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) { return btrfs_next_old_item(root, p, 0); } int btrfs_leaf_free_space(struct extent_buffer *leaf); int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc); int btrfs_drop_subtree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *node, struct extent_buffer *parent); static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) { /* * Do it this way so we only ever do one test_bit in the normal case. */ if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) return 2; return 1; } return 0; } /* * If we remount the fs to be R/O or umount the fs, the cleaner needn't do * anything except sleeping. This function is used to check the status of * the fs. * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, * since setting and checking for SB_RDONLY in the superblock's flags is not * atomic. */ static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) { return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || btrfs_fs_closing(fs_info); } static inline void btrfs_set_sb_rdonly(struct super_block *sb) { sb->s_flags |= SB_RDONLY; set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); } static inline void btrfs_clear_sb_rdonly(struct super_block *sb) { sb->s_flags &= ~SB_RDONLY; clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); } /* root-item.c */ int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, u64 ref_id, u64 dirid, u64 sequence, const char *name, int name_len); int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, const char *name, int name_len); int btrfs_del_root(struct btrfs_trans_handle *trans, const struct btrfs_key *key); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_root_item *item); int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, struct btrfs_path *path, struct btrfs_root_item *root_item, struct btrfs_key *root_key); int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); void btrfs_set_root_node(struct btrfs_root_item *item, struct extent_buffer *node); void btrfs_check_and_init_root_item(struct btrfs_root_item *item); void btrfs_update_root_times(struct btrfs_trans_handle *trans, struct btrfs_root *root); /* uuid-tree.c */ int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, u64 subid); int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, u64 subid); int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); /* dir-item.c */ int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, const char *name, int name_len); int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, int name_len, struct btrfs_inode *dir, struct btrfs_key *location, u8 type, u64 index); struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, u64 index, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_search_dir_index_item(struct btrfs_root *root, struct btrfs_path *path, u64 dirid, const char *name, int name_len); int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_dir_item *di); int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, const char *name, u16 name_len, const void *data, u16 data_len); struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, u16 name_len, int mod); struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, struct btrfs_path *path, const char *name, int name_len); /* orphan.c */ int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); /* file-item.c */ struct btrfs_dio_private; int btrfs_del_csums(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 len); blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 disk_offset, u64 disk_num_bytes, u64 num_bytes, u64 offset, u64 ram_bytes, u8 compression, u8 encryption, u16 other_encoding); int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 bytenr, int mod); int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_ordered_sum *sums); blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, u64 offset, bool one_ordered); int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, struct list_head *list, int search_commit); void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, const struct btrfs_path *path, struct btrfs_file_extent_item *fi, const bool new_inline, struct extent_map *em); int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, u64 len); int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, u64 len); void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); u64 btrfs_file_extent_end(const struct btrfs_path *path); /* inode.c */ blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, int mirror_num, unsigned long bio_flags); unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, u32 bio_offset, struct page *page, u64 start, u64 end); struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, u64 start, u64 len); noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, u64 *orig_start, u64 *orig_block_len, u64 *ram_bytes, bool strict); void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode); struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_inode *dir, struct btrfs_inode *inode, const char *name, int name_len); int btrfs_add_link(struct btrfs_trans_handle *trans, struct btrfs_inode *parent_inode, struct btrfs_inode *inode, const char *name, int name_len, int add_backref, u64 index); int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, int front); int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, bool in_reclaim_context); int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, unsigned int extra_bits, struct extent_state **cached_state); int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, struct btrfs_root *new_root, struct btrfs_root *parent_root, struct user_namespace *mnt_userns); void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, unsigned *bits); void btrfs_clear_delalloc_extent(struct inode *inode, struct extent_state *state, unsigned *bits); void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, struct extent_state *other); void btrfs_split_delalloc_extent(struct inode *inode, struct extent_state *orig, u64 split); void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); int btrfs_readpage(struct file *file, struct page *page); void btrfs_evict_inode(struct inode *inode); int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); struct inode *btrfs_alloc_inode(struct super_block *sb); void btrfs_destroy_inode(struct inode *inode); void btrfs_free_inode(struct inode *inode); int btrfs_drop_inode(struct inode *inode); int __init btrfs_init_cachep(void); void __cold btrfs_destroy_cachep(void); struct inode *btrfs_iget_path(struct super_block *s, u64 ino, struct btrfs_root *root, struct btrfs_path *path); struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, struct page *page, size_t pg_offset, u64 start, u64 end); int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode); int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode); int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode); int btrfs_orphan_cleanup(struct btrfs_root *root); int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); void btrfs_add_delayed_iput(struct inode *inode); void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); int btrfs_prealloc_file_range(struct inode *inode, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_prealloc_file_range_trans(struct inode *inode, struct btrfs_trans_handle *trans, int mode, u64 start, u64 num_bytes, u64 min_size, loff_t actual_len, u64 *alloc_hint); int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, u64 start, u64 end, int *page_started, unsigned long *nr_written, struct writeback_control *wbc); int btrfs_writepage_cow_fixup(struct page *page); void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, struct page *page, u64 start, u64 end, bool uptodate); ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, struct btrfs_ioctl_encoded_io_args *encoded); ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, const struct btrfs_ioctl_encoded_io_args *encoded); extern const struct dentry_operations btrfs_dentry_operations; extern const struct iomap_ops btrfs_dio_iomap_ops; extern const struct iomap_dio_ops btrfs_dio_ops; /* Inode locking type flags, by default the exclusive lock is taken */ #define BTRFS_ILOCK_SHARED (1U << 0) #define BTRFS_ILOCK_TRY (1U << 1) #define BTRFS_ILOCK_MMAP (1U << 2) int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes, const u64 del_bytes); /* ioctl.c */ long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); int btrfs_fileattr_set(struct user_namespace *mnt_userns, struct dentry *dentry, struct fileattr *fa); int btrfs_ioctl_get_supported_features(void __user *arg); void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); int __pure btrfs_is_empty_uuid(u8 *uuid); int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, struct btrfs_ioctl_defrag_range_args *range, u64 newer_than, unsigned long max_to_defrag); void btrfs_get_block_group_info(struct list_head *groups_list, struct btrfs_ioctl_space_info *space); void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_balance_args *bargs); bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type); bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type); void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation op); /* file.c */ int __init btrfs_auto_defrag_init(void); void __cold btrfs_auto_defrag_exit(void); int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, struct btrfs_inode *inode, u32 extent_thresh); int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, int skip_pinned); extern const struct file_operations btrfs_file_operations; int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode *inode, struct btrfs_drop_extents_args *args); int btrfs_replace_file_extents(struct btrfs_inode *inode, struct btrfs_path *path, const u64 start, const u64 end, struct btrfs_replace_extent_info *extent_info, struct btrfs_trans_handle **trans_out); int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, struct btrfs_inode *inode, u64 start, u64 end); ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, const struct btrfs_ioctl_encoded_io_args *encoded); int btrfs_release_file(struct inode *inode, struct file *file); int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes, struct extent_state **cached, bool noreserve); int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, size_t *write_bytes); void btrfs_check_nocow_unlock(struct btrfs_inode *inode); /* tree-defrag.c */ int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, struct btrfs_root *root); /* super.c */ int btrfs_parse_options(struct btrfs_fs_info *info, char *options, unsigned long new_flags); int btrfs_sync_fs(struct super_block *sb, int wait); char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, u64 subvol_objectid); static inline __printf(2, 3) __cold void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) { } #ifdef CONFIG_PRINTK __printf(2, 3) __cold void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); #else #define btrfs_printk(fs_info, fmt, args...) \ btrfs_no_printk(fs_info, fmt, ##args) #endif #define btrfs_emerg(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use printk_in_rcu */ #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use a ratelimited printk_in_rcu */ #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) /* * Wrappers that use a ratelimited printk */ #define btrfs_emerg_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) #define btrfs_alert_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) #define btrfs_crit_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) #define btrfs_err_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) #define btrfs_warn_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) #define btrfs_notice_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) #define btrfs_info_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) #if defined(CONFIG_DYNAMIC_DEBUG) #define btrfs_debug(fs_info, fmt, args...) \ _dynamic_func_call_no_desc(fmt, btrfs_printk, \ fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl(fs_info, fmt, args...) \ _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ fs_info, KERN_DEBUG fmt, ##args) #elif defined(DEBUG) #define btrfs_debug(fs_info, fmt, args...) \ btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl(fs_info, fmt, args...) \ btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) #else #define btrfs_debug(fs_info, fmt, args...) \ btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) #define btrfs_debug_rl(fs_info, fmt, args...) \ btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) #endif #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ do { \ rcu_read_lock(); \ btrfs_printk(fs_info, fmt, ##args); \ rcu_read_unlock(); \ } while (0) #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ do { \ rcu_read_lock(); \ btrfs_no_printk(fs_info, fmt, ##args); \ rcu_read_unlock(); \ } while (0) #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ if (__ratelimit(&_rs)) \ btrfs_printk(fs_info, fmt, ##args); \ } while (0) #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ do { \ rcu_read_lock(); \ btrfs_printk_ratelimited(fs_info, fmt, ##args); \ rcu_read_unlock(); \ } while (0) #ifdef CONFIG_BTRFS_ASSERT __cold __noreturn static inline void assertfail(const char *expr, const char *file, int line) { pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); BUG(); } #define ASSERT(expr) \ (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) #else static inline void assertfail(const char *expr, const char* file, int line) { } #define ASSERT(expr) (void)(expr) #endif #if BITS_PER_LONG == 32 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) /* * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical * addresses of extents. * * For 4K page size it's about 10T, for 64K it's 160T. */ #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); #endif /* * Get the correct offset inside the page of extent buffer. * * @eb: target extent buffer * @start: offset inside the extent buffer * * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. */ static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, unsigned long offset) { /* * For sectorsize == PAGE_SIZE case, eb->start will always be aligned * to PAGE_SIZE, thus adding it won't cause any difference. * * For sectorsize < PAGE_SIZE, we must only read the data that belongs * to the eb, thus we have to take the eb->start into consideration. */ return offset_in_page(offset + eb->start); } static inline unsigned long get_eb_page_index(unsigned long offset) { /* * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. * * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, * and have ensured that all tree blocks are contained in one page, * thus we always get index == 0. */ return offset >> PAGE_SHIFT; } /* * Use that for functions that are conditionally exported for sanity tests but * otherwise static */ #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS #define EXPORT_FOR_TESTS static #else #define EXPORT_FOR_TESTS #endif __cold static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) { btrfs_err(fs_info, "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); } __printf(5, 6) __cold void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...); const char * __attribute_const__ btrfs_decode_error(int errno); __cold void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, const char *function, unsigned int line, int errno); /* * Call btrfs_abort_transaction as early as possible when an error condition is * detected, that way the exact line number is reported. */ #define btrfs_abort_transaction(trans, errno) \ do { \ /* Report first abort since mount */ \ if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ &((trans)->fs_info->fs_state))) { \ if ((errno) != -EIO && (errno) != -EROFS) { \ WARN(1, KERN_DEBUG \ "BTRFS: Transaction aborted (error %d)\n", \ (errno)); \ } else { \ btrfs_debug((trans)->fs_info, \ "Transaction aborted (error %d)", \ (errno)); \ } \ } \ __btrfs_abort_transaction((trans), __func__, \ __LINE__, (errno)); \ } while (0) #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ do { \ __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ (errno), fmt, ##args); \ } while (0) #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ &(fs_info)->fs_state))) #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ &(fs_info)->fs_state))) __printf(5, 6) __cold void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, unsigned int line, int errno, const char *fmt, ...); /* * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic * will panic(). Otherwise we BUG() here. */ #define btrfs_panic(fs_info, errno, fmt, args...) \ do { \ __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ BUG(); \ } while (0) /* compatibility and incompatibility defines */ #define btrfs_set_fs_incompat(__fs_info, opt) \ __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ #opt) static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char* name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { spin_lock(&fs_info->super_lock); features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_incompat_flags(disk_super, features); btrfs_info(fs_info, "setting incompat feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); } } #define btrfs_clear_fs_incompat(__fs_info, opt) \ __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ #opt) static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char* name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_incompat_flags(disk_super); if (features & flag) { spin_lock(&fs_info->super_lock); features = btrfs_super_incompat_flags(disk_super); if (features & flag) { features &= ~flag; btrfs_set_super_incompat_flags(disk_super, features); btrfs_info(fs_info, "clearing incompat feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); } } #define btrfs_fs_incompat(fs_info, opt) \ __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; disk_super = fs_info->super_copy; return !!(btrfs_super_incompat_flags(disk_super) & flag); } #define btrfs_set_fs_compat_ro(__fs_info, opt) \ __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ #opt) static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { spin_lock(&fs_info->super_lock); features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_compat_ro_flags(disk_super, features); btrfs_info(fs_info, "setting compat-ro feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); } } #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ #opt) static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_compat_ro_flags(disk_super); if (features & flag) { spin_lock(&fs_info->super_lock); features = btrfs_super_compat_ro_flags(disk_super); if (features & flag) { features &= ~flag; btrfs_set_super_compat_ro_flags(disk_super, features); btrfs_info(fs_info, "clearing compat-ro feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); } } #define btrfs_fs_compat_ro(fs_info, opt) \ __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; disk_super = fs_info->super_copy; return !!(btrfs_super_compat_ro_flags(disk_super) & flag); } /* acl.c */ #ifdef CONFIG_BTRFS_FS_POSIX_ACL struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, struct posix_acl *acl, int type); int btrfs_init_acl(struct btrfs_trans_handle *trans, struct inode *inode, struct inode *dir); #else #define btrfs_get_acl NULL #define btrfs_set_acl NULL static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, struct inode *inode, struct inode *dir) { return 0; } #endif /* relocation.c */ int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow); void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, u64 *bytes_to_reserve); int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, struct btrfs_pending_snapshot *pending); int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr); int btrfs_should_ignore_reloc_root(struct btrfs_root *root); /* scrub.c */ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, u64 end, struct btrfs_scrub_progress *progress, int readonly, int is_dev_replace); void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); int btrfs_scrub_cancel(struct btrfs_fs_info *info); int btrfs_scrub_cancel_dev(struct btrfs_device *dev); int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, struct btrfs_scrub_progress *progress); static inline void btrfs_init_full_stripe_locks_tree( struct btrfs_full_stripe_locks_tree *locks_root) { locks_root->root = RB_ROOT; mutex_init(&locks_root->lock); } /* dev-replace.c */ void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) { btrfs_bio_counter_sub(fs_info, 1); } static inline int is_fstree(u64 rootid) { if (rootid == BTRFS_FS_TREE_OBJECTID || ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && !btrfs_qgroup_level(rootid))) return 1; return 0; } static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) { return signal_pending(current); } /* verity.c */ #ifdef CONFIG_FS_VERITY extern const struct fsverity_operations btrfs_verityops; int btrfs_drop_verity_items(struct btrfs_inode *inode); BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, encryption, 8); BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, size, 64); BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, struct btrfs_verity_descriptor_item, encryption, 8); BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, struct btrfs_verity_descriptor_item, size, 64); #else static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) { return 0; } #endif /* Sanity test specific functions */ #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS void btrfs_test_destroy_inode(struct inode *inode); static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) { return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); } #else static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) { return 0; } #endif static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) { return fs_info->zoned != 0; } static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) { return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; } /* * We use page status Private2 to indicate there is an ordered extent with * unfinished IO. * * Rename the Private2 accessors to Ordered, to improve readability. */ #define PageOrdered(page) PagePrivate2(page) #define SetPageOrdered(page) SetPagePrivate2(page) #define ClearPageOrdered(page) ClearPagePrivate2(page) #define folio_test_ordered(folio) folio_test_private_2(folio) #define folio_set_ordered(folio) folio_set_private_2(folio) #define folio_clear_ordered(folio) folio_clear_private_2(folio) #endif