/* Faraday FOTG210 EHCI-like driver * * Copyright (c) 2013 Faraday Technology Corporation * * Author: Yuan-Hsin Chen * Feng-Hsin Chiang * Po-Yu Chuang * * Most of code borrowed from the Linux-3.7 EHCI driver * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_AUTHOR "Yuan-Hsin Chen" #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver" static const char hcd_name[] = "fotg210_hcd"; #undef FOTG210_URB_TRACE #define FOTG210_STATS /* magic numbers that can affect system performance */ #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ #define FOTG210_TUNE_RL_TT 0 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ #define FOTG210_TUNE_MULT_TT 1 /* Some drivers think it's safe to schedule isochronous transfers more than 256 * ms into the future (partly as a result of an old bug in the scheduling * code). In an attempt to avoid trouble, we will use a minimum scheduling * length of 512 frames instead of 256. */ #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ /* Initial IRQ latency: faster than hw default */ static int log2_irq_thresh; /* 0 to 6 */ module_param(log2_irq_thresh, int, S_IRUGO); MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); /* initial park setting: slower than hw default */ static unsigned park; module_param(park, uint, S_IRUGO); MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); /* for link power management(LPM) feature */ static unsigned int hird; module_param(hird, int, S_IRUGO); MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) #include "fotg210.h" #define fotg210_dbg(fotg210, fmt, args...) \ dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) #define fotg210_err(fotg210, fmt, args...) \ dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) #define fotg210_info(fotg210, fmt, args...) \ dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) #define fotg210_warn(fotg210, fmt, args...) \ dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args) /* check the values in the HCSPARAMS register (host controller _Structural_ * parameters) see EHCI spec, Table 2-4 for each value */ static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) { u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params, HCS_N_PORTS(params)); } /* check the values in the HCCPARAMS register (host controller _Capability_ * parameters) see EHCI Spec, Table 2-5 for each value */ static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) { u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label, params, HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", HCC_CANPARK(params) ? " park" : ""); } static void __maybe_unused dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) { fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, hc32_to_cpup(fotg210, &qtd->hw_next), hc32_to_cpup(fotg210, &qtd->hw_alt_next), hc32_to_cpup(fotg210, &qtd->hw_token), hc32_to_cpup(fotg210, &qtd->hw_buf[0])); if (qtd->hw_buf[1]) fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", hc32_to_cpup(fotg210, &qtd->hw_buf[1]), hc32_to_cpup(fotg210, &qtd->hw_buf[2]), hc32_to_cpup(fotg210, &qtd->hw_buf[3]), hc32_to_cpup(fotg210, &qtd->hw_buf[4])); } static void __maybe_unused dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { struct fotg210_qh_hw *hw = qh->hw; fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current); dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); } static void __maybe_unused dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) { fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), itd->urb); fotg210_dbg(fotg210, " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", hc32_to_cpu(fotg210, itd->hw_transaction[0]), hc32_to_cpu(fotg210, itd->hw_transaction[1]), hc32_to_cpu(fotg210, itd->hw_transaction[2]), hc32_to_cpu(fotg210, itd->hw_transaction[3]), hc32_to_cpu(fotg210, itd->hw_transaction[4]), hc32_to_cpu(fotg210, itd->hw_transaction[5]), hc32_to_cpu(fotg210, itd->hw_transaction[6]), hc32_to_cpu(fotg210, itd->hw_transaction[7])); fotg210_dbg(fotg210, " buf: %08x %08x %08x %08x %08x %08x %08x\n", hc32_to_cpu(fotg210, itd->hw_bufp[0]), hc32_to_cpu(fotg210, itd->hw_bufp[1]), hc32_to_cpu(fotg210, itd->hw_bufp[2]), hc32_to_cpu(fotg210, itd->hw_bufp[3]), hc32_to_cpu(fotg210, itd->hw_bufp[4]), hc32_to_cpu(fotg210, itd->hw_bufp[5]), hc32_to_cpu(fotg210, itd->hw_bufp[6])); fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", itd->index[0], itd->index[1], itd->index[2], itd->index[3], itd->index[4], itd->index[5], itd->index[6], itd->index[7]); } static int __maybe_unused dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) { return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", label, label[0] ? " " : "", status, (status & STS_ASS) ? " Async" : "", (status & STS_PSS) ? " Periodic" : "", (status & STS_RECL) ? " Recl" : "", (status & STS_HALT) ? " Halt" : "", (status & STS_IAA) ? " IAA" : "", (status & STS_FATAL) ? " FATAL" : "", (status & STS_FLR) ? " FLR" : "", (status & STS_PCD) ? " PCD" : "", (status & STS_ERR) ? " ERR" : "", (status & STS_INT) ? " INT" : ""); } static int __maybe_unused dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) { return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", label, label[0] ? " " : "", enable, (enable & STS_IAA) ? " IAA" : "", (enable & STS_FATAL) ? " FATAL" : "", (enable & STS_FLR) ? " FLR" : "", (enable & STS_PCD) ? " PCD" : "", (enable & STS_ERR) ? " ERR" : "", (enable & STS_INT) ? " INT" : ""); } static const char *const fls_strings[] = { "1024", "512", "256", "??" }; static int dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) { return scnprintf(buf, len, "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s", label, label[0] ? " " : "", command, (command & CMD_PARK) ? " park" : "(park)", CMD_PARK_CNT(command), (command >> 16) & 0x3f, (command & CMD_IAAD) ? " IAAD" : "", (command & CMD_ASE) ? " Async" : "", (command & CMD_PSE) ? " Periodic" : "", fls_strings[(command >> 2) & 0x3], (command & CMD_RESET) ? " Reset" : "", (command & CMD_RUN) ? "RUN" : "HALT"); } static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) { char *sig; /* signaling state */ switch (status & (3 << 10)) { case 0 << 10: sig = "se0"; break; case 1 << 10: sig = "k"; break; /* low speed */ case 2 << 10: sig = "j"; break; default: sig = "?"; break; } scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s", label, label[0] ? " " : "", port, status, status >> 25, /*device address */ sig, (status & PORT_RESET) ? " RESET" : "", (status & PORT_SUSPEND) ? " SUSPEND" : "", (status & PORT_RESUME) ? " RESUME" : "", (status & PORT_PEC) ? " PEC" : "", (status & PORT_PE) ? " PE" : "", (status & PORT_CSC) ? " CSC" : "", (status & PORT_CONNECT) ? " CONNECT" : ""); return buf; } /* functions have the "wrong" filename when they're output... */ #define dbg_status(fotg210, label, status) { \ char _buf[80]; \ dbg_status_buf(_buf, sizeof(_buf), label, status); \ fotg210_dbg(fotg210, "%s\n", _buf); \ } #define dbg_cmd(fotg210, label, command) { \ char _buf[80]; \ dbg_command_buf(_buf, sizeof(_buf), label, command); \ fotg210_dbg(fotg210, "%s\n", _buf); \ } #define dbg_port(fotg210, label, port, status) { \ char _buf[80]; \ fotg210_dbg(fotg210, "%s\n", \ dbg_port_buf(_buf, sizeof(_buf), label, port, status));\ } /* troubleshooting help: expose state in debugfs */ static int debug_async_open(struct inode *, struct file *); static int debug_periodic_open(struct inode *, struct file *); static int debug_registers_open(struct inode *, struct file *); static int debug_async_open(struct inode *, struct file *); static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); static int debug_close(struct inode *, struct file *); static const struct file_operations debug_async_fops = { .owner = THIS_MODULE, .open = debug_async_open, .read = debug_output, .release = debug_close, .llseek = default_llseek, }; static const struct file_operations debug_periodic_fops = { .owner = THIS_MODULE, .open = debug_periodic_open, .read = debug_output, .release = debug_close, .llseek = default_llseek, }; static const struct file_operations debug_registers_fops = { .owner = THIS_MODULE, .open = debug_registers_open, .read = debug_output, .release = debug_close, .llseek = default_llseek, }; static struct dentry *fotg210_debug_root; struct debug_buffer { ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ struct usb_bus *bus; struct mutex mutex; /* protect filling of buffer */ size_t count; /* number of characters filled into buffer */ char *output_buf; size_t alloc_size; }; static inline char speed_char(u32 scratch) { switch (scratch & (3 << 12)) { case QH_FULL_SPEED: return 'f'; case QH_LOW_SPEED: return 'l'; case QH_HIGH_SPEED: return 'h'; default: return '?'; } } static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) { __u32 v = hc32_to_cpu(fotg210, token); if (v & QTD_STS_ACTIVE) return '*'; if (v & QTD_STS_HALT) return '-'; if (!IS_SHORT_READ(v)) return ' '; /* tries to advance through hw_alt_next */ return '/'; } static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, char **nextp, unsigned *sizep) { u32 scratch; u32 hw_curr; struct fotg210_qtd *td; unsigned temp; unsigned size = *sizep; char *next = *nextp; char mark; __le32 list_end = FOTG210_LIST_END(fotg210); struct fotg210_qh_hw *hw = qh->hw; if (hw->hw_qtd_next == list_end) /* NEC does this */ mark = '@'; else mark = token_mark(fotg210, hw->hw_token); if (mark == '/') { /* qh_alt_next controls qh advance? */ if ((hw->hw_alt_next & QTD_MASK(fotg210)) == fotg210->async->hw->hw_alt_next) mark = '#'; /* blocked */ else if (hw->hw_alt_next == list_end) mark = '.'; /* use hw_qtd_next */ /* else alt_next points to some other qtd */ } scratch = hc32_to_cpup(fotg210, &hw->hw_info1); hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; temp = scnprintf(next, size, "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", qh, scratch & 0x007f, speed_char(scratch), (scratch >> 8) & 0x000f, scratch, hc32_to_cpup(fotg210, &hw->hw_info2), hc32_to_cpup(fotg210, &hw->hw_token), mark, (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) ? "data1" : "data0", (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); size -= temp; next += temp; /* hc may be modifying the list as we read it ... */ list_for_each_entry(td, &qh->qtd_list, qtd_list) { scratch = hc32_to_cpup(fotg210, &td->hw_token); mark = ' '; if (hw_curr == td->qtd_dma) mark = '*'; else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) mark = '+'; else if (QTD_LENGTH(scratch)) { if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) mark = '#'; else if (td->hw_alt_next != list_end) mark = '/'; } temp = snprintf(next, size, "\n\t%p%c%s len=%d %08x urb %p", td, mark, ({ char *tmp; switch ((scratch>>8)&0x03) { case 0: tmp = "out"; break; case 1: tmp = "in"; break; case 2: tmp = "setup"; break; default: tmp = "?"; break; } tmp; }), (scratch >> 16) & 0x7fff, scratch, td->urb); if (size < temp) temp = size; size -= temp; next += temp; if (temp == size) goto done; } temp = snprintf(next, size, "\n"); if (size < temp) temp = size; size -= temp; next += temp; done: *sizep = size; *nextp = next; } static ssize_t fill_async_buffer(struct debug_buffer *buf) { struct usb_hcd *hcd; struct fotg210_hcd *fotg210; unsigned long flags; unsigned temp, size; char *next; struct fotg210_qh *qh; hcd = bus_to_hcd(buf->bus); fotg210 = hcd_to_fotg210(hcd); next = buf->output_buf; size = buf->alloc_size; *next = 0; /* dumps a snapshot of the async schedule. * usually empty except for long-term bulk reads, or head. * one QH per line, and TDs we know about */ spin_lock_irqsave(&fotg210->lock, flags); for (qh = fotg210->async->qh_next.qh; size > 0 && qh; qh = qh->qh_next.qh) qh_lines(fotg210, qh, &next, &size); if (fotg210->async_unlink && size > 0) { temp = scnprintf(next, size, "\nunlink =\n"); size -= temp; next += temp; for (qh = fotg210->async_unlink; size > 0 && qh; qh = qh->unlink_next) qh_lines(fotg210, qh, &next, &size); } spin_unlock_irqrestore(&fotg210->lock, flags); return strlen(buf->output_buf); } /* count tds, get ep direction */ static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210, struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size) { u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); struct fotg210_qtd *qtd; char *type = ""; unsigned temp = 0; /* count tds, get ep direction */ list_for_each_entry(qtd, &qh->qtd_list, qtd_list) { temp++; switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) { case 0: type = "out"; continue; case 1: type = "in"; continue; } } return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)", speed_char(scratch), scratch & 0x007f, (scratch >> 8) & 0x000f, type, qh->usecs, qh->c_usecs, temp, (scratch >> 16) & 0x7ff); } #define DBG_SCHED_LIMIT 64 static ssize_t fill_periodic_buffer(struct debug_buffer *buf) { struct usb_hcd *hcd; struct fotg210_hcd *fotg210; unsigned long flags; union fotg210_shadow p, *seen; unsigned temp, size, seen_count; char *next; unsigned i; __hc32 tag; seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC); if (!seen) return 0; seen_count = 0; hcd = bus_to_hcd(buf->bus); fotg210 = hcd_to_fotg210(hcd); next = buf->output_buf; size = buf->alloc_size; temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); size -= temp; next += temp; /* dump a snapshot of the periodic schedule. * iso changes, interrupt usually doesn't. */ spin_lock_irqsave(&fotg210->lock, flags); for (i = 0; i < fotg210->periodic_size; i++) { p = fotg210->pshadow[i]; if (likely(!p.ptr)) continue; tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); temp = scnprintf(next, size, "%4d: ", i); size -= temp; next += temp; do { struct fotg210_qh_hw *hw; switch (hc32_to_cpu(fotg210, tag)) { case Q_TYPE_QH: hw = p.qh->hw; temp = scnprintf(next, size, " qh%d-%04x/%p", p.qh->period, hc32_to_cpup(fotg210, &hw->hw_info2) /* uframe masks */ & (QH_CMASK | QH_SMASK), p.qh); size -= temp; next += temp; /* don't repeat what follows this qh */ for (temp = 0; temp < seen_count; temp++) { if (seen[temp].ptr != p.ptr) continue; if (p.qh->qh_next.ptr) { temp = scnprintf(next, size, " ..."); size -= temp; next += temp; } break; } /* show more info the first time around */ if (temp == seen_count) { temp = output_buf_tds_dir(next, fotg210, hw, p.qh, size); if (seen_count < DBG_SCHED_LIMIT) seen[seen_count++].qh = p.qh; } else temp = 0; tag = Q_NEXT_TYPE(fotg210, hw->hw_next); p = p.qh->qh_next; break; case Q_TYPE_FSTN: temp = scnprintf(next, size, " fstn-%8x/%p", p.fstn->hw_prev, p.fstn); tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); p = p.fstn->fstn_next; break; case Q_TYPE_ITD: temp = scnprintf(next, size, " itd/%p", p.itd); tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); p = p.itd->itd_next; break; } size -= temp; next += temp; } while (p.ptr); temp = scnprintf(next, size, "\n"); size -= temp; next += temp; } spin_unlock_irqrestore(&fotg210->lock, flags); kfree(seen); return buf->alloc_size - size; } #undef DBG_SCHED_LIMIT static const char *rh_state_string(struct fotg210_hcd *fotg210) { switch (fotg210->rh_state) { case FOTG210_RH_HALTED: return "halted"; case FOTG210_RH_SUSPENDED: return "suspended"; case FOTG210_RH_RUNNING: return "running"; case FOTG210_RH_STOPPING: return "stopping"; } return "?"; } static ssize_t fill_registers_buffer(struct debug_buffer *buf) { struct usb_hcd *hcd; struct fotg210_hcd *fotg210; unsigned long flags; unsigned temp, size, i; char *next, scratch[80]; static const char fmt[] = "%*s\n"; static const char label[] = ""; hcd = bus_to_hcd(buf->bus); fotg210 = hcd_to_fotg210(hcd); next = buf->output_buf; size = buf->alloc_size; spin_lock_irqsave(&fotg210->lock, flags); if (!HCD_HW_ACCESSIBLE(hcd)) { size = scnprintf(next, size, "bus %s, device %s\n" "%s\n" "SUSPENDED(no register access)\n", hcd->self.controller->bus->name, dev_name(hcd->self.controller), hcd->product_desc); goto done; } /* Capability Registers */ i = HC_VERSION(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); temp = scnprintf(next, size, "bus %s, device %s\n" "%s\n" "EHCI %x.%02x, rh state %s\n", hcd->self.controller->bus->name, dev_name(hcd->self.controller), hcd->product_desc, i >> 8, i & 0x0ff, rh_state_string(fotg210)); size -= temp; next += temp; /* FIXME interpret both types of params */ i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); temp = scnprintf(next, size, "structural params 0x%08x\n", i); size -= temp; next += temp; i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); temp = scnprintf(next, size, "capability params 0x%08x\n", i); size -= temp; next += temp; /* Operational Registers */ temp = dbg_status_buf(scratch, sizeof(scratch), label, fotg210_readl(fotg210, &fotg210->regs->status)); temp = scnprintf(next, size, fmt, temp, scratch); size -= temp; next += temp; temp = dbg_command_buf(scratch, sizeof(scratch), label, fotg210_readl(fotg210, &fotg210->regs->command)); temp = scnprintf(next, size, fmt, temp, scratch); size -= temp; next += temp; temp = dbg_intr_buf(scratch, sizeof(scratch), label, fotg210_readl(fotg210, &fotg210->regs->intr_enable)); temp = scnprintf(next, size, fmt, temp, scratch); size -= temp; next += temp; temp = scnprintf(next, size, "uframe %04x\n", fotg210_read_frame_index(fotg210)); size -= temp; next += temp; if (fotg210->async_unlink) { temp = scnprintf(next, size, "async unlink qh %p\n", fotg210->async_unlink); size -= temp; next += temp; } #ifdef FOTG210_STATS temp = scnprintf(next, size, "irq normal %ld err %ld iaa %ld(lost %ld)\n", fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa, fotg210->stats.lost_iaa); size -= temp; next += temp; temp = scnprintf(next, size, "complete %ld unlink %ld\n", fotg210->stats.complete, fotg210->stats.unlink); size -= temp; next += temp; #endif done: spin_unlock_irqrestore(&fotg210->lock, flags); return buf->alloc_size - size; } static struct debug_buffer *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *)) { struct debug_buffer *buf; buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); if (buf) { buf->bus = bus; buf->fill_func = fill_func; mutex_init(&buf->mutex); buf->alloc_size = PAGE_SIZE; } return buf; } static int fill_buffer(struct debug_buffer *buf) { int ret = 0; if (!buf->output_buf) buf->output_buf = vmalloc(buf->alloc_size); if (!buf->output_buf) { ret = -ENOMEM; goto out; } ret = buf->fill_func(buf); if (ret >= 0) { buf->count = ret; ret = 0; } out: return ret; } static ssize_t debug_output(struct file *file, char __user *user_buf, size_t len, loff_t *offset) { struct debug_buffer *buf = file->private_data; int ret = 0; mutex_lock(&buf->mutex); if (buf->count == 0) { ret = fill_buffer(buf); if (ret != 0) { mutex_unlock(&buf->mutex); goto out; } } mutex_unlock(&buf->mutex); ret = simple_read_from_buffer(user_buf, len, offset, buf->output_buf, buf->count); out: return ret; } static int debug_close(struct inode *inode, struct file *file) { struct debug_buffer *buf = file->private_data; if (buf) { vfree(buf->output_buf); kfree(buf); } return 0; } static int debug_async_open(struct inode *inode, struct file *file) { file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); return file->private_data ? 0 : -ENOMEM; } static int debug_periodic_open(struct inode *inode, struct file *file) { struct debug_buffer *buf; buf = alloc_buffer(inode->i_private, fill_periodic_buffer); if (!buf) return -ENOMEM; buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; file->private_data = buf; return 0; } static int debug_registers_open(struct inode *inode, struct file *file) { file->private_data = alloc_buffer(inode->i_private, fill_registers_buffer); return file->private_data ? 0 : -ENOMEM; } static inline void create_debug_files(struct fotg210_hcd *fotg210) { struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; fotg210->debug_dir = debugfs_create_dir(bus->bus_name, fotg210_debug_root); if (!fotg210->debug_dir) return; if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus, &debug_async_fops)) goto file_error; if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus, &debug_periodic_fops)) goto file_error; if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus, &debug_registers_fops)) goto file_error; return; file_error: debugfs_remove_recursive(fotg210->debug_dir); } static inline void remove_debug_files(struct fotg210_hcd *fotg210) { debugfs_remove_recursive(fotg210->debug_dir); } /* handshake - spin reading hc until handshake completes or fails * @ptr: address of hc register to be read * @mask: bits to look at in result of read * @done: value of those bits when handshake succeeds * @usec: timeout in microseconds * * Returns negative errno, or zero on success * * Success happens when the "mask" bits have the specified value (hardware * handshake done). There are two failure modes: "usec" have passed (major * hardware flakeout), or the register reads as all-ones (hardware removed). * * That last failure should_only happen in cases like physical cardbus eject * before driver shutdown. But it also seems to be caused by bugs in cardbus * bridge shutdown: shutting down the bridge before the devices using it. */ static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, u32 mask, u32 done, int usec) { u32 result; do { result = fotg210_readl(fotg210, ptr); if (result == ~(u32)0) /* card removed */ return -ENODEV; result &= mask; if (result == done) return 0; udelay(1); usec--; } while (usec > 0); return -ETIMEDOUT; } /* Force HC to halt state from unknown (EHCI spec section 2.3). * Must be called with interrupts enabled and the lock not held. */ static int fotg210_halt(struct fotg210_hcd *fotg210) { u32 temp; spin_lock_irq(&fotg210->lock); /* disable any irqs left enabled by previous code */ fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); /* * This routine gets called during probe before fotg210->command * has been initialized, so we can't rely on its value. */ fotg210->command &= ~CMD_RUN; temp = fotg210_readl(fotg210, &fotg210->regs->command); temp &= ~(CMD_RUN | CMD_IAAD); fotg210_writel(fotg210, temp, &fotg210->regs->command); spin_unlock_irq(&fotg210->lock); synchronize_irq(fotg210_to_hcd(fotg210)->irq); return handshake(fotg210, &fotg210->regs->status, STS_HALT, STS_HALT, 16 * 125); } /* Reset a non-running (STS_HALT == 1) controller. * Must be called with interrupts enabled and the lock not held. */ static int fotg210_reset(struct fotg210_hcd *fotg210) { int retval; u32 command = fotg210_readl(fotg210, &fotg210->regs->command); /* If the EHCI debug controller is active, special care must be * taken before and after a host controller reset */ if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) fotg210->debug = NULL; command |= CMD_RESET; dbg_cmd(fotg210, "reset", command); fotg210_writel(fotg210, command, &fotg210->regs->command); fotg210->rh_state = FOTG210_RH_HALTED; fotg210->next_statechange = jiffies; retval = handshake(fotg210, &fotg210->regs->command, CMD_RESET, 0, 250 * 1000); if (retval) return retval; if (fotg210->debug) dbgp_external_startup(fotg210_to_hcd(fotg210)); fotg210->port_c_suspend = fotg210->suspended_ports = fotg210->resuming_ports = 0; return retval; } /* Idle the controller (turn off the schedules). * Must be called with interrupts enabled and the lock not held. */ static void fotg210_quiesce(struct fotg210_hcd *fotg210) { u32 temp; if (fotg210->rh_state != FOTG210_RH_RUNNING) return; /* wait for any schedule enables/disables to take effect */ temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 16 * 125); /* then disable anything that's still active */ spin_lock_irq(&fotg210->lock); fotg210->command &= ~(CMD_ASE | CMD_PSE); fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); spin_unlock_irq(&fotg210->lock); /* hardware can take 16 microframes to turn off ... */ handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 16 * 125); } static void end_unlink_async(struct fotg210_hcd *fotg210); static void unlink_empty_async(struct fotg210_hcd *fotg210); static void fotg210_work(struct fotg210_hcd *fotg210); static void start_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); /* Set a bit in the USBCMD register */ static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) { fotg210->command |= bit; fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); /* unblock posted write */ fotg210_readl(fotg210, &fotg210->regs->command); } /* Clear a bit in the USBCMD register */ static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) { fotg210->command &= ~bit; fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); /* unblock posted write */ fotg210_readl(fotg210, &fotg210->regs->command); } /* EHCI timer support... Now using hrtimers. * * Lots of different events are triggered from fotg210->hrtimer. Whenever * the timer routine runs, it checks each possible event; events that are * currently enabled and whose expiration time has passed get handled. * The set of enabled events is stored as a collection of bitflags in * fotg210->enabled_hrtimer_events, and they are numbered in order of * increasing delay values (ranging between 1 ms and 100 ms). * * Rather than implementing a sorted list or tree of all pending events, * we keep track only of the lowest-numbered pending event, in * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its * expiration time is set to the timeout value for this event. * * As a result, events might not get handled right away; the actual delay * could be anywhere up to twice the requested delay. This doesn't * matter, because none of the events are especially time-critical. The * ones that matter most all have a delay of 1 ms, so they will be * handled after 2 ms at most, which is okay. In addition to this, we * allow for an expiration range of 1 ms. */ /* Delay lengths for the hrtimer event types. * Keep this list sorted by delay length, in the same order as * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. */ static unsigned event_delays_ns[] = { 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ }; /* Enable a pending hrtimer event */ static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, bool resched) { ktime_t *timeout = &fotg210->hr_timeouts[event]; if (resched) *timeout = ktime_add(ktime_get(), ktime_set(0, event_delays_ns[event])); fotg210->enabled_hrtimer_events |= (1 << event); /* Track only the lowest-numbered pending event */ if (event < fotg210->next_hrtimer_event) { fotg210->next_hrtimer_event = event; hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, NSEC_PER_MSEC, HRTIMER_MODE_ABS); } } /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) { unsigned actual, want; /* Don't enable anything if the controller isn't running (e.g., died) */ if (fotg210->rh_state != FOTG210_RH_RUNNING) return; want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; if (want != actual) { /* Poll again later, but give up after about 20 ms */ if (fotg210->ASS_poll_count++ < 20) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, true); return; } fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", want, actual); } fotg210->ASS_poll_count = 0; /* The status is up-to-date; restart or stop the schedule as needed */ if (want == 0) { /* Stopped */ if (fotg210->async_count > 0) fotg210_set_command_bit(fotg210, CMD_ASE); } else { /* Running */ if (fotg210->async_count == 0) { /* Turn off the schedule after a while */ fotg210_enable_event(fotg210, FOTG210_HRTIMER_DISABLE_ASYNC, true); } } } /* Turn off the async schedule after a brief delay */ static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) { fotg210_clear_command_bit(fotg210, CMD_ASE); } /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) { unsigned actual, want; /* Don't do anything if the controller isn't running (e.g., died) */ if (fotg210->rh_state != FOTG210_RH_RUNNING) return; want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; if (want != actual) { /* Poll again later, but give up after about 20 ms */ if (fotg210->PSS_poll_count++ < 20) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, true); return; } fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", want, actual); } fotg210->PSS_poll_count = 0; /* The status is up-to-date; restart or stop the schedule as needed */ if (want == 0) { /* Stopped */ if (fotg210->periodic_count > 0) fotg210_set_command_bit(fotg210, CMD_PSE); } else { /* Running */ if (fotg210->periodic_count == 0) { /* Turn off the schedule after a while */ fotg210_enable_event(fotg210, FOTG210_HRTIMER_DISABLE_PERIODIC, true); } } } /* Turn off the periodic schedule after a brief delay */ static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) { fotg210_clear_command_bit(fotg210, CMD_PSE); } /* Poll the STS_HALT status bit; see when a dead controller stops */ static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) { if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { /* Give up after a few milliseconds */ if (fotg210->died_poll_count++ < 5) { /* Try again later */ fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_DEAD, true); return; } fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); } /* Clean up the mess */ fotg210->rh_state = FOTG210_RH_HALTED; fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); fotg210_work(fotg210); end_unlink_async(fotg210); /* Not in process context, so don't try to reset the controller */ } /* Handle unlinked interrupt QHs once they are gone from the hardware */ static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) { bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); /* * Process all the QHs on the intr_unlink list that were added * before the current unlink cycle began. The list is in * temporal order, so stop when we reach the first entry in the * current cycle. But if the root hub isn't running then * process all the QHs on the list. */ fotg210->intr_unlinking = true; while (fotg210->intr_unlink) { struct fotg210_qh *qh = fotg210->intr_unlink; if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) break; fotg210->intr_unlink = qh->unlink_next; qh->unlink_next = NULL; end_unlink_intr(fotg210, qh); } /* Handle remaining entries later */ if (fotg210->intr_unlink) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, true); ++fotg210->intr_unlink_cycle; } fotg210->intr_unlinking = false; } /* Start another free-iTDs/siTDs cycle */ static void start_free_itds(struct fotg210_hcd *fotg210) { if (!(fotg210->enabled_hrtimer_events & BIT(FOTG210_HRTIMER_FREE_ITDS))) { fotg210->last_itd_to_free = list_entry( fotg210->cached_itd_list.prev, struct fotg210_itd, itd_list); fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); } } /* Wait for controller to stop using old iTDs and siTDs */ static void end_free_itds(struct fotg210_hcd *fotg210) { struct fotg210_itd *itd, *n; if (fotg210->rh_state < FOTG210_RH_RUNNING) fotg210->last_itd_to_free = NULL; list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { list_del(&itd->itd_list); dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); if (itd == fotg210->last_itd_to_free) break; } if (!list_empty(&fotg210->cached_itd_list)) start_free_itds(fotg210); } /* Handle lost (or very late) IAA interrupts */ static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) { if (fotg210->rh_state != FOTG210_RH_RUNNING) return; /* * Lost IAA irqs wedge things badly; seen first with a vt8235. * So we need this watchdog, but must protect it against both * (a) SMP races against real IAA firing and retriggering, and * (b) clean HC shutdown, when IAA watchdog was pending. */ if (fotg210->async_iaa) { u32 cmd, status; /* If we get here, IAA is *REALLY* late. It's barely * conceivable that the system is so busy that CMD_IAAD * is still legitimately set, so let's be sure it's * clear before we read STS_IAA. (The HC should clear * CMD_IAAD when it sets STS_IAA.) */ cmd = fotg210_readl(fotg210, &fotg210->regs->command); /* * If IAA is set here it either legitimately triggered * after the watchdog timer expired (_way_ late, so we'll * still count it as lost) ... or a silicon erratum: * - VIA seems to set IAA without triggering the IRQ; * - IAAD potentially cleared without setting IAA. */ status = fotg210_readl(fotg210, &fotg210->regs->status); if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { COUNT(fotg210->stats.lost_iaa); fotg210_writel(fotg210, STS_IAA, &fotg210->regs->status); } fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", status, cmd); end_unlink_async(fotg210); } } /* Enable the I/O watchdog, if appropriate */ static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) { /* Not needed if the controller isn't running or it's already enabled */ if (fotg210->rh_state != FOTG210_RH_RUNNING || (fotg210->enabled_hrtimer_events & BIT(FOTG210_HRTIMER_IO_WATCHDOG))) return; /* * Isochronous transfers always need the watchdog. * For other sorts we use it only if the flag is set. */ if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && fotg210->async_count + fotg210->intr_count > 0)) fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, true); } /* Handler functions for the hrtimer event types. * Keep this array in the same order as the event types indexed by * enum fotg210_hrtimer_event in fotg210.h. */ static void (*event_handlers[])(struct fotg210_hcd *) = { fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ }; static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) { struct fotg210_hcd *fotg210 = container_of(t, struct fotg210_hcd, hrtimer); ktime_t now; unsigned long events; unsigned long flags; unsigned e; spin_lock_irqsave(&fotg210->lock, flags); events = fotg210->enabled_hrtimer_events; fotg210->enabled_hrtimer_events = 0; fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; /* * Check each pending event. If its time has expired, handle * the event; otherwise re-enable it. */ now = ktime_get(); for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { if (now.tv64 >= fotg210->hr_timeouts[e].tv64) event_handlers[e](fotg210); else fotg210_enable_event(fotg210, e, false); } spin_unlock_irqrestore(&fotg210->lock, flags); return HRTIMER_NORESTART; } #define fotg210_bus_suspend NULL #define fotg210_bus_resume NULL static int check_reset_complete(struct fotg210_hcd *fotg210, int index, u32 __iomem *status_reg, int port_status) { if (!(port_status & PORT_CONNECT)) return port_status; /* if reset finished and it's still not enabled -- handoff */ if (!(port_status & PORT_PE)) /* with integrated TT, there's nobody to hand it to! */ fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n", index + 1); else fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", index + 1); return port_status; } /* build "status change" packet (one or two bytes) from HC registers */ static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); u32 temp, status; u32 mask; int retval = 1; unsigned long flags; /* init status to no-changes */ buf[0] = 0; /* Inform the core about resumes-in-progress by returning * a non-zero value even if there are no status changes. */ status = fotg210->resuming_ports; mask = PORT_CSC | PORT_PEC; /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ /* no hub change reports (bit 0) for now (power, ...) */ /* port N changes (bit N)? */ spin_lock_irqsave(&fotg210->lock, flags); temp = fotg210_readl(fotg210, &fotg210->regs->port_status); /* * Return status information even for ports with OWNER set. * Otherwise hub_wq wouldn't see the disconnect event when a * high-speed device is switched over to the companion * controller by the user. */ if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) || (fotg210->reset_done[0] && time_after_eq(jiffies, fotg210->reset_done[0]))) { buf[0] |= 1 << 1; status = STS_PCD; } /* FIXME autosuspend idle root hubs */ spin_unlock_irqrestore(&fotg210->lock, flags); return status ? retval : 0; } static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210, struct usb_hub_descriptor *desc) { int ports = HCS_N_PORTS(fotg210->hcs_params); u16 temp; desc->bDescriptorType = USB_DT_HUB; desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ desc->bHubContrCurrent = 0; desc->bNbrPorts = ports; temp = 1 + (ports / 8); desc->bDescLength = 7 + 2 * temp; /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ memset(&desc->u.hs.DeviceRemovable[0], 0, temp); memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ temp |= HUB_CHAR_NO_LPSM; /* no power switching */ desc->wHubCharacteristics = cpu_to_le16(temp); } static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); int ports = HCS_N_PORTS(fotg210->hcs_params); u32 __iomem *status_reg = &fotg210->regs->port_status; u32 temp, temp1, status; unsigned long flags; int retval = 0; unsigned selector; /* * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. * HCS_INDICATOR may say we can change LEDs to off/amber/green. * (track current state ourselves) ... blink for diagnostics, * power, "this is the one", etc. EHCI spec supports this. */ spin_lock_irqsave(&fotg210->lock, flags); switch (typeReq) { case ClearHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case ClearPortFeature: if (!wIndex || wIndex > ports) goto error; wIndex--; temp = fotg210_readl(fotg210, status_reg); temp &= ~PORT_RWC_BITS; /* * Even if OWNER is set, so the port is owned by the * companion controller, hub_wq needs to be able to clear * the port-change status bits (especially * USB_PORT_STAT_C_CONNECTION). */ switch (wValue) { case USB_PORT_FEAT_ENABLE: fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); break; case USB_PORT_FEAT_C_ENABLE: fotg210_writel(fotg210, temp | PORT_PEC, status_reg); break; case USB_PORT_FEAT_SUSPEND: if (temp & PORT_RESET) goto error; if (!(temp & PORT_SUSPEND)) break; if ((temp & PORT_PE) == 0) goto error; /* resume signaling for 20 msec */ fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); fotg210->reset_done[wIndex] = jiffies + msecs_to_jiffies(USB_RESUME_TIMEOUT); break; case USB_PORT_FEAT_C_SUSPEND: clear_bit(wIndex, &fotg210->port_c_suspend); break; case USB_PORT_FEAT_C_CONNECTION: fotg210_writel(fotg210, temp | PORT_CSC, status_reg); break; case USB_PORT_FEAT_C_OVER_CURRENT: fotg210_writel(fotg210, temp | OTGISR_OVC, &fotg210->regs->otgisr); break; case USB_PORT_FEAT_C_RESET: /* GetPortStatus clears reset */ break; default: goto error; } fotg210_readl(fotg210, &fotg210->regs->command); break; case GetHubDescriptor: fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) buf); break; case GetHubStatus: /* no hub-wide feature/status flags */ memset(buf, 0, 4); /*cpu_to_le32s ((u32 *) buf); */ break; case GetPortStatus: if (!wIndex || wIndex > ports) goto error; wIndex--; status = 0; temp = fotg210_readl(fotg210, status_reg); /* wPortChange bits */ if (temp & PORT_CSC) status |= USB_PORT_STAT_C_CONNECTION << 16; if (temp & PORT_PEC) status |= USB_PORT_STAT_C_ENABLE << 16; temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); if (temp1 & OTGISR_OVC) status |= USB_PORT_STAT_C_OVERCURRENT << 16; /* whoever resumes must GetPortStatus to complete it!! */ if (temp & PORT_RESUME) { /* Remote Wakeup received? */ if (!fotg210->reset_done[wIndex]) { /* resume signaling for 20 msec */ fotg210->reset_done[wIndex] = jiffies + msecs_to_jiffies(20); /* check the port again */ mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, fotg210->reset_done[wIndex]); } /* resume completed? */ else if (time_after_eq(jiffies, fotg210->reset_done[wIndex])) { clear_bit(wIndex, &fotg210->suspended_ports); set_bit(wIndex, &fotg210->port_c_suspend); fotg210->reset_done[wIndex] = 0; /* stop resume signaling */ temp = fotg210_readl(fotg210, status_reg); fotg210_writel(fotg210, temp & ~(PORT_RWC_BITS | PORT_RESUME), status_reg); clear_bit(wIndex, &fotg210->resuming_ports); retval = handshake(fotg210, status_reg, PORT_RESUME, 0, 2000);/* 2ms */ if (retval != 0) { fotg210_err(fotg210, "port %d resume error %d\n", wIndex + 1, retval); goto error; } temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); } } /* whoever resets must GetPortStatus to complete it!! */ if ((temp & PORT_RESET) && time_after_eq(jiffies, fotg210->reset_done[wIndex])) { status |= USB_PORT_STAT_C_RESET << 16; fotg210->reset_done[wIndex] = 0; clear_bit(wIndex, &fotg210->resuming_ports); /* force reset to complete */ fotg210_writel(fotg210, temp & ~(PORT_RWC_BITS | PORT_RESET), status_reg); /* REVISIT: some hardware needs 550+ usec to clear * this bit; seems too long to spin routinely... */ retval = handshake(fotg210, status_reg, PORT_RESET, 0, 1000); if (retval != 0) { fotg210_err(fotg210, "port %d reset error %d\n", wIndex + 1, retval); goto error; } /* see what we found out */ temp = check_reset_complete(fotg210, wIndex, status_reg, fotg210_readl(fotg210, status_reg)); } if (!(temp & (PORT_RESUME|PORT_RESET))) { fotg210->reset_done[wIndex] = 0; clear_bit(wIndex, &fotg210->resuming_ports); } /* transfer dedicated ports to the companion hc */ if ((temp & PORT_CONNECT) && test_bit(wIndex, &fotg210->companion_ports)) { temp &= ~PORT_RWC_BITS; fotg210_writel(fotg210, temp, status_reg); fotg210_dbg(fotg210, "port %d --> companion\n", wIndex + 1); temp = fotg210_readl(fotg210, status_reg); } /* * Even if OWNER is set, there's no harm letting hub_wq * see the wPortStatus values (they should all be 0 except * for PORT_POWER anyway). */ if (temp & PORT_CONNECT) { status |= USB_PORT_STAT_CONNECTION; status |= fotg210_port_speed(fotg210, temp); } if (temp & PORT_PE) status |= USB_PORT_STAT_ENABLE; /* maybe the port was unsuspended without our knowledge */ if (temp & (PORT_SUSPEND|PORT_RESUME)) { status |= USB_PORT_STAT_SUSPEND; } else if (test_bit(wIndex, &fotg210->suspended_ports)) { clear_bit(wIndex, &fotg210->suspended_ports); clear_bit(wIndex, &fotg210->resuming_ports); fotg210->reset_done[wIndex] = 0; if (temp & PORT_PE) set_bit(wIndex, &fotg210->port_c_suspend); } temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); if (temp1 & OTGISR_OVC) status |= USB_PORT_STAT_OVERCURRENT; if (temp & PORT_RESET) status |= USB_PORT_STAT_RESET; if (test_bit(wIndex, &fotg210->port_c_suspend)) status |= USB_PORT_STAT_C_SUSPEND << 16; if (status & ~0xffff) /* only if wPortChange is interesting */ dbg_port(fotg210, "GetStatus", wIndex + 1, temp); put_unaligned_le32(status, buf); break; case SetHubFeature: switch (wValue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* no hub-wide feature/status flags */ break; default: goto error; } break; case SetPortFeature: selector = wIndex >> 8; wIndex &= 0xff; if (!wIndex || wIndex > ports) goto error; wIndex--; temp = fotg210_readl(fotg210, status_reg); temp &= ~PORT_RWC_BITS; switch (wValue) { case USB_PORT_FEAT_SUSPEND: if ((temp & PORT_PE) == 0 || (temp & PORT_RESET) != 0) goto error; /* After above check the port must be connected. * Set appropriate bit thus could put phy into low power * mode if we have hostpc feature */ fotg210_writel(fotg210, temp | PORT_SUSPEND, status_reg); set_bit(wIndex, &fotg210->suspended_ports); break; case USB_PORT_FEAT_RESET: if (temp & PORT_RESUME) goto error; /* line status bits may report this as low speed, * which can be fine if this root hub has a * transaction translator built in. */ fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); temp |= PORT_RESET; temp &= ~PORT_PE; /* * caller must wait, then call GetPortStatus * usb 2.0 spec says 50 ms resets on root */ fotg210->reset_done[wIndex] = jiffies + msecs_to_jiffies(50); fotg210_writel(fotg210, temp, status_reg); break; /* For downstream facing ports (these): one hub port is put * into test mode according to USB2 11.24.2.13, then the hub * must be reset (which for root hub now means rmmod+modprobe, * or else system reboot). See EHCI 2.3.9 and 4.14 for info * about the EHCI-specific stuff. */ case USB_PORT_FEAT_TEST: if (!selector || selector > 5) goto error; spin_unlock_irqrestore(&fotg210->lock, flags); fotg210_quiesce(fotg210); spin_lock_irqsave(&fotg210->lock, flags); /* Put all enabled ports into suspend */ temp = fotg210_readl(fotg210, status_reg) & ~PORT_RWC_BITS; if (temp & PORT_PE) fotg210_writel(fotg210, temp | PORT_SUSPEND, status_reg); spin_unlock_irqrestore(&fotg210->lock, flags); fotg210_halt(fotg210); spin_lock_irqsave(&fotg210->lock, flags); temp = fotg210_readl(fotg210, status_reg); temp |= selector << 16; fotg210_writel(fotg210, temp, status_reg); break; default: goto error; } fotg210_readl(fotg210, &fotg210->regs->command); break; default: error: /* "stall" on error */ retval = -EPIPE; } spin_unlock_irqrestore(&fotg210->lock, flags); return retval; } static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, int portnum) { return; } static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, int portnum) { return 0; } /* There's basically three types of memory: * - data used only by the HCD ... kmalloc is fine * - async and periodic schedules, shared by HC and HCD ... these * need to use dma_pool or dma_alloc_coherent * - driver buffers, read/written by HC ... single shot DMA mapped * * There's also "register" data (e.g. PCI or SOC), which is memory mapped. * No memory seen by this driver is pageable. */ /* Allocate the key transfer structures from the previously allocated pool */ static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t dma) { memset(qtd, 0, sizeof(*qtd)); qtd->qtd_dma = dma; qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); qtd->hw_next = FOTG210_LIST_END(fotg210); qtd->hw_alt_next = FOTG210_LIST_END(fotg210); INIT_LIST_HEAD(&qtd->qtd_list); } static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, gfp_t flags) { struct fotg210_qtd *qtd; dma_addr_t dma; qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); if (qtd != NULL) fotg210_qtd_init(fotg210, qtd, dma); return qtd; } static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) { dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); } static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { /* clean qtds first, and know this is not linked */ if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { fotg210_dbg(fotg210, "unused qh not empty!\n"); BUG(); } if (qh->dummy) fotg210_qtd_free(fotg210, qh->dummy); dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); kfree(qh); } static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, gfp_t flags) { struct fotg210_qh *qh; dma_addr_t dma; qh = kzalloc(sizeof(*qh), GFP_ATOMIC); if (!qh) goto done; qh->hw = (struct fotg210_qh_hw *) dma_pool_alloc(fotg210->qh_pool, flags, &dma); if (!qh->hw) goto fail; memset(qh->hw, 0, sizeof(*qh->hw)); qh->qh_dma = dma; INIT_LIST_HEAD(&qh->qtd_list); /* dummy td enables safe urb queuing */ qh->dummy = fotg210_qtd_alloc(fotg210, flags); if (qh->dummy == NULL) { fotg210_dbg(fotg210, "no dummy td\n"); goto fail1; } done: return qh; fail1: dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); fail: kfree(qh); return NULL; } /* The queue heads and transfer descriptors are managed from pools tied * to each of the "per device" structures. * This is the initialisation and cleanup code. */ static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) { if (fotg210->async) qh_destroy(fotg210, fotg210->async); fotg210->async = NULL; if (fotg210->dummy) qh_destroy(fotg210, fotg210->dummy); fotg210->dummy = NULL; /* DMA consistent memory and pools */ dma_pool_destroy(fotg210->qtd_pool); fotg210->qtd_pool = NULL; dma_pool_destroy(fotg210->qh_pool); fotg210->qh_pool = NULL; dma_pool_destroy(fotg210->itd_pool); fotg210->itd_pool = NULL; if (fotg210->periodic) dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, fotg210->periodic_size * sizeof(u32), fotg210->periodic, fotg210->periodic_dma); fotg210->periodic = NULL; /* shadow periodic table */ kfree(fotg210->pshadow); fotg210->pshadow = NULL; } /* remember to add cleanup code (above) if you add anything here */ static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) { int i; /* QTDs for control/bulk/intr transfers */ fotg210->qtd_pool = dma_pool_create("fotg210_qtd", fotg210_to_hcd(fotg210)->self.controller, sizeof(struct fotg210_qtd), 32 /* byte alignment (for hw parts) */, 4096 /* can't cross 4K */); if (!fotg210->qtd_pool) goto fail; /* QHs for control/bulk/intr transfers */ fotg210->qh_pool = dma_pool_create("fotg210_qh", fotg210_to_hcd(fotg210)->self.controller, sizeof(struct fotg210_qh_hw), 32 /* byte alignment (for hw parts) */, 4096 /* can't cross 4K */); if (!fotg210->qh_pool) goto fail; fotg210->async = fotg210_qh_alloc(fotg210, flags); if (!fotg210->async) goto fail; /* ITD for high speed ISO transfers */ fotg210->itd_pool = dma_pool_create("fotg210_itd", fotg210_to_hcd(fotg210)->self.controller, sizeof(struct fotg210_itd), 64 /* byte alignment (for hw parts) */, 4096 /* can't cross 4K */); if (!fotg210->itd_pool) goto fail; /* Hardware periodic table */ fotg210->periodic = (__le32 *) dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, fotg210->periodic_size * sizeof(__le32), &fotg210->periodic_dma, 0); if (fotg210->periodic == NULL) goto fail; for (i = 0; i < fotg210->periodic_size; i++) fotg210->periodic[i] = FOTG210_LIST_END(fotg210); /* software shadow of hardware table */ fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), flags); if (fotg210->pshadow != NULL) return 0; fail: fotg210_dbg(fotg210, "couldn't init memory\n"); fotg210_mem_cleanup(fotg210); return -ENOMEM; } /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation. * * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned * buffers needed for the larger number). We use one QH per endpoint, queue * multiple urbs (all three types) per endpoint. URBs may need several qtds. * * ISO traffic uses "ISO TD" (itd) records, and (along with * interrupts) needs careful scheduling. Performance improvements can be * an ongoing challenge. That's in "ehci-sched.c". * * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, * or otherwise through transaction translators (TTs) in USB 2.0 hubs using * (b) special fields in qh entries or (c) split iso entries. TTs will * buffer low/full speed data so the host collects it at high speed. */ /* fill a qtd, returning how much of the buffer we were able to queue up */ static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf, size_t len, int token, int maxpacket) { int i, count; u64 addr = buf; /* one buffer entry per 4K ... first might be short or unaligned */ qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); count = 0x1000 - (buf & 0x0fff); /* rest of that page */ if (likely(len < count)) /* ... iff needed */ count = len; else { buf += 0x1000; buf &= ~0x0fff; /* per-qtd limit: from 16K to 20K (best alignment) */ for (i = 1; count < len && i < 5; i++) { addr = buf; qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); buf += 0x1000; if ((count + 0x1000) < len) count += 0x1000; else count = len; } /* short packets may only terminate transfers */ if (count != len) count -= (count % maxpacket); } qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); qtd->length = count; return count; } static inline void qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, struct fotg210_qtd *qtd) { struct fotg210_qh_hw *hw = qh->hw; /* writes to an active overlay are unsafe */ BUG_ON(qh->qh_state != QH_STATE_IDLE); hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); hw->hw_alt_next = FOTG210_LIST_END(fotg210); /* Except for control endpoints, we make hardware maintain data * toggle (like OHCI) ... here (re)initialize the toggle in the QH, * and set the pseudo-toggle in udev. Only usb_clear_halt() will * ever clear it. */ if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { unsigned is_out, epnum; is_out = qh->is_out; epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); usb_settoggle(qh->dev, epnum, is_out, 1); } } hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); } /* if it weren't for a common silicon quirk (writing the dummy into the qh * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault * recovery (including urb dequeue) would need software changes to a QH... */ static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { struct fotg210_qtd *qtd; if (list_empty(&qh->qtd_list)) qtd = qh->dummy; else { qtd = list_entry(qh->qtd_list.next, struct fotg210_qtd, qtd_list); /* * first qtd may already be partially processed. * If we come here during unlink, the QH overlay region * might have reference to the just unlinked qtd. The * qtd is updated in qh_completions(). Update the QH * overlay here. */ if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { qh->hw->hw_qtd_next = qtd->hw_next; qtd = NULL; } } if (qtd) qh_update(fotg210, qh, qtd); } static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); struct fotg210_qh *qh = ep->hcpriv; unsigned long flags; spin_lock_irqsave(&fotg210->lock, flags); qh->clearing_tt = 0; if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) && fotg210->rh_state == FOTG210_RH_RUNNING) qh_link_async(fotg210, qh); spin_unlock_irqrestore(&fotg210->lock, flags); } static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, struct urb *urb, u32 token) { /* If an async split transaction gets an error or is unlinked, * the TT buffer may be left in an indeterminate state. We * have to clear the TT buffer. * * Note: this routine is never called for Isochronous transfers. */ if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { struct usb_device *tt = urb->dev->tt->hub; dev_dbg(&tt->dev, "clear tt buffer port %d, a%d ep%d t%08x\n", urb->dev->ttport, urb->dev->devnum, usb_pipeendpoint(urb->pipe), token); if (urb->dev->tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) { if (usb_hub_clear_tt_buffer(urb) == 0) qh->clearing_tt = 1; } } } static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb, size_t length, u32 token) { int status = -EINPROGRESS; /* count IN/OUT bytes, not SETUP (even short packets) */ if (likely(QTD_PID(token) != 2)) urb->actual_length += length - QTD_LENGTH(token); /* don't modify error codes */ if (unlikely(urb->unlinked)) return status; /* force cleanup after short read; not always an error */ if (unlikely(IS_SHORT_READ(token))) status = -EREMOTEIO; /* serious "can't proceed" faults reported by the hardware */ if (token & QTD_STS_HALT) { if (token & QTD_STS_BABBLE) { /* FIXME "must" disable babbling device's port too */ status = -EOVERFLOW; /* CERR nonzero + halt --> stall */ } else if (QTD_CERR(token)) { status = -EPIPE; /* In theory, more than one of the following bits can be set * since they are sticky and the transaction is retried. * Which to test first is rather arbitrary. */ } else if (token & QTD_STS_MMF) { /* fs/ls interrupt xfer missed the complete-split */ status = -EPROTO; } else if (token & QTD_STS_DBE) { status = (QTD_PID(token) == 1) /* IN ? */ ? -ENOSR /* hc couldn't read data */ : -ECOMM; /* hc couldn't write data */ } else if (token & QTD_STS_XACT) { /* timeout, bad CRC, wrong PID, etc */ fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", urb->dev->devpath, usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out"); status = -EPROTO; } else { /* unknown */ status = -EPROTO; } fotg210_dbg(fotg210, "dev%d ep%d%s qtd token %08x --> status %d\n", usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", token, status); } return status; } static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status) __releases(fotg210->lock) __acquires(fotg210->lock) { if (likely(urb->hcpriv != NULL)) { struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; /* S-mask in a QH means it's an interrupt urb */ if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { /* ... update hc-wide periodic stats (for usbfs) */ fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; } } if (unlikely(urb->unlinked)) { COUNT(fotg210->stats.unlink); } else { /* report non-error and short read status as zero */ if (status == -EINPROGRESS || status == -EREMOTEIO) status = 0; COUNT(fotg210->stats.complete); } #ifdef FOTG210_URB_TRACE fotg210_dbg(fotg210, "%s %s urb %p ep%d%s status %d len %d/%d\n", __func__, urb->dev->devpath, urb, usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", status, urb->actual_length, urb->transfer_buffer_length); #endif /* complete() can reenter this HCD */ usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); spin_unlock(&fotg210->lock); usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); spin_lock(&fotg210->lock); } static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); /* Process and free completed qtds for a qh, returning URBs to drivers. * Chases up to qh->hw_current. Returns number of completions called, * indicating how much "real" work we did. */ static unsigned qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { struct fotg210_qtd *last, *end = qh->dummy; struct fotg210_qtd *qtd, *tmp; int last_status; int stopped; unsigned count = 0; u8 state; struct fotg210_qh_hw *hw = qh->hw; if (unlikely(list_empty(&qh->qtd_list))) return count; /* completions (or tasks on other cpus) must never clobber HALT * till we've gone through and cleaned everything up, even when * they add urbs to this qh's queue or mark them for unlinking. * * NOTE: unlinking expects to be done in queue order. * * It's a bug for qh->qh_state to be anything other than * QH_STATE_IDLE, unless our caller is scan_async() or * scan_intr(). */ state = qh->qh_state; qh->qh_state = QH_STATE_COMPLETING; stopped = (state == QH_STATE_IDLE); rescan: last = NULL; last_status = -EINPROGRESS; qh->needs_rescan = 0; /* remove de-activated QTDs from front of queue. * after faults (including short reads), cleanup this urb * then let the queue advance. * if queue is stopped, handles unlinks. */ list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { struct urb *urb; u32 token = 0; urb = qtd->urb; /* clean up any state from previous QTD ...*/ if (last) { if (likely(last->urb != urb)) { fotg210_urb_done(fotg210, last->urb, last_status); count++; last_status = -EINPROGRESS; } fotg210_qtd_free(fotg210, last); last = NULL; } /* ignore urbs submitted during completions we reported */ if (qtd == end) break; /* hardware copies qtd out of qh overlay */ rmb(); token = hc32_to_cpu(fotg210, qtd->hw_token); /* always clean up qtds the hc de-activated */ retry_xacterr: if ((token & QTD_STS_ACTIVE) == 0) { /* Report Data Buffer Error: non-fatal but useful */ if (token & QTD_STS_DBE) fotg210_dbg(fotg210, "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", urb, usb_endpoint_num(&urb->ep->desc), usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", urb->transfer_buffer_length, qtd, qh); /* on STALL, error, and short reads this urb must * complete and all its qtds must be recycled. */ if ((token & QTD_STS_HALT) != 0) { /* retry transaction errors until we * reach the software xacterr limit */ if ((token & QTD_STS_XACT) && QTD_CERR(token) == 0 && ++qh->xacterrs < QH_XACTERR_MAX && !urb->unlinked) { fotg210_dbg(fotg210, "detected XactErr len %zu/%zu retry %d\n", qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); /* reset the token in the qtd and the * qh overlay (which still contains * the qtd) so that we pick up from * where we left off */ token &= ~QTD_STS_HALT; token |= QTD_STS_ACTIVE | (FOTG210_TUNE_CERR << 10); qtd->hw_token = cpu_to_hc32(fotg210, token); wmb(); hw->hw_token = cpu_to_hc32(fotg210, token); goto retry_xacterr; } stopped = 1; /* magic dummy for some short reads; qh won't advance. * that silicon quirk can kick in with this dummy too. * * other short reads won't stop the queue, including * control transfers (status stage handles that) or * most other single-qtd reads ... the queue stops if * URB_SHORT_NOT_OK was set so the driver submitting * the urbs could clean it up. */ } else if (IS_SHORT_READ(token) && !(qtd->hw_alt_next & FOTG210_LIST_END(fotg210))) { stopped = 1; } /* stop scanning when we reach qtds the hc is using */ } else if (likely(!stopped && fotg210->rh_state >= FOTG210_RH_RUNNING)) { break; /* scan the whole queue for unlinks whenever it stops */ } else { stopped = 1; /* cancel everything if we halt, suspend, etc */ if (fotg210->rh_state < FOTG210_RH_RUNNING) last_status = -ESHUTDOWN; /* this qtd is active; skip it unless a previous qtd * for its urb faulted, or its urb was canceled. */ else if (last_status == -EINPROGRESS && !urb->unlinked) continue; /* qh unlinked; token in overlay may be most current */ if (state == QH_STATE_IDLE && cpu_to_hc32(fotg210, qtd->qtd_dma) == hw->hw_current) { token = hc32_to_cpu(fotg210, hw->hw_token); /* An unlink may leave an incomplete * async transaction in the TT buffer. * We have to clear it. */ fotg210_clear_tt_buffer(fotg210, qh, urb, token); } } /* unless we already know the urb's status, collect qtd status * and update count of bytes transferred. in common short read * cases with only one data qtd (including control transfers), * queue processing won't halt. but with two or more qtds (for * example, with a 32 KB transfer), when the first qtd gets a * short read the second must be removed by hand. */ if (last_status == -EINPROGRESS) { last_status = qtd_copy_status(fotg210, urb, qtd->length, token); if (last_status == -EREMOTEIO && (qtd->hw_alt_next & FOTG210_LIST_END(fotg210))) last_status = -EINPROGRESS; /* As part of low/full-speed endpoint-halt processing * we must clear the TT buffer (11.17.5). */ if (unlikely(last_status != -EINPROGRESS && last_status != -EREMOTEIO)) { /* The TT's in some hubs malfunction when they * receive this request following a STALL (they * stop sending isochronous packets). Since a * STALL can't leave the TT buffer in a busy * state (if you believe Figures 11-48 - 11-51 * in the USB 2.0 spec), we won't clear the TT * buffer in this case. Strictly speaking this * is a violation of the spec. */ if (last_status != -EPIPE) fotg210_clear_tt_buffer(fotg210, qh, urb, token); } } /* if we're removing something not at the queue head, * patch the hardware queue pointer. */ if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { last = list_entry(qtd->qtd_list.prev, struct fotg210_qtd, qtd_list); last->hw_next = qtd->hw_next; } /* remove qtd; it's recycled after possible urb completion */ list_del(&qtd->qtd_list); last = qtd; /* reinit the xacterr counter for the next qtd */ qh->xacterrs = 0; } /* last urb's completion might still need calling */ if (likely(last != NULL)) { fotg210_urb_done(fotg210, last->urb, last_status); count++; fotg210_qtd_free(fotg210, last); } /* Do we need to rescan for URBs dequeued during a giveback? */ if (unlikely(qh->needs_rescan)) { /* If the QH is already unlinked, do the rescan now. */ if (state == QH_STATE_IDLE) goto rescan; /* Otherwise we have to wait until the QH is fully unlinked. * Our caller will start an unlink if qh->needs_rescan is * set. But if an unlink has already started, nothing needs * to be done. */ if (state != QH_STATE_LINKED) qh->needs_rescan = 0; } /* restore original state; caller must unlink or relink */ qh->qh_state = state; /* be sure the hardware's done with the qh before refreshing * it after fault cleanup, or recovering from silicon wrongly * overlaying the dummy qtd (which reduces DMA chatter). */ if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { switch (state) { case QH_STATE_IDLE: qh_refresh(fotg210, qh); break; case QH_STATE_LINKED: /* We won't refresh a QH that's linked (after the HC * stopped the queue). That avoids a race: * - HC reads first part of QH; * - CPU updates that first part and the token; * - HC reads rest of that QH, including token * Result: HC gets an inconsistent image, and then * DMAs to/from the wrong memory (corrupting it). * * That should be rare for interrupt transfers, * except maybe high bandwidth ... */ /* Tell the caller to start an unlink */ qh->needs_rescan = 1; break; /* otherwise, unlink already started */ } } return count; } /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */ #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) /* ... and packet size, for any kind of endpoint descriptor */ #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) /* reverse of qh_urb_transaction: free a list of TDs. * used for cleanup after errors, before HC sees an URB's TDs. */ static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb, struct list_head *head) { struct fotg210_qtd *qtd, *temp; list_for_each_entry_safe(qtd, temp, head, qtd_list) { list_del(&qtd->qtd_list); fotg210_qtd_free(fotg210, qtd); } } /* create a list of filled qtds for this URB; won't link into qh. */ static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210, struct urb *urb, struct list_head *head, gfp_t flags) { struct fotg210_qtd *qtd, *qtd_prev; dma_addr_t buf; int len, this_sg_len, maxpacket; int is_input; u32 token; int i; struct scatterlist *sg; /* * URBs map to sequences of QTDs: one logical transaction */ qtd = fotg210_qtd_alloc(fotg210, flags); if (unlikely(!qtd)) return NULL; list_add_tail(&qtd->qtd_list, head); qtd->urb = urb; token = QTD_STS_ACTIVE; token |= (FOTG210_TUNE_CERR << 10); /* for split transactions, SplitXState initialized to zero */ len = urb->transfer_buffer_length; is_input = usb_pipein(urb->pipe); if (usb_pipecontrol(urb->pipe)) { /* SETUP pid */ qtd_fill(fotg210, qtd, urb->setup_dma, sizeof(struct usb_ctrlrequest), token | (2 /* "setup" */ << 8), 8); /* ... and always at least one more pid */ token ^= QTD_TOGGLE; qtd_prev = qtd; qtd = fotg210_qtd_alloc(fotg210, flags); if (unlikely(!qtd)) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); /* for zero length DATA stages, STATUS is always IN */ if (len == 0) token |= (1 /* "in" */ << 8); } /* * data transfer stage: buffer setup */ i = urb->num_mapped_sgs; if (len > 0 && i > 0) { sg = urb->sg; buf = sg_dma_address(sg); /* urb->transfer_buffer_length may be smaller than the * size of the scatterlist (or vice versa) */ this_sg_len = min_t(int, sg_dma_len(sg), len); } else { sg = NULL; buf = urb->transfer_dma; this_sg_len = len; } if (is_input) token |= (1 /* "in" */ << 8); /* else it's already initted to "out" pid (0 << 8) */ maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); /* * buffer gets wrapped in one or more qtds; * last one may be "short" (including zero len) * and may serve as a control status ack */ for (;;) { int this_qtd_len; this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, maxpacket); this_sg_len -= this_qtd_len; len -= this_qtd_len; buf += this_qtd_len; /* * short reads advance to a "magic" dummy instead of the next * qtd ... that forces the queue to stop, for manual cleanup. * (this will usually be overridden later.) */ if (is_input) qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; /* qh makes control packets use qtd toggle; maybe switch it */ if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) token ^= QTD_TOGGLE; if (likely(this_sg_len <= 0)) { if (--i <= 0 || len <= 0) break; sg = sg_next(sg); buf = sg_dma_address(sg); this_sg_len = min_t(int, sg_dma_len(sg), len); } qtd_prev = qtd; qtd = fotg210_qtd_alloc(fotg210, flags); if (unlikely(!qtd)) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); } /* * unless the caller requires manual cleanup after short reads, * have the alt_next mechanism keep the queue running after the * last data qtd (the only one, for control and most other cases). */ if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || usb_pipecontrol(urb->pipe))) qtd->hw_alt_next = FOTG210_LIST_END(fotg210); /* * control requests may need a terminating data "status" ack; * other OUT ones may need a terminating short packet * (zero length). */ if (likely(urb->transfer_buffer_length != 0)) { int one_more = 0; if (usb_pipecontrol(urb->pipe)) { one_more = 1; token ^= 0x0100; /* "in" <--> "out" */ token |= QTD_TOGGLE; /* force DATA1 */ } else if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) && !(urb->transfer_buffer_length % maxpacket)) { one_more = 1; } if (one_more) { qtd_prev = qtd; qtd = fotg210_qtd_alloc(fotg210, flags); if (unlikely(!qtd)) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); list_add_tail(&qtd->qtd_list, head); /* never any data in such packets */ qtd_fill(fotg210, qtd, 0, 0, token, 0); } } /* by default, enable interrupt on urb completion */ if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); return head; cleanup: qtd_list_free(fotg210, urb, head); return NULL; } /* Would be best to create all qh's from config descriptors, * when each interface/altsetting is established. Unlink * any previous qh and cancel its urbs first; endpoints are * implicitly reset then (data toggle too). * That'd mean updating how usbcore talks to HCDs. (2.7?) */ /* Each QH holds a qtd list; a QH is used for everything except iso. * * For interrupt urbs, the scheduler must set the microframe scheduling * mask(s) each time the QH gets scheduled. For highspeed, that's * just one microframe in the s-mask. For split interrupt transactions * there are additional complications: c-mask, maybe FSTNs. */ static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb, gfp_t flags) { struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); u32 info1 = 0, info2 = 0; int is_input, type; int maxp = 0; struct usb_tt *tt = urb->dev->tt; struct fotg210_qh_hw *hw; if (!qh) return qh; /* * init endpoint/device data for this QH */ info1 |= usb_pipeendpoint(urb->pipe) << 8; info1 |= usb_pipedevice(urb->pipe) << 0; is_input = usb_pipein(urb->pipe); type = usb_pipetype(urb->pipe); maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); /* 1024 byte maxpacket is a hardware ceiling. High bandwidth * acts like up to 3KB, but is built from smaller packets. */ if (max_packet(maxp) > 1024) { fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", max_packet(maxp)); goto done; } /* Compute interrupt scheduling parameters just once, and save. * - allowing for high bandwidth, how many nsec/uframe are used? * - split transactions need a second CSPLIT uframe; same question * - splits also need a schedule gap (for full/low speed I/O) * - qh has a polling interval * * For control/bulk requests, the HC or TT handles these. */ if (type == PIPE_INTERRUPT) { qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, is_input, 0, hb_mult(maxp) * max_packet(maxp))); qh->start = NO_FRAME; if (urb->dev->speed == USB_SPEED_HIGH) { qh->c_usecs = 0; qh->gap_uf = 0; qh->period = urb->interval >> 3; if (qh->period == 0 && urb->interval != 1) { /* NOTE interval 2 or 4 uframes could work. * But interval 1 scheduling is simpler, and * includes high bandwidth. */ urb->interval = 1; } else if (qh->period > fotg210->periodic_size) { qh->period = fotg210->periodic_size; urb->interval = qh->period << 3; } } else { int think_time; /* gap is f(FS/LS transfer times) */ qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, is_input, 0, maxp) / (125 * 1000); /* FIXME this just approximates SPLIT/CSPLIT times */ if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ qh->c_usecs = qh->usecs + HS_USECS(0); qh->usecs = HS_USECS(1); } else { /* SPLIT+DATA, gap, CSPLIT */ qh->usecs += HS_USECS(1); qh->c_usecs = HS_USECS(0); } think_time = tt ? tt->think_time : 0; qh->tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(urb->dev->speed, is_input, 0, max_packet(maxp))); qh->period = urb->interval; if (qh->period > fotg210->periodic_size) { qh->period = fotg210->periodic_size; urb->interval = qh->period; } } } /* support for tt scheduling, and access to toggles */ qh->dev = urb->dev; /* using TT? */ switch (urb->dev->speed) { case USB_SPEED_LOW: info1 |= QH_LOW_SPEED; /* FALL THROUGH */ case USB_SPEED_FULL: /* EPS 0 means "full" */ if (type != PIPE_INTERRUPT) info1 |= (FOTG210_TUNE_RL_TT << 28); if (type == PIPE_CONTROL) { info1 |= QH_CONTROL_EP; /* for TT */ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ } info1 |= maxp << 16; info2 |= (FOTG210_TUNE_MULT_TT << 30); /* Some Freescale processors have an erratum in which the * port number in the queue head was 0..N-1 instead of 1..N. */ if (fotg210_has_fsl_portno_bug(fotg210)) info2 |= (urb->dev->ttport-1) << 23; else info2 |= urb->dev->ttport << 23; /* set the address of the TT; for TDI's integrated * root hub tt, leave it zeroed. */ if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) info2 |= tt->hub->devnum << 16; /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ break; case USB_SPEED_HIGH: /* no TT involved */ info1 |= QH_HIGH_SPEED; if (type == PIPE_CONTROL) { info1 |= (FOTG210_TUNE_RL_HS << 28); info1 |= 64 << 16; /* usb2 fixed maxpacket */ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ info2 |= (FOTG210_TUNE_MULT_HS << 30); } else if (type == PIPE_BULK) { info1 |= (FOTG210_TUNE_RL_HS << 28); /* The USB spec says that high speed bulk endpoints * always use 512 byte maxpacket. But some device * vendors decided to ignore that, and MSFT is happy * to help them do so. So now people expect to use * such nonconformant devices with Linux too; sigh. */ info1 |= max_packet(maxp) << 16; info2 |= (FOTG210_TUNE_MULT_HS << 30); } else { /* PIPE_INTERRUPT */ info1 |= max_packet(maxp) << 16; info2 |= hb_mult(maxp) << 30; } break; default: fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); done: qh_destroy(fotg210, qh); return NULL; } /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ /* init as live, toggle clear, advance to dummy */ qh->qh_state = QH_STATE_IDLE; hw = qh->hw; hw->hw_info1 = cpu_to_hc32(fotg210, info1); hw->hw_info2 = cpu_to_hc32(fotg210, info2); qh->is_out = !is_input; usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); qh_refresh(fotg210, qh); return qh; } static void enable_async(struct fotg210_hcd *fotg210) { if (fotg210->async_count++) return; /* Stop waiting to turn off the async schedule */ fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); /* Don't start the schedule until ASS is 0 */ fotg210_poll_ASS(fotg210); turn_on_io_watchdog(fotg210); } static void disable_async(struct fotg210_hcd *fotg210) { if (--fotg210->async_count) return; /* The async schedule and async_unlink list are supposed to be empty */ WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); /* Don't turn off the schedule until ASS is 1 */ fotg210_poll_ASS(fotg210); } /* move qh (and its qtds) onto async queue; maybe enable queue. */ static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); struct fotg210_qh *head; /* Don't link a QH if there's a Clear-TT-Buffer pending */ if (unlikely(qh->clearing_tt)) return; WARN_ON(qh->qh_state != QH_STATE_IDLE); /* clear halt and/or toggle; and maybe recover from silicon quirk */ qh_refresh(fotg210, qh); /* splice right after start */ head = fotg210->async; qh->qh_next = head->qh_next; qh->hw->hw_next = head->hw->hw_next; wmb(); head->qh_next.qh = qh; head->hw->hw_next = dma; qh->xacterrs = 0; qh->qh_state = QH_STATE_LINKED; /* qtd completions reported later by interrupt */ enable_async(fotg210); } /* For control/bulk/interrupt, return QH with these TDs appended. * Allocates and initializes the QH if necessary. * Returns null if it can't allocate a QH it needs to. * If the QH has TDs (urbs) already, that's great. */ static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210, struct urb *urb, struct list_head *qtd_list, int epnum, void **ptr) { struct fotg210_qh *qh = NULL; __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); qh = (struct fotg210_qh *) *ptr; if (unlikely(qh == NULL)) { /* can't sleep here, we have fotg210->lock... */ qh = qh_make(fotg210, urb, GFP_ATOMIC); *ptr = qh; } if (likely(qh != NULL)) { struct fotg210_qtd *qtd; if (unlikely(list_empty(qtd_list))) qtd = NULL; else qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); /* control qh may need patching ... */ if (unlikely(epnum == 0)) { /* usb_reset_device() briefly reverts to address 0 */ if (usb_pipedevice(urb->pipe) == 0) qh->hw->hw_info1 &= ~qh_addr_mask; } /* just one way to queue requests: swap with the dummy qtd. * only hc or qh_refresh() ever modify the overlay. */ if (likely(qtd != NULL)) { struct fotg210_qtd *dummy; dma_addr_t dma; __hc32 token; /* to avoid racing the HC, use the dummy td instead of * the first td of our list (becomes new dummy). both * tds stay deactivated until we're done, when the * HC is allowed to fetch the old dummy (4.10.2). */ token = qtd->hw_token; qtd->hw_token = HALT_BIT(fotg210); dummy = qh->dummy; dma = dummy->qtd_dma; *dummy = *qtd; dummy->qtd_dma = dma; list_del(&qtd->qtd_list); list_add(&dummy->qtd_list, qtd_list); list_splice_tail(qtd_list, &qh->qtd_list); fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); qh->dummy = qtd; /* hc must see the new dummy at list end */ dma = qtd->qtd_dma; qtd = list_entry(qh->qtd_list.prev, struct fotg210_qtd, qtd_list); qtd->hw_next = QTD_NEXT(fotg210, dma); /* let the hc process these next qtds */ wmb(); dummy->hw_token = token; urb->hcpriv = qh; } } return qh; } static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags) { int epnum; unsigned long flags; struct fotg210_qh *qh = NULL; int rc; epnum = urb->ep->desc.bEndpointAddress; #ifdef FOTG210_URB_TRACE { struct fotg210_qtd *qtd; qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); fotg210_dbg(fotg210, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", __func__, urb->dev->devpath, urb, epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", urb->transfer_buffer_length, qtd, urb->ep->hcpriv); } #endif spin_lock_irqsave(&fotg210->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { rc = -ESHUTDOWN; goto done; } rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); if (unlikely(rc)) goto done; qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); if (unlikely(qh == NULL)) { usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); rc = -ENOMEM; goto done; } /* Control/bulk operations through TTs don't need scheduling, * the HC and TT handle it when the TT has a buffer ready. */ if (likely(qh->qh_state == QH_STATE_IDLE)) qh_link_async(fotg210, qh); done: spin_unlock_irqrestore(&fotg210->lock, flags); if (unlikely(qh == NULL)) qtd_list_free(fotg210, urb, qtd_list); return rc; } static void single_unlink_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { struct fotg210_qh *prev; /* Add to the end of the list of QHs waiting for the next IAAD */ qh->qh_state = QH_STATE_UNLINK; if (fotg210->async_unlink) fotg210->async_unlink_last->unlink_next = qh; else fotg210->async_unlink = qh; fotg210->async_unlink_last = qh; /* Unlink it from the schedule */ prev = fotg210->async; while (prev->qh_next.qh != qh) prev = prev->qh_next.qh; prev->hw->hw_next = qh->hw->hw_next; prev->qh_next = qh->qh_next; if (fotg210->qh_scan_next == qh) fotg210->qh_scan_next = qh->qh_next.qh; } static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) { /* * Do nothing if an IAA cycle is already running or * if one will be started shortly. */ if (fotg210->async_iaa || fotg210->async_unlinking) return; /* Do all the waiting QHs at once */ fotg210->async_iaa = fotg210->async_unlink; fotg210->async_unlink = NULL; /* If the controller isn't running, we don't have to wait for it */ if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { if (!nested) /* Avoid recursion */ end_unlink_async(fotg210); /* Otherwise start a new IAA cycle */ } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { /* Make sure the unlinks are all visible to the hardware */ wmb(); fotg210_writel(fotg210, fotg210->command | CMD_IAAD, &fotg210->regs->command); fotg210_readl(fotg210, &fotg210->regs->command); fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, true); } } /* the async qh for the qtds being unlinked are now gone from the HC */ static void end_unlink_async(struct fotg210_hcd *fotg210) { struct fotg210_qh *qh; /* Process the idle QHs */ restart: fotg210->async_unlinking = true; while (fotg210->async_iaa) { qh = fotg210->async_iaa; fotg210->async_iaa = qh->unlink_next; qh->unlink_next = NULL; qh->qh_state = QH_STATE_IDLE; qh->qh_next.qh = NULL; qh_completions(fotg210, qh); if (!list_empty(&qh->qtd_list) && fotg210->rh_state == FOTG210_RH_RUNNING) qh_link_async(fotg210, qh); disable_async(fotg210); } fotg210->async_unlinking = false; /* Start a new IAA cycle if any QHs are waiting for it */ if (fotg210->async_unlink) { start_iaa_cycle(fotg210, true); if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) goto restart; } } static void unlink_empty_async(struct fotg210_hcd *fotg210) { struct fotg210_qh *qh, *next; bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); bool check_unlinks_later = false; /* Unlink all the async QHs that have been empty for a timer cycle */ next = fotg210->async->qh_next.qh; while (next) { qh = next; next = qh->qh_next.qh; if (list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED) { if (!stopped && qh->unlink_cycle == fotg210->async_unlink_cycle) check_unlinks_later = true; else single_unlink_async(fotg210, qh); } } /* Start a new IAA cycle if any QHs are waiting for it */ if (fotg210->async_unlink) start_iaa_cycle(fotg210, false); /* QHs that haven't been empty for long enough will be handled later */ if (check_unlinks_later) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, true); ++fotg210->async_unlink_cycle; } } /* makes sure the async qh will become idle */ /* caller must own fotg210->lock */ static void start_unlink_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { /* * If the QH isn't linked then there's nothing we can do * unless we were called during a giveback, in which case * qh_completions() has to deal with it. */ if (qh->qh_state != QH_STATE_LINKED) { if (qh->qh_state == QH_STATE_COMPLETING) qh->needs_rescan = 1; return; } single_unlink_async(fotg210, qh); start_iaa_cycle(fotg210, false); } static void scan_async(struct fotg210_hcd *fotg210) { struct fotg210_qh *qh; bool check_unlinks_later = false; fotg210->qh_scan_next = fotg210->async->qh_next.qh; while (fotg210->qh_scan_next) { qh = fotg210->qh_scan_next; fotg210->qh_scan_next = qh->qh_next.qh; rescan: /* clean any finished work for this qh */ if (!list_empty(&qh->qtd_list)) { int temp; /* * Unlinks could happen here; completion reporting * drops the lock. That's why fotg210->qh_scan_next * always holds the next qh to scan; if the next qh * gets unlinked then fotg210->qh_scan_next is adjusted * in single_unlink_async(). */ temp = qh_completions(fotg210, qh); if (qh->needs_rescan) { start_unlink_async(fotg210, qh); } else if (list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED) { qh->unlink_cycle = fotg210->async_unlink_cycle; check_unlinks_later = true; } else if (temp != 0) goto rescan; } } /* * Unlink empty entries, reducing DMA usage as well * as HCD schedule-scanning costs. Delay for any qh * we just scanned, there's a not-unusual case that it * doesn't stay idle for long. */ if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && !(fotg210->enabled_hrtimer_events & BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, true); ++fotg210->async_unlink_cycle; } } /* EHCI scheduled transaction support: interrupt, iso, split iso * These are called "periodic" transactions in the EHCI spec. * * Note that for interrupt transfers, the QH/QTD manipulation is shared * with the "asynchronous" transaction support (control/bulk transfers). * The only real difference is in how interrupt transfers are scheduled. * * For ISO, we make an "iso_stream" head to serve the same role as a QH. * It keeps track of every ITD (or SITD) that's linked, and holds enough * pre-calculated schedule data to make appending to the queue be quick. */ static int fotg210_get_frame(struct usb_hcd *hcd); /* periodic_next_shadow - return "next" pointer on shadow list * @periodic: host pointer to qh/itd * @tag: hardware tag for type of this record */ static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210, union fotg210_shadow *periodic, __hc32 tag) { switch (hc32_to_cpu(fotg210, tag)) { case Q_TYPE_QH: return &periodic->qh->qh_next; case Q_TYPE_FSTN: return &periodic->fstn->fstn_next; default: return &periodic->itd->itd_next; } } static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210, union fotg210_shadow *periodic, __hc32 tag) { switch (hc32_to_cpu(fotg210, tag)) { /* our fotg210_shadow.qh is actually software part */ case Q_TYPE_QH: return &periodic->qh->hw->hw_next; /* others are hw parts */ default: return periodic->hw_next; } } /* caller must hold fotg210->lock */ static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, void *ptr) { union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; __hc32 *hw_p = &fotg210->periodic[frame]; union fotg210_shadow here = *prev_p; /* find predecessor of "ptr"; hw and shadow lists are in sync */ while (here.ptr && here.ptr != ptr) { prev_p = periodic_next_shadow(fotg210, prev_p, Q_NEXT_TYPE(fotg210, *hw_p)); hw_p = shadow_next_periodic(fotg210, &here, Q_NEXT_TYPE(fotg210, *hw_p)); here = *prev_p; } /* an interrupt entry (at list end) could have been shared */ if (!here.ptr) return; /* update shadow and hardware lists ... the old "next" pointers * from ptr may still be in use, the caller updates them. */ *prev_p = *periodic_next_shadow(fotg210, &here, Q_NEXT_TYPE(fotg210, *hw_p)); *hw_p = *shadow_next_periodic(fotg210, &here, Q_NEXT_TYPE(fotg210, *hw_p)); } /* how many of the uframe's 125 usecs are allocated? */ static unsigned short periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe) { __hc32 *hw_p = &fotg210->periodic[frame]; union fotg210_shadow *q = &fotg210->pshadow[frame]; unsigned usecs = 0; struct fotg210_qh_hw *hw; while (q->ptr) { switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { case Q_TYPE_QH: hw = q->qh->hw; /* is it in the S-mask? */ if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) usecs += q->qh->usecs; /* ... or C-mask? */ if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << (8 + uframe))) usecs += q->qh->c_usecs; hw_p = &hw->hw_next; q = &q->qh->qh_next; break; /* case Q_TYPE_FSTN: */ default: /* for "save place" FSTNs, count the relevant INTR * bandwidth from the previous frame */ if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); hw_p = &q->fstn->hw_next; q = &q->fstn->fstn_next; break; case Q_TYPE_ITD: if (q->itd->hw_transaction[uframe]) usecs += q->itd->stream->usecs; hw_p = &q->itd->hw_next; q = &q->itd->itd_next; break; } } if (usecs > fotg210->uframe_periodic_max) fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", frame * 8 + uframe, usecs); return usecs; } static int same_tt(struct usb_device *dev1, struct usb_device *dev2) { if (!dev1->tt || !dev2->tt) return 0; if (dev1->tt != dev2->tt) return 0; if (dev1->tt->multi) return dev1->ttport == dev2->ttport; else return 1; } /* return true iff the device's transaction translator is available * for a periodic transfer starting at the specified frame, using * all the uframes in the mask. */ static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period, struct usb_device *dev, unsigned frame, u32 uf_mask) { if (period == 0) /* error */ return 0; /* note bandwidth wastage: split never follows csplit * (different dev or endpoint) until the next uframe. * calling convention doesn't make that distinction. */ for (; frame < fotg210->periodic_size; frame += period) { union fotg210_shadow here; __hc32 type; struct fotg210_qh_hw *hw; here = fotg210->pshadow[frame]; type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); while (here.ptr) { switch (hc32_to_cpu(fotg210, type)) { case Q_TYPE_ITD: type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); here = here.itd->itd_next; continue; case Q_TYPE_QH: hw = here.qh->hw; if (same_tt(dev, here.qh->dev)) { u32 mask; mask = hc32_to_cpu(fotg210, hw->hw_info2); /* "knows" no gap is needed */ mask |= mask >> 8; if (mask & uf_mask) break; } type = Q_NEXT_TYPE(fotg210, hw->hw_next); here = here.qh->qh_next; continue; /* case Q_TYPE_FSTN: */ default: fotg210_dbg(fotg210, "periodic frame %d bogus type %d\n", frame, type); } /* collision or error */ return 0; } } /* no collision */ return 1; } static void enable_periodic(struct fotg210_hcd *fotg210) { if (fotg210->periodic_count++) return; /* Stop waiting to turn off the periodic schedule */ fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); /* Don't start the schedule until PSS is 0 */ fotg210_poll_PSS(fotg210); turn_on_io_watchdog(fotg210); } static void disable_periodic(struct fotg210_hcd *fotg210) { if (--fotg210->periodic_count) return; /* Don't turn off the schedule until PSS is 1 */ fotg210_poll_PSS(fotg210); } /* periodic schedule slots have iso tds (normal or split) first, then a * sparse tree for active interrupt transfers. * * this just links in a qh; caller guarantees uframe masks are set right. * no FSTN support (yet; fotg210 0.96+) */ static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { unsigned i; unsigned period = qh->period; dev_dbg(&qh->dev->dev, "link qh%d-%04x/%p start %d [%d/%d us]\n", period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* high bandwidth, or otherwise every microframe */ if (period == 0) period = 1; for (i = qh->start; i < fotg210->periodic_size; i += period) { union fotg210_shadow *prev = &fotg210->pshadow[i]; __hc32 *hw_p = &fotg210->periodic[i]; union fotg210_shadow here = *prev; __hc32 type = 0; /* skip the iso nodes at list head */ while (here.ptr) { type = Q_NEXT_TYPE(fotg210, *hw_p); if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) break; prev = periodic_next_shadow(fotg210, prev, type); hw_p = shadow_next_periodic(fotg210, &here, type); here = *prev; } /* sorting each branch by period (slow-->fast) * enables sharing interior tree nodes */ while (here.ptr && qh != here.qh) { if (qh->period > here.qh->period) break; prev = &here.qh->qh_next; hw_p = &here.qh->hw->hw_next; here = *prev; } /* link in this qh, unless some earlier pass did that */ if (qh != here.qh) { qh->qh_next = here; if (here.qh) qh->hw->hw_next = *hw_p; wmb(); prev->qh = qh; *hw_p = QH_NEXT(fotg210, qh->qh_dma); } } qh->qh_state = QH_STATE_LINKED; qh->xacterrs = 0; /* update per-qh bandwidth for usbfs */ fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); list_add(&qh->intr_node, &fotg210->intr_qh_list); /* maybe enable periodic schedule processing */ ++fotg210->intr_count; enable_periodic(fotg210); } static void qh_unlink_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { unsigned i; unsigned period; /* * If qh is for a low/full-speed device, simply unlinking it * could interfere with an ongoing split transaction. To unlink * it safely would require setting the QH_INACTIVATE bit and * waiting at least one frame, as described in EHCI 4.12.2.5. * * We won't bother with any of this. Instead, we assume that the * only reason for unlinking an interrupt QH while the current URB * is still active is to dequeue all the URBs (flush the whole * endpoint queue). * * If rebalancing the periodic schedule is ever implemented, this * approach will no longer be valid. */ /* high bandwidth, or otherwise part of every microframe */ period = qh->period; if (!period) period = 1; for (i = qh->start; i < fotg210->periodic_size; i += period) periodic_unlink(fotg210, i, qh); /* update per-qh bandwidth for usbfs */ fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period ? ((qh->usecs + qh->c_usecs) / qh->period) : (qh->usecs * 8); dev_dbg(&qh->dev->dev, "unlink qh%d-%04x/%p start %d [%d/%d us]\n", qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); /* qh->qh_next still "live" to HC */ qh->qh_state = QH_STATE_UNLINK; qh->qh_next.ptr = NULL; if (fotg210->qh_scan_next == qh) fotg210->qh_scan_next = list_entry(qh->intr_node.next, struct fotg210_qh, intr_node); list_del(&qh->intr_node); } static void start_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { /* If the QH isn't linked then there's nothing we can do * unless we were called during a giveback, in which case * qh_completions() has to deal with it. */ if (qh->qh_state != QH_STATE_LINKED) { if (qh->qh_state == QH_STATE_COMPLETING) qh->needs_rescan = 1; return; } qh_unlink_periodic(fotg210, qh); /* Make sure the unlinks are visible before starting the timer */ wmb(); /* * The EHCI spec doesn't say how long it takes the controller to * stop accessing an unlinked interrupt QH. The timer delay is * 9 uframes; presumably that will be long enough. */ qh->unlink_cycle = fotg210->intr_unlink_cycle; /* New entries go at the end of the intr_unlink list */ if (fotg210->intr_unlink) fotg210->intr_unlink_last->unlink_next = qh; else fotg210->intr_unlink = qh; fotg210->intr_unlink_last = qh; if (fotg210->intr_unlinking) ; /* Avoid recursive calls */ else if (fotg210->rh_state < FOTG210_RH_RUNNING) fotg210_handle_intr_unlinks(fotg210); else if (fotg210->intr_unlink == qh) { fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, true); ++fotg210->intr_unlink_cycle; } } static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { struct fotg210_qh_hw *hw = qh->hw; int rc; qh->qh_state = QH_STATE_IDLE; hw->hw_next = FOTG210_LIST_END(fotg210); qh_completions(fotg210, qh); /* reschedule QH iff another request is queued */ if (!list_empty(&qh->qtd_list) && fotg210->rh_state == FOTG210_RH_RUNNING) { rc = qh_schedule(fotg210, qh); /* An error here likely indicates handshake failure * or no space left in the schedule. Neither fault * should happen often ... * * FIXME kill the now-dysfunctional queued urbs */ if (rc != 0) fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", qh, rc); } /* maybe turn off periodic schedule */ --fotg210->intr_count; disable_periodic(fotg210); } static int check_period(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe, unsigned period, unsigned usecs) { int claimed; /* complete split running into next frame? * given FSTN support, we could sometimes check... */ if (uframe >= 8) return 0; /* convert "usecs we need" to "max already claimed" */ usecs = fotg210->uframe_periodic_max - usecs; /* we "know" 2 and 4 uframe intervals were rejected; so * for period 0, check _every_ microframe in the schedule. */ if (unlikely(period == 0)) { do { for (uframe = 0; uframe < 7; uframe++) { claimed = periodic_usecs(fotg210, frame, uframe); if (claimed > usecs) return 0; } } while ((frame += 1) < fotg210->periodic_size); /* just check the specified uframe, at that period */ } else { do { claimed = periodic_usecs(fotg210, frame, uframe); if (claimed > usecs) return 0; } while ((frame += period) < fotg210->periodic_size); } /* success! */ return 1; } static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp) { int retval = -ENOSPC; u8 mask = 0; if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ goto done; if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) goto done; if (!qh->c_usecs) { retval = 0; *c_maskp = 0; goto done; } /* Make sure this tt's buffer is also available for CSPLITs. * We pessimize a bit; probably the typical full speed case * doesn't need the second CSPLIT. * * NOTE: both SPLIT and CSPLIT could be checked in just * one smart pass... */ mask = 0x03 << (uframe + qh->gap_uf); *c_maskp = cpu_to_hc32(fotg210, mask << 8); mask |= 1 << uframe; if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, qh->period, qh->c_usecs)) goto done; if (!check_period(fotg210, frame, uframe + qh->gap_uf, qh->period, qh->c_usecs)) goto done; retval = 0; } done: return retval; } /* "first fit" scheduling policy used the first time through, * or when the previous schedule slot can't be re-used. */ static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) { int status; unsigned uframe; __hc32 c_mask; unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ struct fotg210_qh_hw *hw = qh->hw; qh_refresh(fotg210, qh); hw->hw_next = FOTG210_LIST_END(fotg210); frame = qh->start; /* reuse the previous schedule slots, if we can */ if (frame < qh->period) { uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); status = check_intr_schedule(fotg210, frame, --uframe, qh, &c_mask); } else { uframe = 0; c_mask = 0; status = -ENOSPC; } /* else scan the schedule to find a group of slots such that all * uframes have enough periodic bandwidth available. */ if (status) { /* "normal" case, uframing flexible except with splits */ if (qh->period) { int i; for (i = qh->period; status && i > 0; --i) { frame = ++fotg210->random_frame % qh->period; for (uframe = 0; uframe < 8; uframe++) { status = check_intr_schedule(fotg210, frame, uframe, qh, &c_mask); if (status == 0) break; } } /* qh->period == 0 means every uframe */ } else { frame = 0; status = check_intr_schedule(fotg210, 0, 0, qh, &c_mask); } if (status) goto done; qh->start = frame; /* reset S-frame and (maybe) C-frame masks */ hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); hw->hw_info2 |= qh->period ? cpu_to_hc32(fotg210, 1 << uframe) : cpu_to_hc32(fotg210, QH_SMASK); hw->hw_info2 |= c_mask; } else fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); /* stuff into the periodic schedule */ qh_link_periodic(fotg210, qh); done: return status; } static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags) { unsigned epnum; unsigned long flags; struct fotg210_qh *qh; int status; struct list_head empty; /* get endpoint and transfer/schedule data */ epnum = urb->ep->desc.bEndpointAddress; spin_lock_irqsave(&fotg210->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { status = -ESHUTDOWN; goto done_not_linked; } status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); if (unlikely(status)) goto done_not_linked; /* get qh and force any scheduling errors */ INIT_LIST_HEAD(&empty); qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); if (qh == NULL) { status = -ENOMEM; goto done; } if (qh->qh_state == QH_STATE_IDLE) { status = qh_schedule(fotg210, qh); if (status) goto done; } /* then queue the urb's tds to the qh */ qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); BUG_ON(qh == NULL); /* ... update usbfs periodic stats */ fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; done: if (unlikely(status)) usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); done_not_linked: spin_unlock_irqrestore(&fotg210->lock, flags); if (status) qtd_list_free(fotg210, urb, qtd_list); return status; } static void scan_intr(struct fotg210_hcd *fotg210) { struct fotg210_qh *qh; list_for_each_entry_safe(qh, fotg210->qh_scan_next, &fotg210->intr_qh_list, intr_node) { rescan: /* clean any finished work for this qh */ if (!list_empty(&qh->qtd_list)) { int temp; /* * Unlinks could happen here; completion reporting * drops the lock. That's why fotg210->qh_scan_next * always holds the next qh to scan; if the next qh * gets unlinked then fotg210->qh_scan_next is adjusted * in qh_unlink_periodic(). */ temp = qh_completions(fotg210, qh); if (unlikely(qh->needs_rescan || (list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED))) start_unlink_intr(fotg210, qh); else if (temp != 0) goto rescan; } } } /* fotg210_iso_stream ops work with both ITD and SITD */ static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags) { struct fotg210_iso_stream *stream; stream = kzalloc(sizeof(*stream), mem_flags); if (likely(stream != NULL)) { INIT_LIST_HEAD(&stream->td_list); INIT_LIST_HEAD(&stream->free_list); stream->next_uframe = -1; } return stream; } static void iso_stream_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream, struct usb_device *dev, int pipe, unsigned interval) { u32 buf1; unsigned epnum, maxp; int is_input; long bandwidth; unsigned multi; /* * this might be a "high bandwidth" highspeed endpoint, * as encoded in the ep descriptor's wMaxPacket field */ epnum = usb_pipeendpoint(pipe); is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; maxp = usb_maxpacket(dev, pipe, !is_input); if (is_input) buf1 = (1 << 11); else buf1 = 0; maxp = max_packet(maxp); multi = hb_mult(maxp); buf1 |= maxp; maxp *= multi; stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); stream->buf1 = cpu_to_hc32(fotg210, buf1); stream->buf2 = cpu_to_hc32(fotg210, multi); /* usbfs wants to report the average usecs per frame tied up * when transfers on this endpoint are scheduled ... */ if (dev->speed == USB_SPEED_FULL) { interval <<= 3; stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, is_input, 1, maxp)); stream->usecs /= 8; } else { stream->highspeed = 1; stream->usecs = HS_USECS_ISO(maxp); } bandwidth = stream->usecs * 8; bandwidth /= interval; stream->bandwidth = bandwidth; stream->udev = dev; stream->bEndpointAddress = is_input | epnum; stream->interval = interval; stream->maxp = maxp; } static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb) { unsigned epnum; struct fotg210_iso_stream *stream; struct usb_host_endpoint *ep; unsigned long flags; epnum = usb_pipeendpoint(urb->pipe); if (usb_pipein(urb->pipe)) ep = urb->dev->ep_in[epnum]; else ep = urb->dev->ep_out[epnum]; spin_lock_irqsave(&fotg210->lock, flags); stream = ep->hcpriv; if (unlikely(stream == NULL)) { stream = iso_stream_alloc(GFP_ATOMIC); if (likely(stream != NULL)) { ep->hcpriv = stream; stream->ep = ep; iso_stream_init(fotg210, stream, urb->dev, urb->pipe, urb->interval); } /* if dev->ep[epnum] is a QH, hw is set */ } else if (unlikely(stream->hw != NULL)) { fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", urb->dev->devpath, epnum, usb_pipein(urb->pipe) ? "in" : "out"); stream = NULL; } spin_unlock_irqrestore(&fotg210->lock, flags); return stream; } /* fotg210_iso_sched ops can be ITD-only or SITD-only */ static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets, gfp_t mem_flags) { struct fotg210_iso_sched *iso_sched; int size = sizeof(*iso_sched); size += packets * sizeof(struct fotg210_iso_packet); iso_sched = kzalloc(size, mem_flags); if (likely(iso_sched != NULL)) INIT_LIST_HEAD(&iso_sched->td_list); return iso_sched; } static inline void itd_sched_init(struct fotg210_hcd *fotg210, struct fotg210_iso_sched *iso_sched, struct fotg210_iso_stream *stream, struct urb *urb) { unsigned i; dma_addr_t dma = urb->transfer_dma; /* how many uframes are needed for these transfers */ iso_sched->span = urb->number_of_packets * stream->interval; /* figure out per-uframe itd fields that we'll need later * when we fit new itds into the schedule. */ for (i = 0; i < urb->number_of_packets; i++) { struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; unsigned length; dma_addr_t buf; u32 trans; length = urb->iso_frame_desc[i].length; buf = dma + urb->iso_frame_desc[i].offset; trans = FOTG210_ISOC_ACTIVE; trans |= buf & 0x0fff; if (unlikely(((i + 1) == urb->number_of_packets)) && !(urb->transfer_flags & URB_NO_INTERRUPT)) trans |= FOTG210_ITD_IOC; trans |= length << 16; uframe->transaction = cpu_to_hc32(fotg210, trans); /* might need to cross a buffer page within a uframe */ uframe->bufp = (buf & ~(u64)0x0fff); buf += length; if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) uframe->cross = 1; } } static void iso_sched_free(struct fotg210_iso_stream *stream, struct fotg210_iso_sched *iso_sched) { if (!iso_sched) return; /* caller must hold fotg210->lock!*/ list_splice(&iso_sched->td_list, &stream->free_list); kfree(iso_sched); } static int itd_urb_transaction(struct fotg210_iso_stream *stream, struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) { struct fotg210_itd *itd; dma_addr_t itd_dma; int i; unsigned num_itds; struct fotg210_iso_sched *sched; unsigned long flags; sched = iso_sched_alloc(urb->number_of_packets, mem_flags); if (unlikely(sched == NULL)) return -ENOMEM; itd_sched_init(fotg210, sched, stream, urb); if (urb->interval < 8) num_itds = 1 + (sched->span + 7) / 8; else num_itds = urb->number_of_packets; /* allocate/init ITDs */ spin_lock_irqsave(&fotg210->lock, flags); for (i = 0; i < num_itds; i++) { /* * Use iTDs from the free list, but not iTDs that may * still be in use by the hardware. */ if (likely(!list_empty(&stream->free_list))) { itd = list_first_entry(&stream->free_list, struct fotg210_itd, itd_list); if (itd->frame == fotg210->now_frame) goto alloc_itd; list_del(&itd->itd_list); itd_dma = itd->itd_dma; } else { alloc_itd: spin_unlock_irqrestore(&fotg210->lock, flags); itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, &itd_dma); spin_lock_irqsave(&fotg210->lock, flags); if (!itd) { iso_sched_free(stream, sched); spin_unlock_irqrestore(&fotg210->lock, flags); return -ENOMEM; } } memset(itd, 0, sizeof(*itd)); itd->itd_dma = itd_dma; list_add(&itd->itd_list, &sched->td_list); } spin_unlock_irqrestore(&fotg210->lock, flags); /* temporarily store schedule info in hcpriv */ urb->hcpriv = sched; urb->error_count = 0; return 0; } static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe, u8 usecs, u32 period) { uframe %= period; do { /* can't commit more than uframe_periodic_max usec */ if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) > (fotg210->uframe_periodic_max - usecs)) return 0; /* we know urb->interval is 2^N uframes */ uframe += period; } while (uframe < mod); return 1; } /* This scheduler plans almost as far into the future as it has actual * periodic schedule slots. (Affected by TUNE_FLS, which defaults to * "as small as possible" to be cache-friendlier.) That limits the size * transfers you can stream reliably; avoid more than 64 msec per urb. * Also avoid queue depths of less than fotg210's worst irq latency (affected * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, * and other factors); or more than about 230 msec total (for portability, * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! */ #define SCHEDULE_SLOP 80 /* microframes */ static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb, struct fotg210_iso_stream *stream) { u32 now, next, start, period, span; int status; unsigned mod = fotg210->periodic_size << 3; struct fotg210_iso_sched *sched = urb->hcpriv; period = urb->interval; span = sched->span; if (span > mod - SCHEDULE_SLOP) { fotg210_dbg(fotg210, "iso request %p too long\n", urb); status = -EFBIG; goto fail; } now = fotg210_read_frame_index(fotg210) & (mod - 1); /* Typical case: reuse current schedule, stream is still active. * Hopefully there are no gaps from the host falling behind * (irq delays etc), but if there are we'll take the next * slot in the schedule, implicitly assuming URB_ISO_ASAP. */ if (likely(!list_empty(&stream->td_list))) { u32 excess; /* For high speed devices, allow scheduling within the * isochronous scheduling threshold. For full speed devices * and Intel PCI-based controllers, don't (work around for * Intel ICH9 bug). */ if (!stream->highspeed && fotg210->fs_i_thresh) next = now + fotg210->i_thresh; else next = now; /* Fell behind (by up to twice the slop amount)? * We decide based on the time of the last currently-scheduled * slot, not the time of the next available slot. */ excess = (stream->next_uframe - period - next) & (mod - 1); if (excess >= mod - 2 * SCHEDULE_SLOP) start = next + excess - mod + period * DIV_ROUND_UP(mod - excess, period); else start = next + excess + period; if (start - now >= mod) { fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", urb, start - now - period, period, mod); status = -EFBIG; goto fail; } } /* need to schedule; when's the next (u)frame we could start? * this is bigger than fotg210->i_thresh allows; scheduling itself * isn't free, the slop should handle reasonably slow cpus. it * can also help high bandwidth if the dma and irq loads don't * jump until after the queue is primed. */ else { int done = 0; start = SCHEDULE_SLOP + (now & ~0x07); /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ /* find a uframe slot with enough bandwidth. * Early uframes are more precious because full-speed * iso IN transfers can't use late uframes, * and therefore they should be allocated last. */ next = start; start += period; do { start--; /* check schedule: enough space? */ if (itd_slot_ok(fotg210, mod, start, stream->usecs, period)) done = 1; } while (start > next && !done); /* no room in the schedule */ if (!done) { fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", urb, now, now + mod); status = -ENOSPC; goto fail; } } /* Tried to schedule too far into the future? */ if (unlikely(start - now + span - period >= mod - 2 * SCHEDULE_SLOP)) { fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", urb, start - now, span - period, mod - 2 * SCHEDULE_SLOP); status = -EFBIG; goto fail; } stream->next_uframe = start & (mod - 1); /* report high speed start in uframes; full speed, in frames */ urb->start_frame = stream->next_uframe; if (!stream->highspeed) urb->start_frame >>= 3; /* Make sure scan_isoc() sees these */ if (fotg210->isoc_count == 0) fotg210->next_frame = now >> 3; return 0; fail: iso_sched_free(stream, sched); urb->hcpriv = NULL; return status; } static inline void itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream, struct fotg210_itd *itd) { int i; /* it's been recently zeroed */ itd->hw_next = FOTG210_LIST_END(fotg210); itd->hw_bufp[0] = stream->buf0; itd->hw_bufp[1] = stream->buf1; itd->hw_bufp[2] = stream->buf2; for (i = 0; i < 8; i++) itd->index[i] = -1; /* All other fields are filled when scheduling */ } static inline void itd_patch(struct fotg210_hcd *fotg210, struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched, unsigned index, u16 uframe) { struct fotg210_iso_packet *uf = &iso_sched->packet[index]; unsigned pg = itd->pg; uframe &= 0x07; itd->index[uframe] = index; itd->hw_transaction[uframe] = uf->transaction; itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); /* iso_frame_desc[].offset must be strictly increasing */ if (unlikely(uf->cross)) { u64 bufp = uf->bufp + 4096; itd->pg = ++pg; itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); } } static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd) { union fotg210_shadow *prev = &fotg210->pshadow[frame]; __hc32 *hw_p = &fotg210->periodic[frame]; union fotg210_shadow here = *prev; __hc32 type = 0; /* skip any iso nodes which might belong to previous microframes */ while (here.ptr) { type = Q_NEXT_TYPE(fotg210, *hw_p); if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) break; prev = periodic_next_shadow(fotg210, prev, type); hw_p = shadow_next_periodic(fotg210, &here, type); here = *prev; } itd->itd_next = here; itd->hw_next = *hw_p; prev->itd = itd; itd->frame = frame; wmb(); *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); } /* fit urb's itds into the selected schedule slot; activate as needed */ static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb, unsigned mod, struct fotg210_iso_stream *stream) { int packet; unsigned next_uframe, uframe, frame; struct fotg210_iso_sched *iso_sched = urb->hcpriv; struct fotg210_itd *itd; next_uframe = stream->next_uframe & (mod - 1); if (unlikely(list_empty(&stream->td_list))) { fotg210_to_hcd(fotg210)->self.bandwidth_allocated += stream->bandwidth; fotg210_dbg(fotg210, "schedule devp %s ep%d%s-iso period %d start %d.%d\n", urb->dev->devpath, stream->bEndpointAddress & 0x0f, (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", urb->interval, next_uframe >> 3, next_uframe & 0x7); } /* fill iTDs uframe by uframe */ for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { if (itd == NULL) { /* ASSERT: we have all necessary itds */ /* ASSERT: no itds for this endpoint in this uframe */ itd = list_entry(iso_sched->td_list.next, struct fotg210_itd, itd_list); list_move_tail(&itd->itd_list, &stream->td_list); itd->stream = stream; itd->urb = urb; itd_init(fotg210, stream, itd); } uframe = next_uframe & 0x07; frame = next_uframe >> 3; itd_patch(fotg210, itd, iso_sched, packet, uframe); next_uframe += stream->interval; next_uframe &= mod - 1; packet++; /* link completed itds into the schedule */ if (((next_uframe >> 3) != frame) || packet == urb->number_of_packets) { itd_link(fotg210, frame & (fotg210->periodic_size - 1), itd); itd = NULL; } } stream->next_uframe = next_uframe; /* don't need that schedule data any more */ iso_sched_free(stream, iso_sched); urb->hcpriv = NULL; ++fotg210->isoc_count; enable_periodic(fotg210); } #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ FOTG210_ISOC_XACTERR) /* Process and recycle a completed ITD. Return true iff its urb completed, * and hence its completion callback probably added things to the hardware * schedule. * * Note that we carefully avoid recycling this descriptor until after any * completion callback runs, so that it won't be reused quickly. That is, * assuming (a) no more than two urbs per frame on this endpoint, and also * (b) only this endpoint's completions submit URBs. It seems some silicon * corrupts things if you reuse completed descriptors very quickly... */ static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) { struct urb *urb = itd->urb; struct usb_iso_packet_descriptor *desc; u32 t; unsigned uframe; int urb_index = -1; struct fotg210_iso_stream *stream = itd->stream; struct usb_device *dev; bool retval = false; /* for each uframe with a packet */ for (uframe = 0; uframe < 8; uframe++) { if (likely(itd->index[uframe] == -1)) continue; urb_index = itd->index[uframe]; desc = &urb->iso_frame_desc[urb_index]; t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); itd->hw_transaction[uframe] = 0; /* report transfer status */ if (unlikely(t & ISO_ERRS)) { urb->error_count++; if (t & FOTG210_ISOC_BUF_ERR) desc->status = usb_pipein(urb->pipe) ? -ENOSR /* hc couldn't read */ : -ECOMM; /* hc couldn't write */ else if (t & FOTG210_ISOC_BABBLE) desc->status = -EOVERFLOW; else /* (t & FOTG210_ISOC_XACTERR) */ desc->status = -EPROTO; /* HC need not update length with this error */ if (!(t & FOTG210_ISOC_BABBLE)) { desc->actual_length = fotg210_itdlen(urb, desc, t); urb->actual_length += desc->actual_length; } } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { desc->status = 0; desc->actual_length = fotg210_itdlen(urb, desc, t); urb->actual_length += desc->actual_length; } else { /* URB was too late */ desc->status = -EXDEV; } } /* handle completion now? */ if (likely((urb_index + 1) != urb->number_of_packets)) goto done; /* ASSERT: it's really the last itd for this urb * list_for_each_entry (itd, &stream->td_list, itd_list) * BUG_ON (itd->urb == urb); */ /* give urb back to the driver; completion often (re)submits */ dev = urb->dev; fotg210_urb_done(fotg210, urb, 0); retval = true; urb = NULL; --fotg210->isoc_count; disable_periodic(fotg210); if (unlikely(list_is_singular(&stream->td_list))) { fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= stream->bandwidth; fotg210_dbg(fotg210, "deschedule devp %s ep%d%s-iso\n", dev->devpath, stream->bEndpointAddress & 0x0f, (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); } done: itd->urb = NULL; /* Add to the end of the free list for later reuse */ list_move_tail(&itd->itd_list, &stream->free_list); /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ if (list_empty(&stream->td_list)) { list_splice_tail_init(&stream->free_list, &fotg210->cached_itd_list); start_free_itds(fotg210); } return retval; } static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags) { int status = -EINVAL; unsigned long flags; struct fotg210_iso_stream *stream; /* Get iso_stream head */ stream = iso_stream_find(fotg210, urb); if (unlikely(stream == NULL)) { fotg210_dbg(fotg210, "can't get iso stream\n"); return -ENOMEM; } if (unlikely(urb->interval != stream->interval && fotg210_port_speed(fotg210, 0) == USB_PORT_STAT_HIGH_SPEED)) { fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", stream->interval, urb->interval); goto done; } #ifdef FOTG210_URB_TRACE fotg210_dbg(fotg210, "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", __func__, urb->dev->devpath, urb, usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "in" : "out", urb->transfer_buffer_length, urb->number_of_packets, urb->interval, stream); #endif /* allocate ITDs w/o locking anything */ status = itd_urb_transaction(stream, fotg210, urb, mem_flags); if (unlikely(status < 0)) { fotg210_dbg(fotg210, "can't init itds\n"); goto done; } /* schedule ... need to lock */ spin_lock_irqsave(&fotg210->lock, flags); if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { status = -ESHUTDOWN; goto done_not_linked; } status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); if (unlikely(status)) goto done_not_linked; status = iso_stream_schedule(fotg210, urb, stream); if (likely(status == 0)) itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); else usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); done_not_linked: spin_unlock_irqrestore(&fotg210->lock, flags); done: return status; } static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame, unsigned now_frame, bool live) { unsigned uf; bool modified; union fotg210_shadow q, *q_p; __hc32 type, *hw_p; /* scan each element in frame's queue for completions */ q_p = &fotg210->pshadow[frame]; hw_p = &fotg210->periodic[frame]; q.ptr = q_p->ptr; type = Q_NEXT_TYPE(fotg210, *hw_p); modified = false; while (q.ptr) { switch (hc32_to_cpu(fotg210, type)) { case Q_TYPE_ITD: /* If this ITD is still active, leave it for * later processing ... check the next entry. * No need to check for activity unless the * frame is current. */ if (frame == now_frame && live) { rmb(); for (uf = 0; uf < 8; uf++) { if (q.itd->hw_transaction[uf] & ITD_ACTIVE(fotg210)) break; } if (uf < 8) { q_p = &q.itd->itd_next; hw_p = &q.itd->hw_next; type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); q = *q_p; break; } } /* Take finished ITDs out of the schedule * and process them: recycle, maybe report * URB completion. HC won't cache the * pointer for much longer, if at all. */ *q_p = q.itd->itd_next; *hw_p = q.itd->hw_next; type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); wmb(); modified = itd_complete(fotg210, q.itd); q = *q_p; break; default: fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", type, frame, q.ptr); /* FALL THROUGH */ case Q_TYPE_QH: case Q_TYPE_FSTN: /* End of the iTDs and siTDs */ q.ptr = NULL; break; } /* assume completion callbacks modify the queue */ if (unlikely(modified && fotg210->isoc_count > 0)) return -EINVAL; } return 0; } static void scan_isoc(struct fotg210_hcd *fotg210) { unsigned uf, now_frame, frame, ret; unsigned fmask = fotg210->periodic_size - 1; bool live; /* * When running, scan from last scan point up to "now" * else clean up by scanning everything that's left. * Touches as few pages as possible: cache-friendly. */ if (fotg210->rh_state >= FOTG210_RH_RUNNING) { uf = fotg210_read_frame_index(fotg210); now_frame = (uf >> 3) & fmask; live = true; } else { now_frame = (fotg210->next_frame - 1) & fmask; live = false; } fotg210->now_frame = now_frame; frame = fotg210->next_frame; for (;;) { ret = 1; while (ret != 0) ret = scan_frame_queue(fotg210, frame, now_frame, live); /* Stop when we have reached the current frame */ if (frame == now_frame) break; frame = (frame + 1) & fmask; } fotg210->next_frame = now_frame; } /* Display / Set uframe_periodic_max */ static ssize_t show_uframe_periodic_max(struct device *dev, struct device_attribute *attr, char *buf) { struct fotg210_hcd *fotg210; int n; fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max); return n; } static ssize_t store_uframe_periodic_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fotg210_hcd *fotg210; unsigned uframe_periodic_max; unsigned frame, uframe; unsigned short allocated_max; unsigned long flags; ssize_t ret; fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); if (kstrtouint(buf, 0, &uframe_periodic_max) < 0) return -EINVAL; if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", uframe_periodic_max); return -EINVAL; } ret = -EINVAL; /* * lock, so that our checking does not race with possible periodic * bandwidth allocation through submitting new urbs. */ spin_lock_irqsave(&fotg210->lock, flags); /* * for request to decrease max periodic bandwidth, we have to check * every microframe in the schedule to see whether the decrease is * possible. */ if (uframe_periodic_max < fotg210->uframe_periodic_max) { allocated_max = 0; for (frame = 0; frame < fotg210->periodic_size; ++frame) for (uframe = 0; uframe < 7; ++uframe) allocated_max = max(allocated_max, periodic_usecs(fotg210, frame, uframe)); if (allocated_max > uframe_periodic_max) { fotg210_info(fotg210, "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n", allocated_max, uframe_periodic_max); goto out_unlock; } } /* increasing is always ok */ fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 100 * uframe_periodic_max/125, uframe_periodic_max); if (uframe_periodic_max != 100) fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); fotg210->uframe_periodic_max = uframe_periodic_max; ret = count; out_unlock: spin_unlock_irqrestore(&fotg210->lock, flags); return ret; } static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max, store_uframe_periodic_max); static inline int create_sysfs_files(struct fotg210_hcd *fotg210) { struct device *controller = fotg210_to_hcd(fotg210)->self.controller; int i = 0; if (i) goto out; i = device_create_file(controller, &dev_attr_uframe_periodic_max); out: return i; } static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) { struct device *controller = fotg210_to_hcd(fotg210)->self.controller; device_remove_file(controller, &dev_attr_uframe_periodic_max); } /* On some systems, leaving remote wakeup enabled prevents system shutdown. * The firmware seems to think that powering off is a wakeup event! * This routine turns off remote wakeup and everything else, on all ports. */ static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) { u32 __iomem *status_reg = &fotg210->regs->port_status; fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); } /* Halt HC, turn off all ports, and let the BIOS use the companion controllers. * Must be called with interrupts enabled and the lock not held. */ static void fotg210_silence_controller(struct fotg210_hcd *fotg210) { fotg210_halt(fotg210); spin_lock_irq(&fotg210->lock); fotg210->rh_state = FOTG210_RH_HALTED; fotg210_turn_off_all_ports(fotg210); spin_unlock_irq(&fotg210->lock); } /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). * This forcibly disables dma and IRQs, helping kexec and other cases * where the next system software may expect clean state. */ static void fotg210_shutdown(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); spin_lock_irq(&fotg210->lock); fotg210->shutdown = true; fotg210->rh_state = FOTG210_RH_STOPPING; fotg210->enabled_hrtimer_events = 0; spin_unlock_irq(&fotg210->lock); fotg210_silence_controller(fotg210); hrtimer_cancel(&fotg210->hrtimer); } /* fotg210_work is called from some interrupts, timers, and so on. * it calls driver completion functions, after dropping fotg210->lock. */ static void fotg210_work(struct fotg210_hcd *fotg210) { /* another CPU may drop fotg210->lock during a schedule scan while * it reports urb completions. this flag guards against bogus * attempts at re-entrant schedule scanning. */ if (fotg210->scanning) { fotg210->need_rescan = true; return; } fotg210->scanning = true; rescan: fotg210->need_rescan = false; if (fotg210->async_count) scan_async(fotg210); if (fotg210->intr_count > 0) scan_intr(fotg210); if (fotg210->isoc_count > 0) scan_isoc(fotg210); if (fotg210->need_rescan) goto rescan; fotg210->scanning = false; /* the IO watchdog guards against hardware or driver bugs that * misplace IRQs, and should let us run completely without IRQs. * such lossage has been observed on both VT6202 and VT8235. */ turn_on_io_watchdog(fotg210); } /* Called when the fotg210_hcd module is removed. */ static void fotg210_stop(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); fotg210_dbg(fotg210, "stop\n"); /* no more interrupts ... */ spin_lock_irq(&fotg210->lock); fotg210->enabled_hrtimer_events = 0; spin_unlock_irq(&fotg210->lock); fotg210_quiesce(fotg210); fotg210_silence_controller(fotg210); fotg210_reset(fotg210); hrtimer_cancel(&fotg210->hrtimer); remove_sysfs_files(fotg210); remove_debug_files(fotg210); /* root hub is shut down separately (first, when possible) */ spin_lock_irq(&fotg210->lock); end_free_itds(fotg210); spin_unlock_irq(&fotg210->lock); fotg210_mem_cleanup(fotg210); #ifdef FOTG210_STATS fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa, fotg210->stats.lost_iaa); fotg210_dbg(fotg210, "complete %ld unlink %ld\n", fotg210->stats.complete, fotg210->stats.unlink); #endif dbg_status(fotg210, "fotg210_stop completed", fotg210_readl(fotg210, &fotg210->regs->status)); } /* one-time init, only for memory state */ static int hcd_fotg210_init(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); u32 temp; int retval; u32 hcc_params; struct fotg210_qh_hw *hw; spin_lock_init(&fotg210->lock); /* * keep io watchdog by default, those good HCDs could turn off it later */ fotg210->need_io_watchdog = 1; hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); fotg210->hrtimer.function = fotg210_hrtimer_func; fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); /* * by default set standard 80% (== 100 usec/uframe) max periodic * bandwidth as required by USB 2.0 */ fotg210->uframe_periodic_max = 100; /* * hw default: 1K periodic list heads, one per frame. * periodic_size can shrink by USBCMD update if hcc_params allows. */ fotg210->periodic_size = DEFAULT_I_TDPS; INIT_LIST_HEAD(&fotg210->intr_qh_list); INIT_LIST_HEAD(&fotg210->cached_itd_list); if (HCC_PGM_FRAMELISTLEN(hcc_params)) { /* periodic schedule size can be smaller than default */ switch (FOTG210_TUNE_FLS) { case 0: fotg210->periodic_size = 1024; break; case 1: fotg210->periodic_size = 512; break; case 2: fotg210->periodic_size = 256; break; default: BUG(); } } retval = fotg210_mem_init(fotg210, GFP_KERNEL); if (retval < 0) return retval; /* controllers may cache some of the periodic schedule ... */ fotg210->i_thresh = 2; /* * dedicate a qh for the async ring head, since we couldn't unlink * a 'real' qh without stopping the async schedule [4.8]. use it * as the 'reclamation list head' too. * its dummy is used in hw_alt_next of many tds, to prevent the qh * from automatically advancing to the next td after short reads. */ fotg210->async->qh_next.qh = NULL; hw = fotg210->async->hw; hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); hw->hw_qtd_next = FOTG210_LIST_END(fotg210); fotg210->async->qh_state = QH_STATE_LINKED; hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); /* clear interrupt enables, set irq latency */ if (log2_irq_thresh < 0 || log2_irq_thresh > 6) log2_irq_thresh = 0; temp = 1 << (16 + log2_irq_thresh); if (HCC_CANPARK(hcc_params)) { /* HW default park == 3, on hardware that supports it (like * NVidia and ALI silicon), maximizes throughput on the async * schedule by avoiding QH fetches between transfers. * * With fast usb storage devices and NForce2, "park" seems to * make problems: throughput reduction (!), data errors... */ if (park) { park = min_t(unsigned, park, 3); temp |= CMD_PARK; temp |= park << 8; } fotg210_dbg(fotg210, "park %d\n", park); } if (HCC_PGM_FRAMELISTLEN(hcc_params)) { /* periodic schedule size can be smaller than default */ temp &= ~(3 << 2); temp |= (FOTG210_TUNE_FLS << 2); } fotg210->command = temp; /* Accept arbitrarily long scatter-gather lists */ if (!(hcd->driver->flags & HCD_LOCAL_MEM)) hcd->self.sg_tablesize = ~0; return 0; } /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ static int fotg210_run(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); u32 temp; u32 hcc_params; hcd->uses_new_polling = 1; /* EHCI spec section 4.1 */ fotg210_writel(fotg210, fotg210->periodic_dma, &fotg210->regs->frame_list); fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, &fotg210->regs->async_next); /* * hcc_params controls whether fotg210->regs->segment must (!!!) * be used; it constrains QH/ITD/SITD and QTD locations. * pci_pool consistent memory always uses segment zero. * streaming mappings for I/O buffers, like pci_map_single(), * can return segments above 4GB, if the device allows. * * NOTE: the dma mask is visible through dev->dma_mask, so * drivers can pass this info along ... like NETIF_F_HIGHDMA, * Scsi_Host.highmem_io, and so forth. It's readonly to all * host side drivers though. */ hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); /* * Philips, Intel, and maybe others need CMD_RUN before the * root hub will detect new devices (why?); NEC doesn't */ fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); fotg210->command |= CMD_RUN; fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); dbg_cmd(fotg210, "init", fotg210->command); /* * Start, enabling full USB 2.0 functionality ... usb 1.1 devices * are explicitly handed to companion controller(s), so no TT is * involved with the root hub. (Except where one is integrated, * and there's no companion controller unless maybe for USB OTG.) * * Turning on the CF flag will transfer ownership of all ports * from the companions to the EHCI controller. If any of the * companions are in the middle of a port reset at the time, it * could cause trouble. Write-locking ehci_cf_port_reset_rwsem * guarantees that no resets are in progress. After we set CF, * a short delay lets the hardware catch up; new resets shouldn't * be started before the port switching actions could complete. */ down_write(&ehci_cf_port_reset_rwsem); fotg210->rh_state = FOTG210_RH_RUNNING; /* unblock posted writes */ fotg210_readl(fotg210, &fotg210->regs->command); usleep_range(5000, 10000); up_write(&ehci_cf_port_reset_rwsem); fotg210->last_periodic_enable = ktime_get_real(); temp = HC_VERSION(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); fotg210_info(fotg210, "USB %x.%x started, EHCI %x.%02x\n", ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f), temp >> 8, temp & 0xff); fotg210_writel(fotg210, INTR_MASK, &fotg210->regs->intr_enable); /* Turn On Interrupts */ /* GRR this is run-once init(), being done every time the HC starts. * So long as they're part of class devices, we can't do it init() * since the class device isn't created that early. */ create_debug_files(fotg210); create_sysfs_files(fotg210); return 0; } static int fotg210_setup(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); int retval; fotg210->regs = (void __iomem *)fotg210->caps + HC_LENGTH(fotg210, fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); dbg_hcs_params(fotg210, "reset"); dbg_hcc_params(fotg210, "reset"); /* cache this readonly data; minimize chip reads */ fotg210->hcs_params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); fotg210->sbrn = HCD_USB2; /* data structure init */ retval = hcd_fotg210_init(hcd); if (retval) return retval; retval = fotg210_halt(fotg210); if (retval) return retval; fotg210_reset(fotg210); return 0; } static irqreturn_t fotg210_irq(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); u32 status, masked_status, pcd_status = 0, cmd; int bh; spin_lock(&fotg210->lock); status = fotg210_readl(fotg210, &fotg210->regs->status); /* e.g. cardbus physical eject */ if (status == ~(u32) 0) { fotg210_dbg(fotg210, "device removed\n"); goto dead; } /* * We don't use STS_FLR, but some controllers don't like it to * remain on, so mask it out along with the other status bits. */ masked_status = status & (INTR_MASK | STS_FLR); /* Shared IRQ? */ if (!masked_status || unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { spin_unlock(&fotg210->lock); return IRQ_NONE; } /* clear (just) interrupts */ fotg210_writel(fotg210, masked_status, &fotg210->regs->status); cmd = fotg210_readl(fotg210, &fotg210->regs->command); bh = 0; /* unrequested/ignored: Frame List Rollover */ dbg_status(fotg210, "irq", status); /* INT, ERR, and IAA interrupt rates can be throttled */ /* normal [4.15.1.2] or error [4.15.1.1] completion */ if (likely((status & (STS_INT|STS_ERR)) != 0)) { if (likely((status & STS_ERR) == 0)) COUNT(fotg210->stats.normal); else COUNT(fotg210->stats.error); bh = 1; } /* complete the unlinking of some qh [4.15.2.3] */ if (status & STS_IAA) { /* Turn off the IAA watchdog */ fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); /* * Mild optimization: Allow another IAAD to reset the * hrtimer, if one occurs before the next expiration. * In theory we could always cancel the hrtimer, but * tests show that about half the time it will be reset * for some other event anyway. */ if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) ++fotg210->next_hrtimer_event; /* guard against (alleged) silicon errata */ if (cmd & CMD_IAAD) fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); if (fotg210->async_iaa) { COUNT(fotg210->stats.iaa); end_unlink_async(fotg210); } else fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); } /* remote wakeup [4.3.1] */ if (status & STS_PCD) { int pstatus; u32 __iomem *status_reg = &fotg210->regs->port_status; /* kick root hub later */ pcd_status = status; /* resume root hub? */ if (fotg210->rh_state == FOTG210_RH_SUSPENDED) usb_hcd_resume_root_hub(hcd); pstatus = fotg210_readl(fotg210, status_reg); if (test_bit(0, &fotg210->suspended_ports) && ((pstatus & PORT_RESUME) || !(pstatus & PORT_SUSPEND)) && (pstatus & PORT_PE) && fotg210->reset_done[0] == 0) { /* start 20 msec resume signaling from this port, * and make hub_wq collect PORT_STAT_C_SUSPEND to * stop that signaling. Use 5 ms extra for safety, * like usb_port_resume() does. */ fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); set_bit(0, &fotg210->resuming_ports); fotg210_dbg(fotg210, "port 1 remote wakeup\n"); mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); } } /* PCI errors [4.15.2.4] */ if (unlikely((status & STS_FATAL) != 0)) { fotg210_err(fotg210, "fatal error\n"); dbg_cmd(fotg210, "fatal", cmd); dbg_status(fotg210, "fatal", status); dead: usb_hc_died(hcd); /* Don't let the controller do anything more */ fotg210->shutdown = true; fotg210->rh_state = FOTG210_RH_STOPPING; fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); fotg210_handle_controller_death(fotg210); /* Handle completions when the controller stops */ bh = 0; } if (bh) fotg210_work(fotg210); spin_unlock(&fotg210->lock); if (pcd_status) usb_hcd_poll_rh_status(hcd); return IRQ_HANDLED; } /* non-error returns are a promise to giveback() the urb later * we drop ownership so next owner (or urb unlink) can get it * * urb + dev is in hcd.self.controller.urb_list * we're queueing TDs onto software and hardware lists * * hcd-specific init for hcpriv hasn't been done yet * * NOTE: control, bulk, and interrupt share the same code to append TDs * to a (possibly active) QH, and the same QH scanning code. */ static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); struct list_head qtd_list; INIT_LIST_HEAD(&qtd_list); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: /* qh_completions() code doesn't handle all the fault cases * in multi-TD control transfers. Even 1KB is rare anyway. */ if (urb->transfer_buffer_length > (16 * 1024)) return -EMSGSIZE; /* FALLTHROUGH */ /* case PIPE_BULK: */ default: if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) return -ENOMEM; return submit_async(fotg210, urb, &qtd_list, mem_flags); case PIPE_INTERRUPT: if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) return -ENOMEM; return intr_submit(fotg210, urb, &qtd_list, mem_flags); case PIPE_ISOCHRONOUS: return itd_submit(fotg210, urb, mem_flags); } } /* remove from hardware lists * completions normally happen asynchronously */ static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); struct fotg210_qh *qh; unsigned long flags; int rc; spin_lock_irqsave(&fotg210->lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto done; switch (usb_pipetype(urb->pipe)) { /* case PIPE_CONTROL: */ /* case PIPE_BULK:*/ default: qh = (struct fotg210_qh *) urb->hcpriv; if (!qh) break; switch (qh->qh_state) { case QH_STATE_LINKED: case QH_STATE_COMPLETING: start_unlink_async(fotg210, qh); break; case QH_STATE_UNLINK: case QH_STATE_UNLINK_WAIT: /* already started */ break; case QH_STATE_IDLE: /* QH might be waiting for a Clear-TT-Buffer */ qh_completions(fotg210, qh); break; } break; case PIPE_INTERRUPT: qh = (struct fotg210_qh *) urb->hcpriv; if (!qh) break; switch (qh->qh_state) { case QH_STATE_LINKED: case QH_STATE_COMPLETING: start_unlink_intr(fotg210, qh); break; case QH_STATE_IDLE: qh_completions(fotg210, qh); break; default: fotg210_dbg(fotg210, "bogus qh %p state %d\n", qh, qh->qh_state); goto done; } break; case PIPE_ISOCHRONOUS: /* itd... */ /* wait till next completion, do it then. */ /* completion irqs can wait up to 1024 msec, */ break; } done: spin_unlock_irqrestore(&fotg210->lock, flags); return rc; } /* bulk qh holds the data toggle */ static void fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); unsigned long flags; struct fotg210_qh *qh, *tmp; /* ASSERT: any requests/urbs are being unlinked */ /* ASSERT: nobody can be submitting urbs for this any more */ rescan: spin_lock_irqsave(&fotg210->lock, flags); qh = ep->hcpriv; if (!qh) goto done; /* endpoints can be iso streams. for now, we don't * accelerate iso completions ... so spin a while. */ if (qh->hw == NULL) { struct fotg210_iso_stream *stream = ep->hcpriv; if (!list_empty(&stream->td_list)) goto idle_timeout; /* BUG_ON(!list_empty(&stream->free_list)); */ kfree(stream); goto done; } if (fotg210->rh_state < FOTG210_RH_RUNNING) qh->qh_state = QH_STATE_IDLE; switch (qh->qh_state) { case QH_STATE_LINKED: case QH_STATE_COMPLETING: for (tmp = fotg210->async->qh_next.qh; tmp && tmp != qh; tmp = tmp->qh_next.qh) continue; /* periodic qh self-unlinks on empty, and a COMPLETING qh * may already be unlinked. */ if (tmp) start_unlink_async(fotg210, qh); /* FALL THROUGH */ case QH_STATE_UNLINK: /* wait for hw to finish? */ case QH_STATE_UNLINK_WAIT: idle_timeout: spin_unlock_irqrestore(&fotg210->lock, flags); schedule_timeout_uninterruptible(1); goto rescan; case QH_STATE_IDLE: /* fully unlinked */ if (qh->clearing_tt) goto idle_timeout; if (list_empty(&qh->qtd_list)) { qh_destroy(fotg210, qh); break; } /* else FALL THROUGH */ default: /* caller was supposed to have unlinked any requests; * that's not our job. just leak this memory. */ fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", qh, ep->desc.bEndpointAddress, qh->qh_state, list_empty(&qh->qtd_list) ? "" : "(has tds)"); break; } done: ep->hcpriv = NULL; spin_unlock_irqrestore(&fotg210->lock, flags); } static void fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); struct fotg210_qh *qh; int eptype = usb_endpoint_type(&ep->desc); int epnum = usb_endpoint_num(&ep->desc); int is_out = usb_endpoint_dir_out(&ep->desc); unsigned long flags; if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) return; spin_lock_irqsave(&fotg210->lock, flags); qh = ep->hcpriv; /* For Bulk and Interrupt endpoints we maintain the toggle state * in the hardware; the toggle bits in udev aren't used at all. * When an endpoint is reset by usb_clear_halt() we must reset * the toggle bit in the QH. */ if (qh) { usb_settoggle(qh->dev, epnum, is_out, 0); if (!list_empty(&qh->qtd_list)) { WARN_ONCE(1, "clear_halt for a busy endpoint\n"); } else if (qh->qh_state == QH_STATE_LINKED || qh->qh_state == QH_STATE_COMPLETING) { /* The toggle value in the QH can't be updated * while the QH is active. Unlink it now; * re-linking will call qh_refresh(). */ if (eptype == USB_ENDPOINT_XFER_BULK) start_unlink_async(fotg210, qh); else start_unlink_intr(fotg210, qh); } } spin_unlock_irqrestore(&fotg210->lock, flags); } static int fotg210_get_frame(struct usb_hcd *hcd) { struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); return (fotg210_read_frame_index(fotg210) >> 3) % fotg210->periodic_size; } /* The EHCI in ChipIdea HDRC cannot be a separate module or device, * because its registers (and irq) are shared between host/gadget/otg * functions and in order to facilitate role switching we cannot * give the fotg210 driver exclusive access to those. */ MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); static const struct hc_driver fotg210_fotg210_hc_driver = { .description = hcd_name, .product_desc = "Faraday USB2.0 Host Controller", .hcd_priv_size = sizeof(struct fotg210_hcd), /* * generic hardware linkage */ .irq = fotg210_irq, .flags = HCD_MEMORY | HCD_USB2, /* * basic lifecycle operations */ .reset = hcd_fotg210_init, .start = fotg210_run, .stop = fotg210_stop, .shutdown = fotg210_shutdown, /* * managing i/o requests and associated device resources */ .urb_enqueue = fotg210_urb_enqueue, .urb_dequeue = fotg210_urb_dequeue, .endpoint_disable = fotg210_endpoint_disable, .endpoint_reset = fotg210_endpoint_reset, /* * scheduling support */ .get_frame_number = fotg210_get_frame, /* * root hub support */ .hub_status_data = fotg210_hub_status_data, .hub_control = fotg210_hub_control, .bus_suspend = fotg210_bus_suspend, .bus_resume = fotg210_bus_resume, .relinquish_port = fotg210_relinquish_port, .port_handed_over = fotg210_port_handed_over, .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, }; static void fotg210_init(struct fotg210_hcd *fotg210) { u32 value; iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, &fotg210->regs->gmir); value = ioread32(&fotg210->regs->otgcsr); value &= ~OTGCSR_A_BUS_DROP; value |= OTGCSR_A_BUS_REQ; iowrite32(value, &fotg210->regs->otgcsr); } /** * fotg210_hcd_probe - initialize faraday FOTG210 HCDs * * Allocates basic resources for this USB host controller, and * then invokes the start() method for the HCD associated with it * through the hotplug entry's driver_data. */ static int fotg210_hcd_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct usb_hcd *hcd; struct resource *res; int irq; int retval = -ENODEV; struct fotg210_hcd *fotg210; if (usb_disabled()) return -ENODEV; pdev->dev.power.power_state = PMSG_ON; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "Found HC with no IRQ. Check %s setup!\n", dev_name(dev)); return -ENODEV; } irq = res->start; hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, dev_name(dev)); if (!hcd) { dev_err(dev, "failed to create hcd with err %d\n", retval); retval = -ENOMEM; goto fail_create_hcd; } hcd->has_tt = 1; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); hcd->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(hcd->regs)) { retval = PTR_ERR(hcd->regs); goto failed; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); fotg210 = hcd_to_fotg210(hcd); fotg210->caps = hcd->regs; retval = fotg210_setup(hcd); if (retval) goto failed; fotg210_init(fotg210); retval = usb_add_hcd(hcd, irq, IRQF_SHARED); if (retval) { dev_err(dev, "failed to add hcd with err %d\n", retval); goto failed; } device_wakeup_enable(hcd->self.controller); return retval; failed: usb_put_hcd(hcd); fail_create_hcd: dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval); return retval; } /** * fotg210_hcd_remove - shutdown processing for EHCI HCDs * @dev: USB Host Controller being removed * */ static int fotg210_hcd_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct usb_hcd *hcd = dev_get_drvdata(dev); if (!hcd) return 0; usb_remove_hcd(hcd); usb_put_hcd(hcd); return 0; } static struct platform_driver fotg210_hcd_driver = { .driver = { .name = "fotg210-hcd", }, .probe = fotg210_hcd_probe, .remove = fotg210_hcd_remove, }; static int __init fotg210_hcd_init(void) { int retval = 0; if (usb_disabled()) return -ENODEV; pr_info("%s: " DRIVER_DESC "\n", hcd_name); set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n", hcd_name, sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd), sizeof(struct fotg210_itd)); fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); if (!fotg210_debug_root) { retval = -ENOENT; goto err_debug; } retval = platform_driver_register(&fotg210_hcd_driver); if (retval < 0) goto clean; return retval; clean: debugfs_remove(fotg210_debug_root); fotg210_debug_root = NULL; err_debug: clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); return retval; } module_init(fotg210_hcd_init); static void __exit fotg210_hcd_cleanup(void) { platform_driver_unregister(&fotg210_hcd_driver); debugfs_remove(fotg210_debug_root); clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); } module_exit(fotg210_hcd_cleanup);