/* * intel_powerclamp.c - package c-state idle injection * * Copyright (c) 2012, Intel Corporation. * * Authors: * Arjan van de Ven * Jacob Pan * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * * TODO: * 1. better handle wakeup from external interrupts, currently a fixed * compensation is added to clamping duration when excessive amount * of wakeups are observed during idle time. the reason is that in * case of external interrupts without need for ack, clamping down * cpu in non-irq context does not reduce irq. for majority of the * cases, clamping down cpu does help reduce irq as well, we should * be able to differenciate the two cases and give a quantitative * solution for the irqs that we can control. perhaps based on * get_cpu_iowait_time_us() * * 2. synchronization with other hw blocks * * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_TARGET_RATIO (50U) /* For each undisturbed clamping period (no extra wake ups during idle time), * we increment the confidence counter for the given target ratio. * CONFIDENCE_OK defines the level where runtime calibration results are * valid. */ #define CONFIDENCE_OK (3) /* Default idle injection duration, driver adjust sleep time to meet target * idle ratio. Similar to frequency modulation. */ #define DEFAULT_DURATION_JIFFIES (6) static unsigned int target_mwait; static struct dentry *debug_dir; /* user selected target */ static unsigned int set_target_ratio; static unsigned int current_ratio; static bool should_skip; static bool reduce_irq; static atomic_t idle_wakeup_counter; static unsigned int control_cpu; /* The cpu assigned to collect stat and update * control parameters. default to BSP but BSP * can be offlined. */ static bool clamping; static struct task_struct * __percpu *powerclamp_thread; static struct thermal_cooling_device *cooling_dev; static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu * clamping thread */ static unsigned int duration; static unsigned int pkg_cstate_ratio_cur; static unsigned int window_size; static int duration_set(const char *arg, const struct kernel_param *kp) { int ret = 0; unsigned long new_duration; ret = kstrtoul(arg, 10, &new_duration); if (ret) goto exit; if (new_duration > 25 || new_duration < 6) { pr_err("Out of recommended range %lu, between 6-25ms\n", new_duration); ret = -EINVAL; } duration = clamp(new_duration, 6ul, 25ul); smp_mb(); exit: return ret; } static struct kernel_param_ops duration_ops = { .set = duration_set, .get = param_get_int, }; module_param_cb(duration, &duration_ops, &duration, 0644); MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); struct powerclamp_calibration_data { unsigned long confidence; /* used for calibration, basically a counter * gets incremented each time a clamping * period is completed without extra wakeups * once that counter is reached given level, * compensation is deemed usable. */ unsigned long steady_comp; /* steady state compensation used when * no extra wakeups occurred. */ unsigned long dynamic_comp; /* compensate excessive wakeup from idle * mostly from external interrupts. */ }; static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; static int window_size_set(const char *arg, const struct kernel_param *kp) { int ret = 0; unsigned long new_window_size; ret = kstrtoul(arg, 10, &new_window_size); if (ret) goto exit_win; if (new_window_size > 10 || new_window_size < 2) { pr_err("Out of recommended window size %lu, between 2-10\n", new_window_size); ret = -EINVAL; } window_size = clamp(new_window_size, 2ul, 10ul); smp_mb(); exit_win: return ret; } static struct kernel_param_ops window_size_ops = { .set = window_size_set, .get = param_get_int, }; module_param_cb(window_size, &window_size_ops, &window_size, 0644); MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" "\tpowerclamp controls idle ratio within this window. larger\n" "\twindow size results in slower response time but more smooth\n" "\tclamping results. default to 2."); static void find_target_mwait(void) { unsigned int eax, ebx, ecx, edx; unsigned int highest_cstate = 0; unsigned int highest_subcstate = 0; int i; if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) return; cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) return; edx >>= MWAIT_SUBSTATE_SIZE; for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { if (edx & MWAIT_SUBSTATE_MASK) { highest_cstate = i; highest_subcstate = edx & MWAIT_SUBSTATE_MASK; } } target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | (highest_subcstate - 1); } static u64 pkg_state_counter(void) { u64 val; u64 count = 0; static bool skip_c2; static bool skip_c3; static bool skip_c6; static bool skip_c7; if (!skip_c2) { if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val)) count += val; else skip_c2 = true; } if (!skip_c3) { if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val)) count += val; else skip_c3 = true; } if (!skip_c6) { if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val)) count += val; else skip_c6 = true; } if (!skip_c7) { if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val)) count += val; else skip_c7 = true; } return count; } static void noop_timer(unsigned long foo) { /* empty... just the fact that we get the interrupt wakes us up */ } static unsigned int get_compensation(int ratio) { unsigned int comp = 0; /* we only use compensation if all adjacent ones are good */ if (ratio == 1 && cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio + 1].confidence >= CONFIDENCE_OK && cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio + 1].steady_comp + cal_data[ratio + 2].steady_comp) / 3; } else if (ratio == MAX_TARGET_RATIO - 1 && cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio - 1].confidence >= CONFIDENCE_OK && cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio - 1].steady_comp + cal_data[ratio - 2].steady_comp) / 3; } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio - 1].confidence >= CONFIDENCE_OK && cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio - 1].steady_comp + cal_data[ratio + 1].steady_comp) / 3; } /* REVISIT: simple penalty of double idle injection */ if (reduce_irq) comp = ratio; /* do not exceed limit */ if (comp + ratio >= MAX_TARGET_RATIO) comp = MAX_TARGET_RATIO - ratio - 1; return comp; } static void adjust_compensation(int target_ratio, unsigned int win) { int delta; struct powerclamp_calibration_data *d = &cal_data[target_ratio]; /* * adjust compensations if confidence level has not been reached or * there are too many wakeups during the last idle injection period, we * cannot trust the data for compensation. */ if (d->confidence >= CONFIDENCE_OK || atomic_read(&idle_wakeup_counter) > win * num_online_cpus()) return; delta = set_target_ratio - current_ratio; /* filter out bad data */ if (delta >= 0 && delta <= (1+target_ratio/10)) { if (d->steady_comp) d->steady_comp = roundup(delta+d->steady_comp, 2)/2; else d->steady_comp = delta; d->confidence++; } } static bool powerclamp_adjust_controls(unsigned int target_ratio, unsigned int guard, unsigned int win) { static u64 msr_last, tsc_last; u64 msr_now, tsc_now; u64 val64; /* check result for the last window */ msr_now = pkg_state_counter(); rdtscll(tsc_now); /* calculate pkg cstate vs tsc ratio */ if (!msr_last || !tsc_last) current_ratio = 1; else if (tsc_now-tsc_last) { val64 = 100*(msr_now-msr_last); do_div(val64, (tsc_now-tsc_last)); current_ratio = val64; } /* update record */ msr_last = msr_now; tsc_last = tsc_now; adjust_compensation(target_ratio, win); /* * too many external interrupts, set flag such * that we can take measure later. */ reduce_irq = atomic_read(&idle_wakeup_counter) >= 2 * win * num_online_cpus(); atomic_set(&idle_wakeup_counter, 0); /* if we are above target+guard, skip */ return set_target_ratio + guard <= current_ratio; } static int clamp_thread(void *arg) { int cpunr = (unsigned long)arg; DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0); static const struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; unsigned int count = 0; unsigned int target_ratio; set_bit(cpunr, cpu_clamping_mask); set_freezable(); init_timer_on_stack(&wakeup_timer); sched_setscheduler(current, SCHED_FIFO, ¶m); while (true == clamping && !kthread_should_stop() && cpu_online(cpunr)) { int sleeptime; unsigned long target_jiffies; unsigned int guard; unsigned int compensation = 0; int interval; /* jiffies to sleep for each attempt */ unsigned int duration_jiffies = msecs_to_jiffies(duration); unsigned int window_size_now; try_to_freeze(); /* * make sure user selected ratio does not take effect until * the next round. adjust target_ratio if user has changed * target such that we can converge quickly. */ target_ratio = set_target_ratio; guard = 1 + target_ratio/20; window_size_now = window_size; count++; /* * systems may have different ability to enter package level * c-states, thus we need to compensate the injected idle ratio * to achieve the actual target reported by the HW. */ compensation = get_compensation(target_ratio); interval = duration_jiffies*100/(target_ratio+compensation); /* align idle time */ target_jiffies = roundup(jiffies, interval); sleeptime = target_jiffies - jiffies; if (sleeptime <= 0) sleeptime = 1; schedule_timeout_interruptible(sleeptime); /* * only elected controlling cpu can collect stats and update * control parameters. */ if (cpunr == control_cpu && !(count%window_size_now)) { should_skip = powerclamp_adjust_controls(target_ratio, guard, window_size_now); smp_mb(); } if (should_skip) continue; target_jiffies = jiffies + duration_jiffies; mod_timer(&wakeup_timer, target_jiffies); if (unlikely(local_softirq_pending())) continue; /* * stop tick sched during idle time, interrupts are still * allowed. thus jiffies are updated properly. */ preempt_disable(); tick_nohz_idle_enter(); /* mwait until target jiffies is reached */ while (time_before(jiffies, target_jiffies)) { unsigned long ecx = 1; unsigned long eax = target_mwait; /* * REVISIT: may call enter_idle() to notify drivers who * can save power during cpu idle. same for exit_idle() */ local_touch_nmi(); stop_critical_timings(); __monitor((void *)¤t_thread_info()->flags, 0, 0); cpu_relax(); /* allow HT sibling to run */ __mwait(eax, ecx); start_critical_timings(); atomic_inc(&idle_wakeup_counter); } tick_nohz_idle_exit(); preempt_enable_no_resched(); } del_timer_sync(&wakeup_timer); clear_bit(cpunr, cpu_clamping_mask); return 0; } /* * 1 HZ polling while clamping is active, useful for userspace * to monitor actual idle ratio. */ static void poll_pkg_cstate(struct work_struct *dummy); static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); static void poll_pkg_cstate(struct work_struct *dummy) { static u64 msr_last; static u64 tsc_last; static unsigned long jiffies_last; u64 msr_now; unsigned long jiffies_now; u64 tsc_now; u64 val64; msr_now = pkg_state_counter(); rdtscll(tsc_now); jiffies_now = jiffies; /* calculate pkg cstate vs tsc ratio */ if (!msr_last || !tsc_last) pkg_cstate_ratio_cur = 1; else { if (tsc_now - tsc_last) { val64 = 100 * (msr_now - msr_last); do_div(val64, (tsc_now - tsc_last)); pkg_cstate_ratio_cur = val64; } } /* update record */ msr_last = msr_now; jiffies_last = jiffies_now; tsc_last = tsc_now; if (true == clamping) schedule_delayed_work(&poll_pkg_cstate_work, HZ); } static int start_power_clamp(void) { unsigned long cpu; struct task_struct *thread; /* check if pkg cstate counter is completely 0, abort in this case */ if (!pkg_state_counter()) { pr_err("pkg cstate counter not functional, abort\n"); return -EINVAL; } set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO); /* prevent cpu hotplug */ get_online_cpus(); /* prefer BSP */ control_cpu = 0; if (!cpu_online(control_cpu)) control_cpu = smp_processor_id(); clamping = true; schedule_delayed_work(&poll_pkg_cstate_work, 0); /* start one thread per online cpu */ for_each_online_cpu(cpu) { struct task_struct **p = per_cpu_ptr(powerclamp_thread, cpu); thread = kthread_create_on_node(clamp_thread, (void *) cpu, cpu_to_node(cpu), "kidle_inject/%ld", cpu); /* bind to cpu here */ if (likely(!IS_ERR(thread))) { kthread_bind(thread, cpu); wake_up_process(thread); *p = thread; } } put_online_cpus(); return 0; } static void end_power_clamp(void) { int i; struct task_struct *thread; clamping = false; /* * make clamping visible to other cpus and give per cpu clamping threads * sometime to exit, or gets killed later. */ smp_mb(); msleep(20); if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { pr_debug("clamping thread for cpu %d alive, kill\n", i); thread = *per_cpu_ptr(powerclamp_thread, i); kthread_stop(thread); } } } static int powerclamp_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned long cpu = (unsigned long)hcpu; struct task_struct *thread; struct task_struct **percpu_thread = per_cpu_ptr(powerclamp_thread, cpu); if (false == clamping) goto exit_ok; switch (action) { case CPU_ONLINE: thread = kthread_create_on_node(clamp_thread, (void *) cpu, cpu_to_node(cpu), "kidle_inject/%lu", cpu); if (likely(!IS_ERR(thread))) { kthread_bind(thread, cpu); wake_up_process(thread); *percpu_thread = thread; } /* prefer BSP as controlling CPU */ if (cpu == 0) { control_cpu = 0; smp_mb(); } break; case CPU_DEAD: if (test_bit(cpu, cpu_clamping_mask)) { pr_err("cpu %lu dead but powerclamping thread is not\n", cpu); kthread_stop(*percpu_thread); } if (cpu == control_cpu) { control_cpu = smp_processor_id(); smp_mb(); } } exit_ok: return NOTIFY_OK; } static struct notifier_block powerclamp_cpu_notifier = { .notifier_call = powerclamp_cpu_callback, }; static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = MAX_TARGET_RATIO; return 0; } static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { if (true == clamping) *state = pkg_cstate_ratio_cur; else /* to save power, do not poll idle ratio while not clamping */ *state = -1; /* indicates invalid state */ return 0; } static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, unsigned long new_target_ratio) { int ret = 0; new_target_ratio = clamp(new_target_ratio, 0UL, (unsigned long) (MAX_TARGET_RATIO-1)); if (set_target_ratio == 0 && new_target_ratio > 0) { pr_info("Start idle injection to reduce power\n"); set_target_ratio = new_target_ratio; ret = start_power_clamp(); goto exit_set; } else if (set_target_ratio > 0 && new_target_ratio == 0) { pr_info("Stop forced idle injection\n"); set_target_ratio = 0; end_power_clamp(); } else /* adjust currently running */ { set_target_ratio = new_target_ratio; /* make new set_target_ratio visible to other cpus */ smp_mb(); } exit_set: return ret; } /* bind to generic thermal layer as cooling device*/ static struct thermal_cooling_device_ops powerclamp_cooling_ops = { .get_max_state = powerclamp_get_max_state, .get_cur_state = powerclamp_get_cur_state, .set_cur_state = powerclamp_set_cur_state, }; /* runs on Nehalem and later */ static const struct x86_cpu_id intel_powerclamp_ids[] = { { X86_VENDOR_INTEL, 6, 0x1a}, { X86_VENDOR_INTEL, 6, 0x1c}, { X86_VENDOR_INTEL, 6, 0x1e}, { X86_VENDOR_INTEL, 6, 0x1f}, { X86_VENDOR_INTEL, 6, 0x25}, { X86_VENDOR_INTEL, 6, 0x26}, { X86_VENDOR_INTEL, 6, 0x2a}, { X86_VENDOR_INTEL, 6, 0x2c}, { X86_VENDOR_INTEL, 6, 0x2d}, { X86_VENDOR_INTEL, 6, 0x2e}, { X86_VENDOR_INTEL, 6, 0x2f}, { X86_VENDOR_INTEL, 6, 0x3a}, {} }; MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); static int powerclamp_probe(void) { if (!x86_match_cpu(intel_powerclamp_ids)) { pr_err("Intel powerclamp does not run on family %d model %d\n", boot_cpu_data.x86, boot_cpu_data.x86_model); return -ENODEV; } if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) || !boot_cpu_has(X86_FEATURE_MWAIT) || !boot_cpu_has(X86_FEATURE_ARAT)) return -ENODEV; /* find the deepest mwait value */ find_target_mwait(); return 0; } static int powerclamp_debug_show(struct seq_file *m, void *unused) { int i = 0; seq_printf(m, "controlling cpu: %d\n", control_cpu); seq_printf(m, "pct confidence steady dynamic (compensation)\n"); for (i = 0; i < MAX_TARGET_RATIO; i++) { seq_printf(m, "%d\t%lu\t%lu\t%lu\n", i, cal_data[i].confidence, cal_data[i].steady_comp, cal_data[i].dynamic_comp); } return 0; } static int powerclamp_debug_open(struct inode *inode, struct file *file) { return single_open(file, powerclamp_debug_show, inode->i_private); } static const struct file_operations powerclamp_debug_fops = { .open = powerclamp_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .owner = THIS_MODULE, }; static inline void powerclamp_create_debug_files(void) { debug_dir = debugfs_create_dir("intel_powerclamp", NULL); if (!debug_dir) return; if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data, &powerclamp_debug_fops)) goto file_error; return; file_error: debugfs_remove_recursive(debug_dir); } static int powerclamp_init(void) { int retval; int bitmap_size; bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); if (!cpu_clamping_mask) return -ENOMEM; /* probe cpu features and ids here */ retval = powerclamp_probe(); if (retval) return retval; /* set default limit, maybe adjusted during runtime based on feedback */ window_size = 2; register_hotcpu_notifier(&powerclamp_cpu_notifier); powerclamp_thread = alloc_percpu(struct task_struct *); cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, &powerclamp_cooling_ops); if (IS_ERR(cooling_dev)) return -ENODEV; if (!duration) duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); powerclamp_create_debug_files(); return 0; } module_init(powerclamp_init); static void powerclamp_exit(void) { unregister_hotcpu_notifier(&powerclamp_cpu_notifier); end_power_clamp(); free_percpu(powerclamp_thread); thermal_cooling_device_unregister(cooling_dev); kfree(cpu_clamping_mask); cancel_delayed_work_sync(&poll_pkg_cstate_work); debugfs_remove_recursive(debug_dir); } module_exit(powerclamp_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arjan van de Ven "); MODULE_AUTHOR("Jacob Pan "); MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");