// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, Sony Mobile Communications AB. * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include /* * The Qualcomm shared memory system is a allocate only heap structure that * consists of one of more memory areas that can be accessed by the processors * in the SoC. * * All systems contains a global heap, accessible by all processors in the SoC, * with a table of contents data structure (@smem_header) at the beginning of * the main shared memory block. * * The global header contains meta data for allocations as well as a fixed list * of 512 entries (@smem_global_entry) that can be initialized to reference * parts of the shared memory space. * * * In addition to this global heap a set of "private" heaps can be set up at * boot time with access restrictions so that only certain processor pairs can * access the data. * * These partitions are referenced from an optional partition table * (@smem_ptable), that is found 4kB from the end of the main smem region. The * partition table entries (@smem_ptable_entry) lists the involved processors * (or hosts) and their location in the main shared memory region. * * Each partition starts with a header (@smem_partition_header) that identifies * the partition and holds properties for the two internal memory regions. The * two regions are cached and non-cached memory respectively. Each region * contain a link list of allocation headers (@smem_private_entry) followed by * their data. * * Items in the non-cached region are allocated from the start of the partition * while items in the cached region are allocated from the end. The free area * is hence the region between the cached and non-cached offsets. The header of * cached items comes after the data. * * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure * for the global heap. A new global partition is created from the global heap * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is * set by the bootloader. * * To synchronize allocations in the shared memory heaps a remote spinlock must * be held - currently lock number 3 of the sfpb or tcsr is used for this on all * platforms. * */ /* * The version member of the smem header contains an array of versions for the * various software components in the SoC. We verify that the boot loader * version is a valid version as a sanity check. */ #define SMEM_MASTER_SBL_VERSION_INDEX 7 #define SMEM_GLOBAL_HEAP_VERSION 11 #define SMEM_GLOBAL_PART_VERSION 12 /* * The first 8 items are only to be allocated by the boot loader while * initializing the heap. */ #define SMEM_ITEM_LAST_FIXED 8 /* Highest accepted item number, for both global and private heaps */ #define SMEM_ITEM_COUNT 512 /* Processor/host identifier for the application processor */ #define SMEM_HOST_APPS 0 /* Processor/host identifier for the global partition */ #define SMEM_GLOBAL_HOST 0xfffe /* Max number of processors/hosts in a system */ #define SMEM_HOST_COUNT 20 /** * struct smem_proc_comm - proc_comm communication struct (legacy) * @command: current command to be executed * @status: status of the currently requested command * @params: parameters to the command */ struct smem_proc_comm { __le32 command; __le32 status; __le32 params[2]; }; /** * struct smem_global_entry - entry to reference smem items on the heap * @allocated: boolean to indicate if this entry is used * @offset: offset to the allocated space * @size: size of the allocated space, 8 byte aligned * @aux_base: base address for the memory region used by this unit, or 0 for * the default region. bits 0,1 are reserved */ struct smem_global_entry { __le32 allocated; __le32 offset; __le32 size; __le32 aux_base; /* bits 1:0 reserved */ }; #define AUX_BASE_MASK 0xfffffffc /** * struct smem_header - header found in beginning of primary smem region * @proc_comm: proc_comm communication interface (legacy) * @version: array of versions for the various subsystems * @initialized: boolean to indicate that smem is initialized * @free_offset: index of the first unallocated byte in smem * @available: number of bytes available for allocation * @reserved: reserved field, must be 0 * @toc: array of references to items */ struct smem_header { struct smem_proc_comm proc_comm[4]; __le32 version[32]; __le32 initialized; __le32 free_offset; __le32 available; __le32 reserved; struct smem_global_entry toc[SMEM_ITEM_COUNT]; }; /** * struct smem_ptable_entry - one entry in the @smem_ptable list * @offset: offset, within the main shared memory region, of the partition * @size: size of the partition * @flags: flags for the partition (currently unused) * @host0: first processor/host with access to this partition * @host1: second processor/host with access to this partition * @cacheline: alignment for "cached" entries * @reserved: reserved entries for later use */ struct smem_ptable_entry { __le32 offset; __le32 size; __le32 flags; __le16 host0; __le16 host1; __le32 cacheline; __le32 reserved[7]; }; /** * struct smem_ptable - partition table for the private partitions * @magic: magic number, must be SMEM_PTABLE_MAGIC * @version: version of the partition table * @num_entries: number of partitions in the table * @reserved: for now reserved entries * @entry: list of @smem_ptable_entry for the @num_entries partitions */ struct smem_ptable { u8 magic[4]; __le32 version; __le32 num_entries; __le32 reserved[5]; struct smem_ptable_entry entry[]; }; static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ /** * struct smem_partition_header - header of the partitions * @magic: magic number, must be SMEM_PART_MAGIC * @host0: first processor/host with access to this partition * @host1: second processor/host with access to this partition * @size: size of the partition * @offset_free_uncached: offset to the first free byte of uncached memory in * this partition * @offset_free_cached: offset to the first free byte of cached memory in this * partition * @reserved: for now reserved entries */ struct smem_partition_header { u8 magic[4]; __le16 host0; __le16 host1; __le32 size; __le32 offset_free_uncached; __le32 offset_free_cached; __le32 reserved[3]; }; /** * struct smem_partition - describes smem partition * @virt_base: starting virtual address of partition * @phys_base: starting physical address of partition * @cacheline: alignment for "cached" entries * @size: size of partition */ struct smem_partition { void __iomem *virt_base; phys_addr_t phys_base; size_t cacheline; size_t size; }; static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; /** * struct smem_private_entry - header of each item in the private partition * @canary: magic number, must be SMEM_PRIVATE_CANARY * @item: identifying number of the smem item * @size: size of the data, including padding bytes * @padding_data: number of bytes of padding of data * @padding_hdr: number of bytes of padding between the header and the data * @reserved: for now reserved entry */ struct smem_private_entry { u16 canary; /* bytes are the same so no swapping needed */ __le16 item; __le32 size; /* includes padding bytes */ __le16 padding_data; __le16 padding_hdr; __le32 reserved; }; #define SMEM_PRIVATE_CANARY 0xa5a5 /** * struct smem_info - smem region info located after the table of contents * @magic: magic number, must be SMEM_INFO_MAGIC * @size: size of the smem region * @base_addr: base address of the smem region * @reserved: for now reserved entry * @num_items: highest accepted item number */ struct smem_info { u8 magic[4]; __le32 size; __le32 base_addr; __le32 reserved; __le16 num_items; }; static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ /** * struct smem_region - representation of a chunk of memory used for smem * @aux_base: identifier of aux_mem base * @virt_base: virtual base address of memory with this aux_mem identifier * @size: size of the memory region */ struct smem_region { phys_addr_t aux_base; void __iomem *virt_base; size_t size; }; /** * struct qcom_smem - device data for the smem device * @dev: device pointer * @hwlock: reference to a hwspinlock * @ptable: virtual base of partition table * @global_partition: describes for global partition when in use * @partitions: list of partitions of current processor/host * @item_count: max accepted item number * @socinfo: platform device pointer * @num_regions: number of @regions * @regions: list of the memory regions defining the shared memory */ struct qcom_smem { struct device *dev; struct hwspinlock *hwlock; u32 item_count; struct platform_device *socinfo; struct smem_ptable *ptable; struct smem_partition global_partition; struct smem_partition partitions[SMEM_HOST_COUNT]; unsigned num_regions; struct smem_region regions[] __counted_by(num_regions); }; static void * phdr_to_last_uncached_entry(struct smem_partition_header *phdr) { void *p = phdr; return p + le32_to_cpu(phdr->offset_free_uncached); } static struct smem_private_entry * phdr_to_first_cached_entry(struct smem_partition_header *phdr, size_t cacheline) { void *p = phdr; struct smem_private_entry *e; return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); } static void * phdr_to_last_cached_entry(struct smem_partition_header *phdr) { void *p = phdr; return p + le32_to_cpu(phdr->offset_free_cached); } static struct smem_private_entry * phdr_to_first_uncached_entry(struct smem_partition_header *phdr) { void *p = phdr; return p + sizeof(*phdr); } static struct smem_private_entry * uncached_entry_next(struct smem_private_entry *e) { void *p = e; return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + le32_to_cpu(e->size); } static struct smem_private_entry * cached_entry_next(struct smem_private_entry *e, size_t cacheline) { void *p = e; return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); } static void *uncached_entry_to_item(struct smem_private_entry *e) { void *p = e; return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); } static void *cached_entry_to_item(struct smem_private_entry *e) { void *p = e; return p - le32_to_cpu(e->size); } /* Pointer to the one and only smem handle */ static struct qcom_smem *__smem; /* Timeout (ms) for the trylock of remote spinlocks */ #define HWSPINLOCK_TIMEOUT 1000 /** * qcom_smem_is_available() - Check if SMEM is available * * Return: true if SMEM is available, false otherwise. */ bool qcom_smem_is_available(void) { return !!__smem; } EXPORT_SYMBOL_GPL(qcom_smem_is_available); static int qcom_smem_alloc_private(struct qcom_smem *smem, struct smem_partition *part, unsigned item, size_t size) { struct smem_private_entry *hdr, *end; struct smem_partition_header *phdr; size_t alloc_size; void *cached; void *p_end; phdr = (struct smem_partition_header __force *)part->virt_base; p_end = (void *)phdr + part->size; hdr = phdr_to_first_uncached_entry(phdr); end = phdr_to_last_uncached_entry(phdr); cached = phdr_to_last_cached_entry(phdr); if (WARN_ON((void *)end > p_end || cached > p_end)) return -EINVAL; while (hdr < end) { if (hdr->canary != SMEM_PRIVATE_CANARY) goto bad_canary; if (le16_to_cpu(hdr->item) == item) return -EEXIST; hdr = uncached_entry_next(hdr); } if (WARN_ON((void *)hdr > p_end)) return -EINVAL; /* Check that we don't grow into the cached region */ alloc_size = sizeof(*hdr) + ALIGN(size, 8); if ((void *)hdr + alloc_size > cached) { dev_err(smem->dev, "Out of memory\n"); return -ENOSPC; } hdr->canary = SMEM_PRIVATE_CANARY; hdr->item = cpu_to_le16(item); hdr->size = cpu_to_le32(ALIGN(size, 8)); hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); hdr->padding_hdr = 0; /* * Ensure the header is written before we advance the free offset, so * that remote processors that does not take the remote spinlock still * gets a consistent view of the linked list. */ wmb(); le32_add_cpu(&phdr->offset_free_uncached, alloc_size); return 0; bad_canary: dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); return -EINVAL; } static int qcom_smem_alloc_global(struct qcom_smem *smem, unsigned item, size_t size) { struct smem_global_entry *entry; struct smem_header *header; header = smem->regions[0].virt_base; entry = &header->toc[item]; if (entry->allocated) return -EEXIST; size = ALIGN(size, 8); if (WARN_ON(size > le32_to_cpu(header->available))) return -ENOMEM; entry->offset = header->free_offset; entry->size = cpu_to_le32(size); /* * Ensure the header is consistent before we mark the item allocated, * so that remote processors will get a consistent view of the item * even though they do not take the spinlock on read. */ wmb(); entry->allocated = cpu_to_le32(1); le32_add_cpu(&header->free_offset, size); le32_add_cpu(&header->available, -size); return 0; } /** * qcom_smem_alloc() - allocate space for a smem item * @host: remote processor id, or -1 * @item: smem item handle * @size: number of bytes to be allocated * * Allocate space for a given smem item of size @size, given that the item is * not yet allocated. */ int qcom_smem_alloc(unsigned host, unsigned item, size_t size) { struct smem_partition *part; unsigned long flags; int ret; if (!__smem) return -EPROBE_DEFER; if (item < SMEM_ITEM_LAST_FIXED) { dev_err(__smem->dev, "Rejecting allocation of static entry %d\n", item); return -EINVAL; } if (WARN_ON(item >= __smem->item_count)) return -EINVAL; ret = hwspin_lock_timeout_irqsave(__smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); if (ret) return ret; if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { part = &__smem->partitions[host]; ret = qcom_smem_alloc_private(__smem, part, item, size); } else if (__smem->global_partition.virt_base) { part = &__smem->global_partition; ret = qcom_smem_alloc_private(__smem, part, item, size); } else { ret = qcom_smem_alloc_global(__smem, item, size); } hwspin_unlock_irqrestore(__smem->hwlock, &flags); return ret; } EXPORT_SYMBOL_GPL(qcom_smem_alloc); static void *qcom_smem_get_global(struct qcom_smem *smem, unsigned item, size_t *size) { struct smem_header *header; struct smem_region *region; struct smem_global_entry *entry; u64 entry_offset; u32 e_size; u32 aux_base; unsigned i; header = smem->regions[0].virt_base; entry = &header->toc[item]; if (!entry->allocated) return ERR_PTR(-ENXIO); aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; for (i = 0; i < smem->num_regions; i++) { region = &smem->regions[i]; if ((u32)region->aux_base == aux_base || !aux_base) { e_size = le32_to_cpu(entry->size); entry_offset = le32_to_cpu(entry->offset); if (WARN_ON(e_size + entry_offset > region->size)) return ERR_PTR(-EINVAL); if (size != NULL) *size = e_size; return region->virt_base + entry_offset; } } return ERR_PTR(-ENOENT); } static void *qcom_smem_get_private(struct qcom_smem *smem, struct smem_partition *part, unsigned item, size_t *size) { struct smem_private_entry *e, *end; struct smem_partition_header *phdr; void *item_ptr, *p_end; u32 padding_data; u32 e_size; phdr = (struct smem_partition_header __force *)part->virt_base; p_end = (void *)phdr + part->size; e = phdr_to_first_uncached_entry(phdr); end = phdr_to_last_uncached_entry(phdr); while (e < end) { if (e->canary != SMEM_PRIVATE_CANARY) goto invalid_canary; if (le16_to_cpu(e->item) == item) { if (size != NULL) { e_size = le32_to_cpu(e->size); padding_data = le16_to_cpu(e->padding_data); if (WARN_ON(e_size > part->size || padding_data > e_size)) return ERR_PTR(-EINVAL); *size = e_size - padding_data; } item_ptr = uncached_entry_to_item(e); if (WARN_ON(item_ptr > p_end)) return ERR_PTR(-EINVAL); return item_ptr; } e = uncached_entry_next(e); } if (WARN_ON((void *)e > p_end)) return ERR_PTR(-EINVAL); /* Item was not found in the uncached list, search the cached list */ e = phdr_to_first_cached_entry(phdr, part->cacheline); end = phdr_to_last_cached_entry(phdr); if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) return ERR_PTR(-EINVAL); while (e > end) { if (e->canary != SMEM_PRIVATE_CANARY) goto invalid_canary; if (le16_to_cpu(e->item) == item) { if (size != NULL) { e_size = le32_to_cpu(e->size); padding_data = le16_to_cpu(e->padding_data); if (WARN_ON(e_size > part->size || padding_data > e_size)) return ERR_PTR(-EINVAL); *size = e_size - padding_data; } item_ptr = cached_entry_to_item(e); if (WARN_ON(item_ptr < (void *)phdr)) return ERR_PTR(-EINVAL); return item_ptr; } e = cached_entry_next(e, part->cacheline); } if (WARN_ON((void *)e < (void *)phdr)) return ERR_PTR(-EINVAL); return ERR_PTR(-ENOENT); invalid_canary: dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); return ERR_PTR(-EINVAL); } /** * qcom_smem_get() - resolve ptr of size of a smem item * @host: the remote processor, or -1 * @item: smem item handle * @size: pointer to be filled out with size of the item * * Looks up smem item and returns pointer to it. Size of smem * item is returned in @size. */ void *qcom_smem_get(unsigned host, unsigned item, size_t *size) { struct smem_partition *part; void *ptr = ERR_PTR(-EPROBE_DEFER); if (!__smem) return ptr; if (WARN_ON(item >= __smem->item_count)) return ERR_PTR(-EINVAL); if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { part = &__smem->partitions[host]; ptr = qcom_smem_get_private(__smem, part, item, size); } else if (__smem->global_partition.virt_base) { part = &__smem->global_partition; ptr = qcom_smem_get_private(__smem, part, item, size); } else { ptr = qcom_smem_get_global(__smem, item, size); } return ptr; } EXPORT_SYMBOL_GPL(qcom_smem_get); /** * qcom_smem_get_free_space() - retrieve amount of free space in a partition * @host: the remote processor identifying a partition, or -1 * * To be used by smem clients as a quick way to determine if any new * allocations has been made. */ int qcom_smem_get_free_space(unsigned host) { struct smem_partition *part; struct smem_partition_header *phdr; struct smem_header *header; unsigned ret; if (!__smem) return -EPROBE_DEFER; if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { part = &__smem->partitions[host]; phdr = part->virt_base; ret = le32_to_cpu(phdr->offset_free_cached) - le32_to_cpu(phdr->offset_free_uncached); if (ret > le32_to_cpu(part->size)) return -EINVAL; } else if (__smem->global_partition.virt_base) { part = &__smem->global_partition; phdr = part->virt_base; ret = le32_to_cpu(phdr->offset_free_cached) - le32_to_cpu(phdr->offset_free_uncached); if (ret > le32_to_cpu(part->size)) return -EINVAL; } else { header = __smem->regions[0].virt_base; ret = le32_to_cpu(header->available); if (ret > __smem->regions[0].size) return -EINVAL; } return ret; } EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); static bool addr_in_range(void __iomem *base, size_t size, void *addr) { return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); } /** * qcom_smem_virt_to_phys() - return the physical address associated * with an smem item pointer (previously returned by qcom_smem_get() * @p: the virtual address to convert * * Returns 0 if the pointer provided is not within any smem region. */ phys_addr_t qcom_smem_virt_to_phys(void *p) { struct smem_partition *part; struct smem_region *area; u64 offset; u32 i; for (i = 0; i < SMEM_HOST_COUNT; i++) { part = &__smem->partitions[i]; if (addr_in_range(part->virt_base, part->size, p)) { offset = p - part->virt_base; return (phys_addr_t)part->phys_base + offset; } } part = &__smem->global_partition; if (addr_in_range(part->virt_base, part->size, p)) { offset = p - part->virt_base; return (phys_addr_t)part->phys_base + offset; } for (i = 0; i < __smem->num_regions; i++) { area = &__smem->regions[i]; if (addr_in_range(area->virt_base, area->size, p)) { offset = p - area->virt_base; return (phys_addr_t)area->aux_base + offset; } } return 0; } EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); /** * qcom_smem_get_soc_id() - return the SoC ID * @id: On success, we return the SoC ID here. * * Look up SoC ID from HW/SW build ID and return it. * * Return: 0 on success, negative errno on failure. */ int qcom_smem_get_soc_id(u32 *id) { struct socinfo *info; info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); if (IS_ERR(info)) return PTR_ERR(info); *id = __le32_to_cpu(info->id); return 0; } EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); /** * qcom_smem_get_feature_code() - return the feature code * @code: On success, return the feature code here. * * Look up the feature code identifier from SMEM and return it. * * Return: 0 on success, negative errno on failure. */ int qcom_smem_get_feature_code(u32 *code) { struct socinfo *info; u32 raw_code; info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); if (IS_ERR(info)) return PTR_ERR(info); /* This only makes sense for socinfo >= 16 */ if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16)) return -EOPNOTSUPP; raw_code = __le32_to_cpu(info->feature_code); /* Ensure the value makes sense */ if (raw_code > SOCINFO_FC_INT_MAX) raw_code = SOCINFO_FC_UNKNOWN; *code = raw_code; return 0; } EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code); static int qcom_smem_get_sbl_version(struct qcom_smem *smem) { struct smem_header *header; __le32 *versions; header = smem->regions[0].virt_base; versions = header->version; return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); } static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) { struct smem_ptable *ptable; u32 version; ptable = smem->ptable; if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) return ERR_PTR(-ENOENT); version = le32_to_cpu(ptable->version); if (version != 1) { dev_err(smem->dev, "Unsupported partition header version %d\n", version); return ERR_PTR(-EINVAL); } return ptable; } static u32 qcom_smem_get_item_count(struct qcom_smem *smem) { struct smem_ptable *ptable; struct smem_info *info; ptable = qcom_smem_get_ptable(smem); if (IS_ERR_OR_NULL(ptable)) return SMEM_ITEM_COUNT; info = (struct smem_info *)&ptable->entry[ptable->num_entries]; if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) return SMEM_ITEM_COUNT; return le16_to_cpu(info->num_items); } /* * Validate the partition header for a partition whose partition * table entry is supplied. Returns a pointer to its header if * valid, or a null pointer otherwise. */ static struct smem_partition_header * qcom_smem_partition_header(struct qcom_smem *smem, struct smem_ptable_entry *entry, u16 host0, u16 host1) { struct smem_partition_header *header; u32 phys_addr; u32 size; phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); if (!header) return NULL; if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); return NULL; } if (host0 != le16_to_cpu(header->host0)) { dev_err(smem->dev, "bad host0 (%hu != %hu)\n", host0, le16_to_cpu(header->host0)); return NULL; } if (host1 != le16_to_cpu(header->host1)) { dev_err(smem->dev, "bad host1 (%hu != %hu)\n", host1, le16_to_cpu(header->host1)); return NULL; } size = le32_to_cpu(header->size); if (size != le32_to_cpu(entry->size)) { dev_err(smem->dev, "bad partition size (%u != %u)\n", size, le32_to_cpu(entry->size)); return NULL; } if (le32_to_cpu(header->offset_free_uncached) > size) { dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", le32_to_cpu(header->offset_free_uncached), size); return NULL; } return header; } static int qcom_smem_set_global_partition(struct qcom_smem *smem) { struct smem_partition_header *header; struct smem_ptable_entry *entry; struct smem_ptable *ptable; bool found = false; int i; if (smem->global_partition.virt_base) { dev_err(smem->dev, "Already found the global partition\n"); return -EINVAL; } ptable = qcom_smem_get_ptable(smem); if (IS_ERR(ptable)) return PTR_ERR(ptable); for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { entry = &ptable->entry[i]; if (!le32_to_cpu(entry->offset)) continue; if (!le32_to_cpu(entry->size)) continue; if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) continue; if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { found = true; break; } } if (!found) { dev_err(smem->dev, "Missing entry for global partition\n"); return -EINVAL; } header = qcom_smem_partition_header(smem, entry, SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); if (!header) return -EINVAL; smem->global_partition.virt_base = (void __iomem *)header; smem->global_partition.phys_base = smem->regions[0].aux_base + le32_to_cpu(entry->offset); smem->global_partition.size = le32_to_cpu(entry->size); smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); return 0; } static int qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) { struct smem_partition_header *header; struct smem_ptable_entry *entry; struct smem_ptable *ptable; u16 remote_host; u16 host0, host1; int i; ptable = qcom_smem_get_ptable(smem); if (IS_ERR(ptable)) return PTR_ERR(ptable); for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { entry = &ptable->entry[i]; if (!le32_to_cpu(entry->offset)) continue; if (!le32_to_cpu(entry->size)) continue; host0 = le16_to_cpu(entry->host0); host1 = le16_to_cpu(entry->host1); if (host0 == local_host) remote_host = host1; else if (host1 == local_host) remote_host = host0; else continue; if (remote_host >= SMEM_HOST_COUNT) { dev_err(smem->dev, "bad host %u\n", remote_host); return -EINVAL; } if (smem->partitions[remote_host].virt_base) { dev_err(smem->dev, "duplicate host %u\n", remote_host); return -EINVAL; } header = qcom_smem_partition_header(smem, entry, host0, host1); if (!header) return -EINVAL; smem->partitions[remote_host].virt_base = (void __iomem *)header; smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + le32_to_cpu(entry->offset); smem->partitions[remote_host].size = le32_to_cpu(entry->size); smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); } return 0; } static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) { u32 ptable_start; /* map starting 4K for smem header */ region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); ptable_start = region->aux_base + region->size - SZ_4K; /* map last 4k for toc */ smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); if (!region->virt_base || !smem->ptable) return -ENOMEM; return 0; } static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) { u32 phys_addr; phys_addr = smem->regions[0].aux_base; smem->regions[0].size = size; smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); if (!smem->regions[0].virt_base) return -ENOMEM; return 0; } static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, struct smem_region *region) { struct device *dev = smem->dev; struct device_node *np; struct resource r; int ret; np = of_parse_phandle(dev->of_node, name, 0); if (!np) { dev_err(dev, "No %s specified\n", name); return -EINVAL; } ret = of_address_to_resource(np, 0, &r); of_node_put(np); if (ret) return ret; region->aux_base = r.start; region->size = resource_size(&r); return 0; } static int qcom_smem_probe(struct platform_device *pdev) { struct smem_header *header; struct reserved_mem *rmem; struct qcom_smem *smem; unsigned long flags; int num_regions; int hwlock_id; u32 version; u32 size; int ret; int i; num_regions = 1; if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) num_regions++; smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions), GFP_KERNEL); if (!smem) return -ENOMEM; smem->dev = &pdev->dev; smem->num_regions = num_regions; rmem = of_reserved_mem_lookup(pdev->dev.of_node); if (rmem) { smem->regions[0].aux_base = rmem->base; smem->regions[0].size = rmem->size; } else { /* * Fall back to the memory-region reference, if we're not a * reserved-memory node. */ ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); if (ret) return ret; } if (num_regions > 1) { ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); if (ret) return ret; } ret = qcom_smem_map_toc(smem, &smem->regions[0]); if (ret) return ret; for (i = 1; i < num_regions; i++) { smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, smem->regions[i].aux_base, smem->regions[i].size); if (!smem->regions[i].virt_base) { dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); return -ENOMEM; } } header = smem->regions[0].virt_base; if (le32_to_cpu(header->initialized) != 1 || le32_to_cpu(header->reserved)) { dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); return -EINVAL; } hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); if (hwlock_id < 0) { if (hwlock_id != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to retrieve hwlock\n"); return hwlock_id; } smem->hwlock = hwspin_lock_request_specific(hwlock_id); if (!smem->hwlock) return -ENXIO; ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); if (ret) return ret; size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); hwspin_unlock_irqrestore(smem->hwlock, &flags); version = qcom_smem_get_sbl_version(smem); /* * smem header mapping is required only in heap version scheme, so unmap * it here. It will be remapped in qcom_smem_map_global() when whole * partition is mapped again. */ devm_iounmap(smem->dev, smem->regions[0].virt_base); switch (version >> 16) { case SMEM_GLOBAL_PART_VERSION: ret = qcom_smem_set_global_partition(smem); if (ret < 0) return ret; smem->item_count = qcom_smem_get_item_count(smem); break; case SMEM_GLOBAL_HEAP_VERSION: qcom_smem_map_global(smem, size); smem->item_count = SMEM_ITEM_COUNT; break; default: dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); return -EINVAL; } BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); if (ret < 0 && ret != -ENOENT) return ret; __smem = smem; smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", PLATFORM_DEVID_NONE, NULL, 0); if (IS_ERR(smem->socinfo)) dev_dbg(&pdev->dev, "failed to register socinfo device\n"); return 0; } static void qcom_smem_remove(struct platform_device *pdev) { platform_device_unregister(__smem->socinfo); hwspin_lock_free(__smem->hwlock); __smem = NULL; } static const struct of_device_id qcom_smem_of_match[] = { { .compatible = "qcom,smem" }, {} }; MODULE_DEVICE_TABLE(of, qcom_smem_of_match); static struct platform_driver qcom_smem_driver = { .probe = qcom_smem_probe, .remove_new = qcom_smem_remove, .driver = { .name = "qcom-smem", .of_match_table = qcom_smem_of_match, .suppress_bind_attrs = true, }, }; static int __init qcom_smem_init(void) { return platform_driver_register(&qcom_smem_driver); } arch_initcall(qcom_smem_init); static void __exit qcom_smem_exit(void) { platform_driver_unregister(&qcom_smem_driver); } module_exit(qcom_smem_exit) MODULE_AUTHOR("Bjorn Andersson "); MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); MODULE_LICENSE("GPL v2");