/* * Marvell Dove PMU support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NR_PMU_IRQS 7 #define PMC_SW_RST 0x30 #define PMC_IRQ_CAUSE 0x50 #define PMC_IRQ_MASK 0x54 #define PMU_PWR 0x10 #define PMU_ISO 0x58 struct pmu_data { spinlock_t lock; struct device_node *of_node; void __iomem *pmc_base; void __iomem *pmu_base; struct irq_chip_generic *irq_gc; struct irq_domain *irq_domain; #ifdef CONFIG_RESET_CONTROLLER struct reset_controller_dev reset; #endif }; /* * The PMU contains a register to reset various subsystems within the * SoC. Export this as a reset controller. */ #ifdef CONFIG_RESET_CONTROLLER #define rcdev_to_pmu(rcdev) container_of(rcdev, struct pmu_data, reset) static int pmu_reset_reset(struct reset_controller_dev *rc, unsigned long id) { struct pmu_data *pmu = rcdev_to_pmu(rc); unsigned long flags; u32 val; spin_lock_irqsave(&pmu->lock, flags); val = readl_relaxed(pmu->pmc_base + PMC_SW_RST); writel_relaxed(val & ~BIT(id), pmu->pmc_base + PMC_SW_RST); writel_relaxed(val | BIT(id), pmu->pmc_base + PMC_SW_RST); spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static int pmu_reset_assert(struct reset_controller_dev *rc, unsigned long id) { struct pmu_data *pmu = rcdev_to_pmu(rc); unsigned long flags; u32 val = ~BIT(id); spin_lock_irqsave(&pmu->lock, flags); val &= readl_relaxed(pmu->pmc_base + PMC_SW_RST); writel_relaxed(val, pmu->pmc_base + PMC_SW_RST); spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static int pmu_reset_deassert(struct reset_controller_dev *rc, unsigned long id) { struct pmu_data *pmu = rcdev_to_pmu(rc); unsigned long flags; u32 val = BIT(id); spin_lock_irqsave(&pmu->lock, flags); val |= readl_relaxed(pmu->pmc_base + PMC_SW_RST); writel_relaxed(val, pmu->pmc_base + PMC_SW_RST); spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static struct reset_control_ops pmu_reset_ops = { .reset = pmu_reset_reset, .assert = pmu_reset_assert, .deassert = pmu_reset_deassert, }; static struct reset_controller_dev pmu_reset __initdata = { .ops = &pmu_reset_ops, .owner = THIS_MODULE, .nr_resets = 32, }; static void __init pmu_reset_init(struct pmu_data *pmu) { int ret; pmu->reset = pmu_reset; pmu->reset.of_node = pmu->of_node; ret = reset_controller_register(&pmu->reset); if (ret) pr_err("pmu: %s failed: %d\n", "reset_controller_register", ret); } #else static void __init pmu_reset_init(struct pmu_data *pmu) { } #endif struct pmu_domain { struct pmu_data *pmu; u32 pwr_mask; u32 rst_mask; u32 iso_mask; struct generic_pm_domain base; }; #define to_pmu_domain(dom) container_of(dom, struct pmu_domain, base) /* * This deals with the "old" Marvell sequence of bringing a power domain * down/up, which is: apply power, release reset, disable isolators. * * Later devices apparantly use a different sequence: power up, disable * isolators, assert repair signal, enable SRMA clock, enable AXI clock, * enable module clock, deassert reset. * * Note: reading the assembly, it seems that the IO accessors have an * unfortunate side-effect - they cause memory already read into registers * for the if () to be re-read for the bit-set or bit-clear operation. * The code is written to avoid this. */ static int pmu_domain_power_off(struct generic_pm_domain *domain) { struct pmu_domain *pmu_dom = to_pmu_domain(domain); struct pmu_data *pmu = pmu_dom->pmu; unsigned long flags; unsigned int val; void __iomem *pmu_base = pmu->pmu_base; void __iomem *pmc_base = pmu->pmc_base; spin_lock_irqsave(&pmu->lock, flags); /* Enable isolators */ if (pmu_dom->iso_mask) { val = ~pmu_dom->iso_mask; val &= readl_relaxed(pmu_base + PMU_ISO); writel_relaxed(val, pmu_base + PMU_ISO); } /* Reset unit */ if (pmu_dom->rst_mask) { val = ~pmu_dom->rst_mask; val &= readl_relaxed(pmc_base + PMC_SW_RST); writel_relaxed(val, pmc_base + PMC_SW_RST); } /* Power down */ val = readl_relaxed(pmu_base + PMU_PWR) | pmu_dom->pwr_mask; writel_relaxed(val, pmu_base + PMU_PWR); spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static int pmu_domain_power_on(struct generic_pm_domain *domain) { struct pmu_domain *pmu_dom = to_pmu_domain(domain); struct pmu_data *pmu = pmu_dom->pmu; unsigned long flags; unsigned int val; void __iomem *pmu_base = pmu->pmu_base; void __iomem *pmc_base = pmu->pmc_base; spin_lock_irqsave(&pmu->lock, flags); /* Power on */ val = ~pmu_dom->pwr_mask & readl_relaxed(pmu_base + PMU_PWR); writel_relaxed(val, pmu_base + PMU_PWR); /* Release reset */ if (pmu_dom->rst_mask) { val = pmu_dom->rst_mask; val |= readl_relaxed(pmc_base + PMC_SW_RST); writel_relaxed(val, pmc_base + PMC_SW_RST); } /* Disable isolators */ if (pmu_dom->iso_mask) { val = pmu_dom->iso_mask; val |= readl_relaxed(pmu_base + PMU_ISO); writel_relaxed(val, pmu_base + PMU_ISO); } spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static void __pmu_domain_register(struct pmu_domain *domain, struct device_node *np) { unsigned int val = readl_relaxed(domain->pmu->pmu_base + PMU_PWR); domain->base.power_off = pmu_domain_power_off; domain->base.power_on = pmu_domain_power_on; pm_genpd_init(&domain->base, NULL, !(val & domain->pwr_mask)); if (np) of_genpd_add_provider_simple(np, &domain->base); } /* PMU IRQ controller */ static void pmu_irq_handler(unsigned int irq, struct irq_desc *desc) { struct pmu_data *pmu = irq_desc_get_handler_data(desc); struct irq_chip_generic *gc = pmu->irq_gc; struct irq_domain *domain = pmu->irq_domain; void __iomem *base = gc->reg_base; u32 stat = readl_relaxed(base + PMC_IRQ_CAUSE) & gc->mask_cache; u32 done = ~0; if (stat == 0) { handle_bad_irq(irq_desc_get_irq(desc), desc); return; } while (stat) { u32 hwirq = fls(stat) - 1; stat &= ~(1 << hwirq); done &= ~(1 << hwirq); generic_handle_irq(irq_find_mapping(domain, hwirq)); } /* * The PMU mask register is not RW0C: it is RW. This means that * the bits take whatever value is written to them; if you write * a '1', you will set the interrupt. * * Unfortunately this means there is NO race free way to clear * these interrupts. * * So, let's structure the code so that the window is as small as * possible. */ irq_gc_lock(gc); done &= readl_relaxed(base + PMC_IRQ_CAUSE); writel_relaxed(done, base + PMC_IRQ_CAUSE); irq_gc_unlock(gc); } static int __init dove_init_pmu_irq(struct pmu_data *pmu, int irq) { const char *name = "pmu_irq"; struct irq_chip_generic *gc; struct irq_domain *domain; int ret; /* mask and clear all interrupts */ writel(0, pmu->pmc_base + PMC_IRQ_MASK); writel(0, pmu->pmc_base + PMC_IRQ_CAUSE); domain = irq_domain_add_linear(pmu->of_node, NR_PMU_IRQS, &irq_generic_chip_ops, NULL); if (!domain) { pr_err("%s: unable to add irq domain\n", name); return -ENOMEM; } ret = irq_alloc_domain_generic_chips(domain, NR_PMU_IRQS, 1, name, handle_level_irq, IRQ_NOREQUEST | IRQ_NOPROBE, 0, IRQ_GC_INIT_MASK_CACHE); if (ret) { pr_err("%s: unable to alloc irq domain gc: %d\n", name, ret); irq_domain_remove(domain); return ret; } gc = irq_get_domain_generic_chip(domain, 0); gc->reg_base = pmu->pmc_base; gc->chip_types[0].regs.mask = PMC_IRQ_MASK; gc->chip_types[0].chip.irq_mask = irq_gc_mask_clr_bit; gc->chip_types[0].chip.irq_unmask = irq_gc_mask_set_bit; pmu->irq_domain = domain; pmu->irq_gc = gc; irq_set_handler_data(irq, pmu); irq_set_chained_handler(irq, pmu_irq_handler); return 0; } /* * pmu: power-manager@d0000 { * compatible = "marvell,dove-pmu"; * reg = <0xd0000 0x8000> <0xd8000 0x8000>; * interrupts = <33>; * interrupt-controller; * #reset-cells = 1; * vpu_domain: vpu-domain { * #power-domain-cells = <0>; * marvell,pmu_pwr_mask = <0x00000008>; * marvell,pmu_iso_mask = <0x00000001>; * resets = <&pmu 16>; * }; * gpu_domain: gpu-domain { * #power-domain-cells = <0>; * marvell,pmu_pwr_mask = <0x00000004>; * marvell,pmu_iso_mask = <0x00000002>; * resets = <&pmu 18>; * }; * }; */ int __init dove_init_pmu(void) { struct device_node *np_pmu, *domains_node, *np; struct pmu_data *pmu; int ret, parent_irq; /* Lookup the PMU node */ np_pmu = of_find_compatible_node(NULL, NULL, "marvell,dove-pmu"); if (!np_pmu) return 0; domains_node = of_get_child_by_name(np_pmu, "domains"); if (!domains_node) { pr_err("%s: failed to find domains sub-node\n", np_pmu->name); return 0; } pmu = kzalloc(sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; spin_lock_init(&pmu->lock); pmu->of_node = np_pmu; pmu->pmc_base = of_iomap(pmu->of_node, 0); pmu->pmu_base = of_iomap(pmu->of_node, 1); if (!pmu->pmc_base || !pmu->pmu_base) { pr_err("%s: failed to map PMU\n", np_pmu->name); iounmap(pmu->pmu_base); iounmap(pmu->pmc_base); kfree(pmu); return -ENOMEM; } pmu_reset_init(pmu); for_each_available_child_of_node(domains_node, np) { struct of_phandle_args args; struct pmu_domain *domain; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) break; domain->pmu = pmu; domain->base.name = kstrdup(np->name, GFP_KERNEL); if (!domain->base.name) { kfree(domain); break; } of_property_read_u32(np, "marvell,pmu_pwr_mask", &domain->pwr_mask); of_property_read_u32(np, "marvell,pmu_iso_mask", &domain->iso_mask); /* * We parse the reset controller property directly here * to ensure that we can operate when the reset controller * support is not configured into the kernel. */ ret = of_parse_phandle_with_args(np, "resets", "#reset-cells", 0, &args); if (ret == 0) { if (args.np == pmu->of_node) domain->rst_mask = BIT(args.args[0]); of_node_put(args.np); } __pmu_domain_register(domain, np); } pm_genpd_poweroff_unused(); /* Loss of the interrupt controller is not a fatal error. */ parent_irq = irq_of_parse_and_map(pmu->of_node, 0); if (!parent_irq) { pr_err("%s: no interrupt specified\n", np_pmu->name); } else { ret = dove_init_pmu_irq(pmu, parent_irq); if (ret) pr_err("dove_init_pmu_irq() failed: %d\n", ret); } return 0; }