// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang * Hank Janssen * K. Y. Srinivasan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * All wire protocol details (storage protocol between the guest and the host) * are consolidated here. * * Begin protocol definitions. */ /* * Version history: * V1 Beta: 0.1 * V1 RC < 2008/1/31: 1.0 * V1 RC > 2008/1/31: 2.0 * Win7: 4.2 * Win8: 5.1 * Win8.1: 6.0 * Win10: 6.2 */ #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ (((MINOR_) & 0xff))) #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) /* channel callback timeout in ms */ #define CALLBACK_TIMEOUT 2 /* Packet structure describing virtual storage requests. */ enum vstor_packet_operation { VSTOR_OPERATION_COMPLETE_IO = 1, VSTOR_OPERATION_REMOVE_DEVICE = 2, VSTOR_OPERATION_EXECUTE_SRB = 3, VSTOR_OPERATION_RESET_LUN = 4, VSTOR_OPERATION_RESET_ADAPTER = 5, VSTOR_OPERATION_RESET_BUS = 6, VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, VSTOR_OPERATION_END_INITIALIZATION = 8, VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, VSTOR_OPERATION_QUERY_PROPERTIES = 10, VSTOR_OPERATION_ENUMERATE_BUS = 11, VSTOR_OPERATION_FCHBA_DATA = 12, VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, VSTOR_OPERATION_MAXIMUM = 13 }; /* * WWN packet for Fibre Channel HBA */ struct hv_fc_wwn_packet { u8 primary_active; u8 reserved1[3]; u8 primary_port_wwn[8]; u8 primary_node_wwn[8]; u8 secondary_port_wwn[8]; u8 secondary_node_wwn[8]; }; /* * SRB Flag Bits */ #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 #define SRB_FLAGS_DATA_IN 0x00000040 #define SRB_FLAGS_DATA_OUT 0x00000080 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 /* * This flag indicates the request is part of the workflow for processing a D3. */ #define SRB_FLAGS_D3_PROCESSING 0x00000800 #define SRB_FLAGS_IS_ACTIVE 0x00010000 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 #define SP_UNTAGGED ((unsigned char) ~0) #define SRB_SIMPLE_TAG_REQUEST 0x20 /* * Platform neutral description of a scsi request - * this remains the same across the write regardless of 32/64 bit * note: it's patterned off the SCSI_PASS_THROUGH structure */ #define STORVSC_MAX_CMD_LEN 0x10 /* Sense buffer size is the same for all versions since Windows 8 */ #define STORVSC_SENSE_BUFFER_SIZE 0x14 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 /* * The storage protocol version is determined during the * initial exchange with the host. It will indicate which * storage functionality is available in the host. */ static int vmstor_proto_version; #define STORVSC_LOGGING_NONE 0 #define STORVSC_LOGGING_ERROR 1 #define STORVSC_LOGGING_WARN 2 static int logging_level = STORVSC_LOGGING_ERROR; module_param(logging_level, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(logging_level, "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); static inline bool do_logging(int level) { return logging_level >= level; } #define storvsc_log(dev, level, fmt, ...) \ do { \ if (do_logging(level)) \ dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ } while (0) struct vmscsi_request { u16 length; u8 srb_status; u8 scsi_status; u8 port_number; u8 path_id; u8 target_id; u8 lun; u8 cdb_length; u8 sense_info_length; u8 data_in; u8 reserved; u32 data_transfer_length; union { u8 cdb[STORVSC_MAX_CMD_LEN]; u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; }; /* * The following was added in win8. */ u16 reserve; u8 queue_tag; u8 queue_action; u32 srb_flags; u32 time_out_value; u32 queue_sort_ey; } __attribute((packed)); /* * The list of windows version in order of preference. */ static const int protocol_version[] = { VMSTOR_PROTO_VERSION_WIN10, VMSTOR_PROTO_VERSION_WIN8_1, VMSTOR_PROTO_VERSION_WIN8, }; /* * This structure is sent during the initialization phase to get the different * properties of the channel. */ #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 struct vmstorage_channel_properties { u32 reserved; u16 max_channel_cnt; u16 reserved1; u32 flags; u32 max_transfer_bytes; u64 reserved2; } __packed; /* This structure is sent during the storage protocol negotiations. */ struct vmstorage_protocol_version { /* Major (MSW) and minor (LSW) version numbers. */ u16 major_minor; /* * Revision number is auto-incremented whenever this file is changed * (See FILL_VMSTOR_REVISION macro above). Mismatch does not * definitely indicate incompatibility--but it does indicate mismatched * builds. * This is only used on the windows side. Just set it to 0. */ u16 revision; } __packed; /* Channel Property Flags */ #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 struct vstor_packet { /* Requested operation type */ enum vstor_packet_operation operation; /* Flags - see below for values */ u32 flags; /* Status of the request returned from the server side. */ u32 status; /* Data payload area */ union { /* * Structure used to forward SCSI commands from the * client to the server. */ struct vmscsi_request vm_srb; /* Structure used to query channel properties. */ struct vmstorage_channel_properties storage_channel_properties; /* Used during version negotiations. */ struct vmstorage_protocol_version version; /* Fibre channel address packet */ struct hv_fc_wwn_packet wwn_packet; /* Number of sub-channels to create */ u16 sub_channel_count; /* This will be the maximum of the union members */ u8 buffer[0x34]; }; } __packed; /* * Packet Flags: * * This flag indicates that the server should send back a completion for this * packet. */ #define REQUEST_COMPLETION_FLAG 0x1 /* Matches Windows-end */ enum storvsc_request_type { WRITE_TYPE = 0, READ_TYPE, UNKNOWN_TYPE, }; /* * SRB status codes and masks; a subset of the codes used here. */ #define SRB_STATUS_AUTOSENSE_VALID 0x80 #define SRB_STATUS_QUEUE_FROZEN 0x40 #define SRB_STATUS_INVALID_LUN 0x20 #define SRB_STATUS_SUCCESS 0x01 #define SRB_STATUS_ABORTED 0x02 #define SRB_STATUS_ERROR 0x04 #define SRB_STATUS_DATA_OVERRUN 0x12 #define SRB_STATUS(status) \ (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) /* * This is the end of Protocol specific defines. */ static int storvsc_ringbuffer_size = (128 * 1024); static u32 max_outstanding_req_per_channel; static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); static int storvsc_vcpus_per_sub_channel = 4; static unsigned int storvsc_max_hw_queues; module_param(storvsc_ringbuffer_size, int, S_IRUGO); MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); module_param(storvsc_max_hw_queues, uint, 0644); MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); static int ring_avail_percent_lowater = 10; module_param(ring_avail_percent_lowater, int, S_IRUGO); MODULE_PARM_DESC(ring_avail_percent_lowater, "Select a channel if available ring size > this in percent"); /* * Timeout in seconds for all devices managed by this driver. */ static int storvsc_timeout = 180; #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) static struct scsi_transport_template *fc_transport_template; #endif static struct scsi_host_template scsi_driver; static void storvsc_on_channel_callback(void *context); #define STORVSC_MAX_LUNS_PER_TARGET 255 #define STORVSC_MAX_TARGETS 2 #define STORVSC_MAX_CHANNELS 8 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 #define STORVSC_FC_MAX_TARGETS 128 #define STORVSC_FC_MAX_CHANNELS 8 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 #define STORVSC_IDE_MAX_TARGETS 1 #define STORVSC_IDE_MAX_CHANNELS 1 /* * Upper bound on the size of a storvsc packet. */ #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ sizeof(struct vstor_packet)) struct storvsc_cmd_request { struct scsi_cmnd *cmd; struct hv_device *device; /* Synchronize the request/response if needed */ struct completion wait_event; struct vmbus_channel_packet_multipage_buffer mpb; struct vmbus_packet_mpb_array *payload; u32 payload_sz; struct vstor_packet vstor_packet; }; /* A storvsc device is a device object that contains a vmbus channel */ struct storvsc_device { struct hv_device *device; bool destroy; bool drain_notify; atomic_t num_outstanding_req; struct Scsi_Host *host; wait_queue_head_t waiting_to_drain; /* * Each unique Port/Path/Target represents 1 channel ie scsi * controller. In reality, the pathid, targetid is always 0 * and the port is set by us */ unsigned int port_number; unsigned char path_id; unsigned char target_id; /* * Max I/O, the device can support. */ u32 max_transfer_bytes; /* * Number of sub-channels we will open. */ u16 num_sc; struct vmbus_channel **stor_chns; /* * Mask of CPUs bound to subchannels. */ struct cpumask alloced_cpus; /* * Serializes modifications of stor_chns[] from storvsc_do_io() * and storvsc_change_target_cpu(). */ spinlock_t lock; /* Used for vsc/vsp channel reset process */ struct storvsc_cmd_request init_request; struct storvsc_cmd_request reset_request; /* * Currently active port and node names for FC devices. */ u64 node_name; u64 port_name; #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) struct fc_rport *rport; #endif }; struct hv_host_device { struct hv_device *dev; unsigned int port; unsigned char path; unsigned char target; struct workqueue_struct *handle_error_wq; struct work_struct host_scan_work; struct Scsi_Host *host; }; struct storvsc_scan_work { struct work_struct work; struct Scsi_Host *host; u8 lun; u8 tgt_id; }; static void storvsc_device_scan(struct work_struct *work) { struct storvsc_scan_work *wrk; struct scsi_device *sdev; wrk = container_of(work, struct storvsc_scan_work, work); sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); if (!sdev) goto done; scsi_rescan_device(&sdev->sdev_gendev); scsi_device_put(sdev); done: kfree(wrk); } static void storvsc_host_scan(struct work_struct *work) { struct Scsi_Host *host; struct scsi_device *sdev; struct hv_host_device *host_device = container_of(work, struct hv_host_device, host_scan_work); host = host_device->host; /* * Before scanning the host, first check to see if any of the * currently known devices have been hot removed. We issue a * "unit ready" command against all currently known devices. * This I/O will result in an error for devices that have been * removed. As part of handling the I/O error, we remove the device. * * When a LUN is added or removed, the host sends us a signal to * scan the host. Thus we are forced to discover the LUNs that * may have been removed this way. */ mutex_lock(&host->scan_mutex); shost_for_each_device(sdev, host) scsi_test_unit_ready(sdev, 1, 1, NULL); mutex_unlock(&host->scan_mutex); /* * Now scan the host to discover LUNs that may have been added. */ scsi_scan_host(host); } static void storvsc_remove_lun(struct work_struct *work) { struct storvsc_scan_work *wrk; struct scsi_device *sdev; wrk = container_of(work, struct storvsc_scan_work, work); if (!scsi_host_get(wrk->host)) goto done; sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); if (sdev) { scsi_remove_device(sdev); scsi_device_put(sdev); } scsi_host_put(wrk->host); done: kfree(wrk); } /* * We can get incoming messages from the host that are not in response to * messages that we have sent out. An example of this would be messages * received by the guest to notify dynamic addition/removal of LUNs. To * deal with potential race conditions where the driver may be in the * midst of being unloaded when we might receive an unsolicited message * from the host, we have implemented a mechanism to gurantee sequential * consistency: * * 1) Once the device is marked as being destroyed, we will fail all * outgoing messages. * 2) We permit incoming messages when the device is being destroyed, * only to properly account for messages already sent out. */ static inline struct storvsc_device *get_out_stor_device( struct hv_device *device) { struct storvsc_device *stor_device; stor_device = hv_get_drvdata(device); if (stor_device && stor_device->destroy) stor_device = NULL; return stor_device; } static inline void storvsc_wait_to_drain(struct storvsc_device *dev) { dev->drain_notify = true; wait_event(dev->waiting_to_drain, atomic_read(&dev->num_outstanding_req) == 0); dev->drain_notify = false; } static inline struct storvsc_device *get_in_stor_device( struct hv_device *device) { struct storvsc_device *stor_device; stor_device = hv_get_drvdata(device); if (!stor_device) goto get_in_err; /* * If the device is being destroyed; allow incoming * traffic only to cleanup outstanding requests. */ if (stor_device->destroy && (atomic_read(&stor_device->num_outstanding_req) == 0)) stor_device = NULL; get_in_err: return stor_device; } static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, u32 new) { struct storvsc_device *stor_device; struct vmbus_channel *cur_chn; bool old_is_alloced = false; struct hv_device *device; unsigned long flags; int cpu; device = channel->primary_channel ? channel->primary_channel->device_obj : channel->device_obj; stor_device = get_out_stor_device(device); if (!stor_device) return; /* See storvsc_do_io() -> get_og_chn(). */ spin_lock_irqsave(&stor_device->lock, flags); /* * Determines if the storvsc device has other channels assigned to * the "old" CPU to update the alloced_cpus mask and the stor_chns * array. */ if (device->channel != channel && device->channel->target_cpu == old) { cur_chn = device->channel; old_is_alloced = true; goto old_is_alloced; } list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { if (cur_chn == channel) continue; if (cur_chn->target_cpu == old) { old_is_alloced = true; goto old_is_alloced; } } old_is_alloced: if (old_is_alloced) WRITE_ONCE(stor_device->stor_chns[old], cur_chn); else cpumask_clear_cpu(old, &stor_device->alloced_cpus); /* "Flush" the stor_chns array. */ for_each_possible_cpu(cpu) { if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( cpu, &stor_device->alloced_cpus)) WRITE_ONCE(stor_device->stor_chns[cpu], NULL); } WRITE_ONCE(stor_device->stor_chns[new], channel); cpumask_set_cpu(new, &stor_device->alloced_cpus); spin_unlock_irqrestore(&stor_device->lock, flags); } static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) { struct storvsc_cmd_request *request = (struct storvsc_cmd_request *)(unsigned long)rqst_addr; if (rqst_addr == VMBUS_RQST_INIT) return VMBUS_RQST_INIT; if (rqst_addr == VMBUS_RQST_RESET) return VMBUS_RQST_RESET; /* * Cannot return an ID of 0, which is reserved for an unsolicited * message from Hyper-V. */ return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; } static void handle_sc_creation(struct vmbus_channel *new_sc) { struct hv_device *device = new_sc->primary_channel->device_obj; struct device *dev = &device->device; struct storvsc_device *stor_device; struct vmstorage_channel_properties props; int ret; stor_device = get_out_stor_device(device); if (!stor_device) return; memset(&props, 0, sizeof(struct vmstorage_channel_properties)); new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; new_sc->next_request_id_callback = storvsc_next_request_id; ret = vmbus_open(new_sc, storvsc_ringbuffer_size, storvsc_ringbuffer_size, (void *)&props, sizeof(struct vmstorage_channel_properties), storvsc_on_channel_callback, new_sc); /* In case vmbus_open() fails, we don't use the sub-channel. */ if (ret != 0) { dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); return; } new_sc->change_target_cpu_callback = storvsc_change_target_cpu; /* Add the sub-channel to the array of available channels. */ stor_device->stor_chns[new_sc->target_cpu] = new_sc; cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); } static void handle_multichannel_storage(struct hv_device *device, int max_chns) { struct device *dev = &device->device; struct storvsc_device *stor_device; int num_sc; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, t; /* * If the number of CPUs is artificially restricted, such as * with maxcpus=1 on the kernel boot line, Hyper-V could offer * sub-channels >= the number of CPUs. These sub-channels * should not be created. The primary channel is already created * and assigned to one CPU, so check against # CPUs - 1. */ num_sc = min((int)(num_online_cpus() - 1), max_chns); if (!num_sc) return; stor_device = get_out_stor_device(device); if (!stor_device) return; stor_device->num_sc = num_sc; request = &stor_device->init_request; vstor_packet = &request->vstor_packet; /* * Establish a handler for dealing with subchannels. */ vmbus_set_sc_create_callback(device->channel, handle_sc_creation); /* * Request the host to create sub-channels. */ memset(request, 0, sizeof(struct storvsc_cmd_request)); init_completion(&request->wait_event); vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; vstor_packet->flags = REQUEST_COMPLETION_FLAG; vstor_packet->sub_channel_count = num_sc; ret = vmbus_sendpacket(device->channel, vstor_packet, sizeof(struct vstor_packet), VMBUS_RQST_INIT, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) { dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); return; } t = wait_for_completion_timeout(&request->wait_event, 10*HZ); if (t == 0) { dev_err(dev, "Failed to create sub-channel: timed out\n"); return; } if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) { dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", vstor_packet->operation, vstor_packet->status); return; } /* * We need to do nothing here, because vmbus_process_offer() * invokes channel->sc_creation_callback, which will open and use * the sub-channel(s). */ } static void cache_wwn(struct storvsc_device *stor_device, struct vstor_packet *vstor_packet) { /* * Cache the currently active port and node ww names. */ if (vstor_packet->wwn_packet.primary_active) { stor_device->node_name = wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); stor_device->port_name = wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); } else { stor_device->node_name = wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); stor_device->port_name = wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); } } static int storvsc_execute_vstor_op(struct hv_device *device, struct storvsc_cmd_request *request, bool status_check) { struct storvsc_device *stor_device; struct vstor_packet *vstor_packet; int ret, t; stor_device = get_out_stor_device(device); if (!stor_device) return -ENODEV; vstor_packet = &request->vstor_packet; init_completion(&request->wait_event); vstor_packet->flags = REQUEST_COMPLETION_FLAG; ret = vmbus_sendpacket(device->channel, vstor_packet, sizeof(struct vstor_packet), VMBUS_RQST_INIT, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) return ret; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) return -ETIMEDOUT; if (!status_check) return ret; if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) return -EINVAL; return ret; } static int storvsc_channel_init(struct hv_device *device, bool is_fc) { struct storvsc_device *stor_device; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, i; int max_chns; bool process_sub_channels = false; stor_device = get_out_stor_device(device); if (!stor_device) return -ENODEV; request = &stor_device->init_request; vstor_packet = &request->vstor_packet; /* * Now, initiate the vsc/vsp initialization protocol on the open * channel */ memset(request, 0, sizeof(struct storvsc_cmd_request)); vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; ret = storvsc_execute_vstor_op(device, request, true); if (ret) return ret; /* * Query host supported protocol version. */ for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { /* reuse the packet for version range supported */ memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; vstor_packet->version.major_minor = protocol_version[i]; /* * The revision number is only used in Windows; set it to 0. */ vstor_packet->version.revision = 0; ret = storvsc_execute_vstor_op(device, request, false); if (ret != 0) return ret; if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) return -EINVAL; if (vstor_packet->status == 0) { vmstor_proto_version = protocol_version[i]; break; } } if (vstor_packet->status != 0) { dev_err(&device->device, "Obsolete Hyper-V version\n"); return -EINVAL; } memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; ret = storvsc_execute_vstor_op(device, request, true); if (ret != 0) return ret; /* * Check to see if multi-channel support is there. * Hosts that implement protocol version of 5.1 and above * support multi-channel. */ max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; /* * Allocate state to manage the sub-channels. * We allocate an array based on the numbers of possible CPUs * (Hyper-V does not support cpu online/offline). * This Array will be sparseley populated with unique * channels - primary + sub-channels. * We will however populate all the slots to evenly distribute * the load. */ stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), GFP_KERNEL); if (stor_device->stor_chns == NULL) return -ENOMEM; device->channel->change_target_cpu_callback = storvsc_change_target_cpu; stor_device->stor_chns[device->channel->target_cpu] = device->channel; cpumask_set_cpu(device->channel->target_cpu, &stor_device->alloced_cpus); if (vstor_packet->storage_channel_properties.flags & STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) process_sub_channels = true; stor_device->max_transfer_bytes = vstor_packet->storage_channel_properties.max_transfer_bytes; if (!is_fc) goto done; /* * For FC devices retrieve FC HBA data. */ memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; ret = storvsc_execute_vstor_op(device, request, true); if (ret != 0) return ret; /* * Cache the currently active port and node ww names. */ cache_wwn(stor_device, vstor_packet); done: memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; ret = storvsc_execute_vstor_op(device, request, true); if (ret != 0) return ret; if (process_sub_channels) handle_multichannel_storage(device, max_chns); return ret; } static void storvsc_handle_error(struct vmscsi_request *vm_srb, struct scsi_cmnd *scmnd, struct Scsi_Host *host, u8 asc, u8 ascq) { struct storvsc_scan_work *wrk; void (*process_err_fn)(struct work_struct *work); struct hv_host_device *host_dev = shost_priv(host); /* * In some situations, Hyper-V sets multiple bits in the * srb_status, such as ABORTED and ERROR. So process them * individually, with the most specific bits first. */ if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { set_host_byte(scmnd, DID_NO_CONNECT); process_err_fn = storvsc_remove_lun; goto do_work; } if (vm_srb->srb_status & SRB_STATUS_ABORTED) { if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && /* Capacity data has changed */ (asc == 0x2a) && (ascq == 0x9)) { process_err_fn = storvsc_device_scan; /* * Retry the I/O that triggered this. */ set_host_byte(scmnd, DID_REQUEUE); goto do_work; } } if (vm_srb->srb_status & SRB_STATUS_ERROR) { /* * Let upper layer deal with error when * sense message is present. */ if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) return; /* * If there is an error; offline the device since all * error recovery strategies would have already been * deployed on the host side. However, if the command * were a pass-through command deal with it appropriately. */ switch (scmnd->cmnd[0]) { case ATA_16: case ATA_12: set_host_byte(scmnd, DID_PASSTHROUGH); break; /* * On some Hyper-V hosts TEST_UNIT_READY command can * return SRB_STATUS_ERROR. Let the upper level code * deal with it based on the sense information. */ case TEST_UNIT_READY: break; default: set_host_byte(scmnd, DID_ERROR); } } return; do_work: /* * We need to schedule work to process this error; schedule it. */ wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); if (!wrk) { set_host_byte(scmnd, DID_BAD_TARGET); return; } wrk->host = host; wrk->lun = vm_srb->lun; wrk->tgt_id = vm_srb->target_id; INIT_WORK(&wrk->work, process_err_fn); queue_work(host_dev->handle_error_wq, &wrk->work); } static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, struct storvsc_device *stor_dev) { struct scsi_cmnd *scmnd = cmd_request->cmd; struct scsi_sense_hdr sense_hdr; struct vmscsi_request *vm_srb; u32 data_transfer_length; struct Scsi_Host *host; u32 payload_sz = cmd_request->payload_sz; void *payload = cmd_request->payload; bool sense_ok; host = stor_dev->host; vm_srb = &cmd_request->vstor_packet.vm_srb; data_transfer_length = vm_srb->data_transfer_length; scmnd->result = vm_srb->scsi_status; if (scmnd->result) { sense_ok = scsi_normalize_sense(scmnd->sense_buffer, SCSI_SENSE_BUFFERSIZE, &sense_hdr); if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) scsi_print_sense_hdr(scmnd->device, "storvsc", &sense_hdr); } if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, sense_hdr.ascq); /* * The Windows driver set data_transfer_length on * SRB_STATUS_DATA_OVERRUN. On other errors, this value * is untouched. In these cases we set it to 0. */ if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) data_transfer_length = 0; } /* Validate data_transfer_length (from Hyper-V) */ if (data_transfer_length > cmd_request->payload->range.len) data_transfer_length = cmd_request->payload->range.len; scsi_set_resid(scmnd, cmd_request->payload->range.len - data_transfer_length); scsi_done(scmnd); if (payload_sz > sizeof(struct vmbus_channel_packet_multipage_buffer)) kfree(payload); } static void storvsc_on_io_completion(struct storvsc_device *stor_device, struct vstor_packet *vstor_packet, struct storvsc_cmd_request *request) { struct vstor_packet *stor_pkt; struct hv_device *device = stor_device->device; stor_pkt = &request->vstor_packet; /* * The current SCSI handling on the host side does * not correctly handle: * INQUIRY command with page code parameter set to 0x80 * MODE_SENSE command with cmd[2] == 0x1c * * Setup srb and scsi status so this won't be fatal. * We do this so we can distinguish truly fatal failues * (srb status == 0x4) and off-line the device in that case. */ if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { vstor_packet->vm_srb.scsi_status = 0; vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; } /* Copy over the status...etc */ stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; /* * Copy over the sense_info_length, but limit to the known max * size if Hyper-V returns a bad value. */ stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, vstor_packet->vm_srb.sense_info_length); if (vstor_packet->vm_srb.scsi_status != 0 || vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { /* * Log TEST_UNIT_READY errors only as warnings. Hyper-V can * return errors when detecting devices using TEST_UNIT_READY, * and logging these as errors produces unhelpful noise. */ int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; storvsc_log(device, loglevel, "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", scsi_cmd_to_rq(request->cmd)->tag, stor_pkt->vm_srb.cdb[0], vstor_packet->vm_srb.scsi_status, vstor_packet->vm_srb.srb_status, vstor_packet->status); } if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) memcpy(request->cmd->sense_buffer, vstor_packet->vm_srb.sense_data, stor_pkt->vm_srb.sense_info_length); stor_pkt->vm_srb.data_transfer_length = vstor_packet->vm_srb.data_transfer_length; storvsc_command_completion(request, stor_device); if (atomic_dec_and_test(&stor_device->num_outstanding_req) && stor_device->drain_notify) wake_up(&stor_device->waiting_to_drain); } static void storvsc_on_receive(struct storvsc_device *stor_device, struct vstor_packet *vstor_packet, struct storvsc_cmd_request *request) { struct hv_host_device *host_dev; switch (vstor_packet->operation) { case VSTOR_OPERATION_COMPLETE_IO: storvsc_on_io_completion(stor_device, vstor_packet, request); break; case VSTOR_OPERATION_REMOVE_DEVICE: case VSTOR_OPERATION_ENUMERATE_BUS: host_dev = shost_priv(stor_device->host); queue_work( host_dev->handle_error_wq, &host_dev->host_scan_work); break; case VSTOR_OPERATION_FCHBA_DATA: cache_wwn(stor_device, vstor_packet); #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) fc_host_node_name(stor_device->host) = stor_device->node_name; fc_host_port_name(stor_device->host) = stor_device->port_name; #endif break; default: break; } } static void storvsc_on_channel_callback(void *context) { struct vmbus_channel *channel = (struct vmbus_channel *)context; const struct vmpacket_descriptor *desc; struct hv_device *device; struct storvsc_device *stor_device; struct Scsi_Host *shost; unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); if (channel->primary_channel != NULL) device = channel->primary_channel->device_obj; else device = channel->device_obj; stor_device = get_in_stor_device(device); if (!stor_device) return; shost = stor_device->host; foreach_vmbus_pkt(desc, channel) { struct vstor_packet *packet = hv_pkt_data(desc); struct storvsc_cmd_request *request = NULL; u32 pktlen = hv_pkt_datalen(desc); u64 rqst_id = desc->trans_id; u32 minlen = rqst_id ? sizeof(struct vstor_packet) : sizeof(enum vstor_packet_operation); if (unlikely(time_after(jiffies, time_limit))) { hv_pkt_iter_close(channel); return; } if (pktlen < minlen) { dev_err(&device->device, "Invalid pkt: id=%llu, len=%u, minlen=%u\n", rqst_id, pktlen, minlen); continue; } if (rqst_id == VMBUS_RQST_INIT) { request = &stor_device->init_request; } else if (rqst_id == VMBUS_RQST_RESET) { request = &stor_device->reset_request; } else { /* Hyper-V can send an unsolicited message with ID of 0 */ if (rqst_id == 0) { /* * storvsc_on_receive() looks at the vstor_packet in the message * from the ring buffer. * * - If the operation in the vstor_packet is COMPLETE_IO, then * we call storvsc_on_io_completion(), and dereference the * guest memory address. Make sure we don't call * storvsc_on_io_completion() with a guest memory address * that is zero if Hyper-V were to construct and send such * a bogus packet. * * - If the operation in the vstor_packet is FCHBA_DATA, then * we call cache_wwn(), and access the data payload area of * the packet (wwn_packet); however, there is no guarantee * that the packet is big enough to contain such area. * Future-proof the code by rejecting such a bogus packet. */ if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || packet->operation == VSTOR_OPERATION_FCHBA_DATA) { dev_err(&device->device, "Invalid packet with ID of 0\n"); continue; } } else { struct scsi_cmnd *scmnd; /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ scmnd = scsi_host_find_tag(shost, rqst_id - 1); if (scmnd == NULL) { dev_err(&device->device, "Incorrect transaction ID\n"); continue; } request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); scsi_dma_unmap(scmnd); } storvsc_on_receive(stor_device, packet, request); continue; } memcpy(&request->vstor_packet, packet, sizeof(struct vstor_packet)); complete(&request->wait_event); } } static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, bool is_fc) { struct vmstorage_channel_properties props; int ret; memset(&props, 0, sizeof(struct vmstorage_channel_properties)); device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; device->channel->next_request_id_callback = storvsc_next_request_id; ret = vmbus_open(device->channel, ring_size, ring_size, (void *)&props, sizeof(struct vmstorage_channel_properties), storvsc_on_channel_callback, device->channel); if (ret != 0) return ret; ret = storvsc_channel_init(device, is_fc); return ret; } static int storvsc_dev_remove(struct hv_device *device) { struct storvsc_device *stor_device; stor_device = hv_get_drvdata(device); stor_device->destroy = true; /* Make sure flag is set before waiting */ wmb(); /* * At this point, all outbound traffic should be disable. We * only allow inbound traffic (responses) to proceed so that * outstanding requests can be completed. */ storvsc_wait_to_drain(stor_device); /* * Since we have already drained, we don't need to busy wait * as was done in final_release_stor_device() * Note that we cannot set the ext pointer to NULL until * we have drained - to drain the outgoing packets, we need to * allow incoming packets. */ hv_set_drvdata(device, NULL); /* Close the channel */ vmbus_close(device->channel); kfree(stor_device->stor_chns); kfree(stor_device); return 0; } static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, u16 q_num) { u16 slot = 0; u16 hash_qnum; const struct cpumask *node_mask; int num_channels, tgt_cpu; if (stor_device->num_sc == 0) { stor_device->stor_chns[q_num] = stor_device->device->channel; return stor_device->device->channel; } /* * Our channel array is sparsley populated and we * initiated I/O on a processor/hw-q that does not * currently have a designated channel. Fix this. * The strategy is simple: * I. Ensure NUMA locality * II. Distribute evenly (best effort) */ node_mask = cpumask_of_node(cpu_to_node(q_num)); num_channels = 0; for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { if (cpumask_test_cpu(tgt_cpu, node_mask)) num_channels++; } if (num_channels == 0) { stor_device->stor_chns[q_num] = stor_device->device->channel; return stor_device->device->channel; } hash_qnum = q_num; while (hash_qnum >= num_channels) hash_qnum -= num_channels; for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { if (!cpumask_test_cpu(tgt_cpu, node_mask)) continue; if (slot == hash_qnum) break; slot++; } stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; return stor_device->stor_chns[q_num]; } static int storvsc_do_io(struct hv_device *device, struct storvsc_cmd_request *request, u16 q_num) { struct storvsc_device *stor_device; struct vstor_packet *vstor_packet; struct vmbus_channel *outgoing_channel, *channel; unsigned long flags; int ret = 0; const struct cpumask *node_mask; int tgt_cpu; vstor_packet = &request->vstor_packet; stor_device = get_out_stor_device(device); if (!stor_device) return -ENODEV; request->device = device; /* * Select an appropriate channel to send the request out. */ /* See storvsc_change_target_cpu(). */ outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); if (outgoing_channel != NULL) { if (outgoing_channel->target_cpu == q_num) { /* * Ideally, we want to pick a different channel if * available on the same NUMA node. */ node_mask = cpumask_of_node(cpu_to_node(q_num)); for_each_cpu_wrap(tgt_cpu, &stor_device->alloced_cpus, q_num + 1) { if (!cpumask_test_cpu(tgt_cpu, node_mask)) continue; if (tgt_cpu == q_num) continue; channel = READ_ONCE( stor_device->stor_chns[tgt_cpu]); if (channel == NULL) continue; if (hv_get_avail_to_write_percent( &channel->outbound) > ring_avail_percent_lowater) { outgoing_channel = channel; goto found_channel; } } /* * All the other channels on the same NUMA node are * busy. Try to use the channel on the current CPU */ if (hv_get_avail_to_write_percent( &outgoing_channel->outbound) > ring_avail_percent_lowater) goto found_channel; /* * If we reach here, all the channels on the current * NUMA node are busy. Try to find a channel in * other NUMA nodes */ for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { if (cpumask_test_cpu(tgt_cpu, node_mask)) continue; channel = READ_ONCE( stor_device->stor_chns[tgt_cpu]); if (channel == NULL) continue; if (hv_get_avail_to_write_percent( &channel->outbound) > ring_avail_percent_lowater) { outgoing_channel = channel; goto found_channel; } } } } else { spin_lock_irqsave(&stor_device->lock, flags); outgoing_channel = stor_device->stor_chns[q_num]; if (outgoing_channel != NULL) { spin_unlock_irqrestore(&stor_device->lock, flags); goto found_channel; } outgoing_channel = get_og_chn(stor_device, q_num); spin_unlock_irqrestore(&stor_device->lock, flags); } found_channel: vstor_packet->flags |= REQUEST_COMPLETION_FLAG; vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; vstor_packet->vm_srb.data_transfer_length = request->payload->range.len; vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; if (request->payload->range.len) { ret = vmbus_sendpacket_mpb_desc(outgoing_channel, request->payload, request->payload_sz, vstor_packet, sizeof(struct vstor_packet), (unsigned long)request); } else { ret = vmbus_sendpacket(outgoing_channel, vstor_packet, sizeof(struct vstor_packet), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); } if (ret != 0) return ret; atomic_inc(&stor_device->num_outstanding_req); return ret; } static int storvsc_device_alloc(struct scsi_device *sdevice) { /* * Set blist flag to permit the reading of the VPD pages even when * the target may claim SPC-2 compliance. MSFT targets currently * claim SPC-2 compliance while they implement post SPC-2 features. * With this flag we can correctly handle WRITE_SAME_16 issues. * * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but * still supports REPORT LUN. */ sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; return 0; } static int storvsc_device_configure(struct scsi_device *sdevice) { blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); sdevice->no_write_same = 1; /* * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 * if the device is a MSFT virtual device. If the host is * WIN10 or newer, allow write_same. */ if (!strncmp(sdevice->vendor, "Msft", 4)) { switch (vmstor_proto_version) { case VMSTOR_PROTO_VERSION_WIN8: case VMSTOR_PROTO_VERSION_WIN8_1: sdevice->scsi_level = SCSI_SPC_3; break; } if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) sdevice->no_write_same = 0; } return 0; } static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, sector_t capacity, int *info) { sector_t nsect = capacity; sector_t cylinders = nsect; int heads, sectors_pt; /* * We are making up these values; let us keep it simple. */ heads = 0xff; sectors_pt = 0x3f; /* Sectors per track */ sector_div(cylinders, heads * sectors_pt); if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) cylinders = 0xffff; info[0] = heads; info[1] = sectors_pt; info[2] = (int)cylinders; return 0; } static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) { struct hv_host_device *host_dev = shost_priv(scmnd->device->host); struct hv_device *device = host_dev->dev; struct storvsc_device *stor_device; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, t; stor_device = get_out_stor_device(device); if (!stor_device) return FAILED; request = &stor_device->reset_request; vstor_packet = &request->vstor_packet; memset(vstor_packet, 0, sizeof(struct vstor_packet)); init_completion(&request->wait_event); vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; vstor_packet->flags = REQUEST_COMPLETION_FLAG; vstor_packet->vm_srb.path_id = stor_device->path_id; ret = vmbus_sendpacket(device->channel, vstor_packet, sizeof(struct vstor_packet), VMBUS_RQST_RESET, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) return FAILED; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) return TIMEOUT_ERROR; /* * At this point, all outstanding requests in the adapter * should have been flushed out and return to us * There is a potential race here where the host may be in * the process of responding when we return from here. * Just wait for all in-transit packets to be accounted for * before we return from here. */ storvsc_wait_to_drain(stor_device); return SUCCESS; } /* * The host guarantees to respond to each command, although I/O latencies might * be unbounded on Azure. Reset the timer unconditionally to give the host a * chance to perform EH. */ static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) { #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) if (scmnd->device->host->transportt == fc_transport_template) return fc_eh_timed_out(scmnd); #endif return SCSI_EH_RESET_TIMER; } static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) { bool allowed = true; u8 scsi_op = scmnd->cmnd[0]; switch (scsi_op) { /* the host does not handle WRITE_SAME, log accident usage */ case WRITE_SAME: /* * smartd sends this command and the host does not handle * this. So, don't send it. */ case SET_WINDOW: set_host_byte(scmnd, DID_ERROR); allowed = false; break; default: break; } return allowed; } static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) { int ret; struct hv_host_device *host_dev = shost_priv(host); struct hv_device *dev = host_dev->dev; struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); struct scatterlist *sgl; struct vmscsi_request *vm_srb; struct vmbus_packet_mpb_array *payload; u32 payload_sz; u32 length; if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { /* * On legacy hosts filter unimplemented commands. * Future hosts are expected to correctly handle * unsupported commands. Furthermore, it is * possible that some of the currently * unsupported commands maybe supported in * future versions of the host. */ if (!storvsc_scsi_cmd_ok(scmnd)) { scsi_done(scmnd); return 0; } } /* Setup the cmd request */ cmd_request->cmd = scmnd; memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); vm_srb = &cmd_request->vstor_packet.vm_srb; vm_srb->time_out_value = 60; vm_srb->srb_flags |= SRB_FLAGS_DISABLE_SYNCH_TRANSFER; if (scmnd->device->tagged_supported) { vm_srb->srb_flags |= (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); vm_srb->queue_tag = SP_UNTAGGED; vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; } /* Build the SRB */ switch (scmnd->sc_data_direction) { case DMA_TO_DEVICE: vm_srb->data_in = WRITE_TYPE; vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; break; case DMA_FROM_DEVICE: vm_srb->data_in = READ_TYPE; vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; break; case DMA_NONE: vm_srb->data_in = UNKNOWN_TYPE; vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; break; default: /* * This is DMA_BIDIRECTIONAL or something else we are never * supposed to see here. */ WARN(1, "Unexpected data direction: %d\n", scmnd->sc_data_direction); return -EINVAL; } vm_srb->port_number = host_dev->port; vm_srb->path_id = scmnd->device->channel; vm_srb->target_id = scmnd->device->id; vm_srb->lun = scmnd->device->lun; vm_srb->cdb_length = scmnd->cmd_len; memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); sgl = (struct scatterlist *)scsi_sglist(scmnd); length = scsi_bufflen(scmnd); payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; payload_sz = sizeof(cmd_request->mpb); if (scsi_sg_count(scmnd)) { unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); struct scatterlist *sg; unsigned long hvpfn, hvpfns_to_add; int j, i = 0, sg_count; if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { payload_sz = (hvpg_count * sizeof(u64) + sizeof(struct vmbus_packet_mpb_array)); payload = kzalloc(payload_sz, GFP_ATOMIC); if (!payload) return SCSI_MLQUEUE_DEVICE_BUSY; } payload->range.len = length; payload->range.offset = offset_in_hvpg; sg_count = scsi_dma_map(scmnd); if (sg_count < 0) { ret = SCSI_MLQUEUE_DEVICE_BUSY; goto err_free_payload; } for_each_sg(sgl, sg, sg_count, j) { /* * Init values for the current sgl entry. hvpfns_to_add * is in units of Hyper-V size pages. Handling the * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles * values of sgl->offset that are larger than PAGE_SIZE. * Such offsets are handled even on other than the first * sgl entry, provided they are a multiple of PAGE_SIZE. */ hvpfn = HVPFN_DOWN(sg_dma_address(sg)); hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + sg_dma_len(sg)) - hvpfn; /* * Fill the next portion of the PFN array with * sequential Hyper-V PFNs for the continguous physical * memory described by the sgl entry. The end of the * last sgl should be reached at the same time that * the PFN array is filled. */ while (hvpfns_to_add--) payload->range.pfn_array[i++] = hvpfn++; } } cmd_request->payload = payload; cmd_request->payload_sz = payload_sz; /* Invokes the vsc to start an IO */ ret = storvsc_do_io(dev, cmd_request, get_cpu()); put_cpu(); if (ret == -EAGAIN) { /* no more space */ ret = SCSI_MLQUEUE_DEVICE_BUSY; goto err_free_payload; } return 0; err_free_payload: if (payload_sz > sizeof(cmd_request->mpb)) kfree(payload); return ret; } static struct scsi_host_template scsi_driver = { .module = THIS_MODULE, .name = "storvsc_host_t", .cmd_size = sizeof(struct storvsc_cmd_request), .bios_param = storvsc_get_chs, .queuecommand = storvsc_queuecommand, .eh_host_reset_handler = storvsc_host_reset_handler, .proc_name = "storvsc_host", .eh_timed_out = storvsc_eh_timed_out, .slave_alloc = storvsc_device_alloc, .slave_configure = storvsc_device_configure, .cmd_per_lun = 2048, .this_id = -1, /* Ensure there are no gaps in presented sgls */ .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, .no_write_same = 1, .track_queue_depth = 1, .change_queue_depth = storvsc_change_queue_depth, }; enum { SCSI_GUID, IDE_GUID, SFC_GUID, }; static const struct hv_vmbus_device_id id_table[] = { /* SCSI guid */ { HV_SCSI_GUID, .driver_data = SCSI_GUID }, /* IDE guid */ { HV_IDE_GUID, .driver_data = IDE_GUID }, /* Fibre Channel GUID */ { HV_SYNTHFC_GUID, .driver_data = SFC_GUID }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; static bool hv_dev_is_fc(struct hv_device *hv_dev) { return guid_equal(&fc_guid.guid, &hv_dev->dev_type); } static int storvsc_probe(struct hv_device *device, const struct hv_vmbus_device_id *dev_id) { int ret; int num_cpus = num_online_cpus(); int num_present_cpus = num_present_cpus(); struct Scsi_Host *host; struct hv_host_device *host_dev; bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); int target = 0; struct storvsc_device *stor_device; int max_sub_channels = 0; u32 max_xfer_bytes; /* * We support sub-channels for storage on SCSI and FC controllers. * The number of sub-channels offerred is based on the number of * VCPUs in the guest. */ if (!dev_is_ide) max_sub_channels = (num_cpus - 1) / storvsc_vcpus_per_sub_channel; scsi_driver.can_queue = max_outstanding_req_per_channel * (max_sub_channels + 1) * (100 - ring_avail_percent_lowater) / 100; host = scsi_host_alloc(&scsi_driver, sizeof(struct hv_host_device)); if (!host) return -ENOMEM; host_dev = shost_priv(host); memset(host_dev, 0, sizeof(struct hv_host_device)); host_dev->port = host->host_no; host_dev->dev = device; host_dev->host = host; stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); if (!stor_device) { ret = -ENOMEM; goto err_out0; } stor_device->destroy = false; init_waitqueue_head(&stor_device->waiting_to_drain); stor_device->device = device; stor_device->host = host; spin_lock_init(&stor_device->lock); hv_set_drvdata(device, stor_device); dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); stor_device->port_number = host->host_no; ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); if (ret) goto err_out1; host_dev->path = stor_device->path_id; host_dev->target = stor_device->target_id; switch (dev_id->driver_data) { case SFC_GUID: host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; host->max_id = STORVSC_FC_MAX_TARGETS; host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) host->transportt = fc_transport_template; #endif break; case SCSI_GUID: host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; host->max_id = STORVSC_MAX_TARGETS; host->max_channel = STORVSC_MAX_CHANNELS - 1; break; default: host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; host->max_id = STORVSC_IDE_MAX_TARGETS; host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; break; } /* max cmd length */ host->max_cmd_len = STORVSC_MAX_CMD_LEN; /* * Any reasonable Hyper-V configuration should provide * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, * protecting it from any weird value. */ max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); /* max_hw_sectors_kb */ host->max_sectors = max_xfer_bytes >> 9; /* * There are 2 requirements for Hyper-V storvsc sgl segments, * based on which the below calculation for max segments is * done: * * 1. Except for the first and last sgl segment, all sgl segments * should be align to HV_HYP_PAGE_SIZE, that also means the * maximum number of segments in a sgl can be calculated by * dividing the total max transfer length by HV_HYP_PAGE_SIZE. * * 2. Except for the first and last, each entry in the SGL must * have an offset that is a multiple of HV_HYP_PAGE_SIZE. */ host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; /* * For non-IDE disks, the host supports multiple channels. * Set the number of HW queues we are supporting. */ if (!dev_is_ide) { if (storvsc_max_hw_queues > num_present_cpus) { storvsc_max_hw_queues = 0; storvsc_log(device, STORVSC_LOGGING_WARN, "Resetting invalid storvsc_max_hw_queues value to default.\n"); } if (storvsc_max_hw_queues) host->nr_hw_queues = storvsc_max_hw_queues; else host->nr_hw_queues = num_present_cpus; } /* * Set the error handler work queue. */ host_dev->handle_error_wq = alloc_ordered_workqueue("storvsc_error_wq_%d", 0, host->host_no); if (!host_dev->handle_error_wq) { ret = -ENOMEM; goto err_out2; } INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); /* Register the HBA and start the scsi bus scan */ ret = scsi_add_host(host, &device->device); if (ret != 0) goto err_out3; if (!dev_is_ide) { scsi_scan_host(host); } else { target = (device->dev_instance.b[5] << 8 | device->dev_instance.b[4]); ret = scsi_add_device(host, 0, target, 0); if (ret) goto err_out4; } #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) if (host->transportt == fc_transport_template) { struct fc_rport_identifiers ids = { .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, }; fc_host_node_name(host) = stor_device->node_name; fc_host_port_name(host) = stor_device->port_name; stor_device->rport = fc_remote_port_add(host, 0, &ids); if (!stor_device->rport) { ret = -ENOMEM; goto err_out4; } } #endif return 0; err_out4: scsi_remove_host(host); err_out3: destroy_workqueue(host_dev->handle_error_wq); err_out2: /* * Once we have connected with the host, we would need to * invoke storvsc_dev_remove() to rollback this state and * this call also frees up the stor_device; hence the jump around * err_out1 label. */ storvsc_dev_remove(device); goto err_out0; err_out1: kfree(stor_device->stor_chns); kfree(stor_device); err_out0: scsi_host_put(host); return ret; } /* Change a scsi target's queue depth */ static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) { if (queue_depth > scsi_driver.can_queue) queue_depth = scsi_driver.can_queue; return scsi_change_queue_depth(sdev, queue_depth); } static int storvsc_remove(struct hv_device *dev) { struct storvsc_device *stor_device = hv_get_drvdata(dev); struct Scsi_Host *host = stor_device->host; struct hv_host_device *host_dev = shost_priv(host); #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) if (host->transportt == fc_transport_template) { fc_remote_port_delete(stor_device->rport); fc_remove_host(host); } #endif destroy_workqueue(host_dev->handle_error_wq); scsi_remove_host(host); storvsc_dev_remove(dev); scsi_host_put(host); return 0; } static int storvsc_suspend(struct hv_device *hv_dev) { struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); struct Scsi_Host *host = stor_device->host; struct hv_host_device *host_dev = shost_priv(host); storvsc_wait_to_drain(stor_device); drain_workqueue(host_dev->handle_error_wq); vmbus_close(hv_dev->channel); kfree(stor_device->stor_chns); stor_device->stor_chns = NULL; cpumask_clear(&stor_device->alloced_cpus); return 0; } static int storvsc_resume(struct hv_device *hv_dev) { int ret; ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, hv_dev_is_fc(hv_dev)); return ret; } static struct hv_driver storvsc_drv = { .name = KBUILD_MODNAME, .id_table = id_table, .probe = storvsc_probe, .remove = storvsc_remove, .suspend = storvsc_suspend, .resume = storvsc_resume, .driver = { .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) static struct fc_function_template fc_transport_functions = { .show_host_node_name = 1, .show_host_port_name = 1, }; #endif static int __init storvsc_drv_init(void) { int ret; /* * Divide the ring buffer data size (which is 1 page less * than the ring buffer size since that page is reserved for * the ring buffer indices) by the max request size (which is * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) */ max_outstanding_req_per_channel = ((storvsc_ringbuffer_size - PAGE_SIZE) / ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + sizeof(struct vstor_packet) + sizeof(u64), sizeof(u64))); #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) fc_transport_template = fc_attach_transport(&fc_transport_functions); if (!fc_transport_template) return -ENODEV; #endif ret = vmbus_driver_register(&storvsc_drv); #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) if (ret) fc_release_transport(fc_transport_template); #endif return ret; } static void __exit storvsc_drv_exit(void) { vmbus_driver_unregister(&storvsc_drv); #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) fc_release_transport(fc_transport_template); #endif } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); module_init(storvsc_drv_init); module_exit(storvsc_drv_exit);