/* * driver for Microsemi PQI-based storage controllers * Copyright (c) 2016-2017 Microsemi Corporation * Copyright (c) 2016 PMC-Sierra, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smartpqi.h" #include "smartpqi_sis.h" #if !defined(BUILD_TIMESTAMP) #define BUILD_TIMESTAMP #endif #define DRIVER_VERSION "1.1.4-130" #define DRIVER_MAJOR 1 #define DRIVER_MINOR 1 #define DRIVER_RELEASE 4 #define DRIVER_REVISION 130 #define DRIVER_NAME "Microsemi PQI Driver (v" \ DRIVER_VERSION BUILD_TIMESTAMP ")" #define DRIVER_NAME_SHORT "smartpqi" #define PQI_EXTRA_SGL_MEMORY (12 * sizeof(struct pqi_sg_descriptor)) MODULE_AUTHOR("Microsemi"); MODULE_DESCRIPTION("Driver for Microsemi Smart Family Controller version " DRIVER_VERSION); MODULE_SUPPORTED_DEVICE("Microsemi Smart Family Controllers"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL"); static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info); static void pqi_ctrl_offline_worker(struct work_struct *work); static void pqi_retry_raid_bypass_requests(struct pqi_ctrl_info *ctrl_info); static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info); static void pqi_scan_start(struct Scsi_Host *shost); static void pqi_start_io(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group, enum pqi_io_path path, struct pqi_io_request *io_request); static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info, struct pqi_iu_header *request, unsigned int flags, struct pqi_raid_error_info *error_info, unsigned long timeout_msecs); static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info, struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb, unsigned int cdb_length, struct pqi_queue_group *queue_group, struct pqi_encryption_info *encryption_info, bool raid_bypass); static int pqi_device_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, unsigned long timeout_secs); /* for flags argument to pqi_submit_raid_request_synchronous() */ #define PQI_SYNC_FLAGS_INTERRUPTABLE 0x1 static struct scsi_transport_template *pqi_sas_transport_template; static atomic_t pqi_controller_count = ATOMIC_INIT(0); enum pqi_lockup_action { NONE, REBOOT, PANIC }; static enum pqi_lockup_action pqi_lockup_action = NONE; static struct { enum pqi_lockup_action action; char *name; } pqi_lockup_actions[] = { { .action = NONE, .name = "none", }, { .action = REBOOT, .name = "reboot", }, { .action = PANIC, .name = "panic", }, }; static unsigned int pqi_supported_event_types[] = { PQI_EVENT_TYPE_HOTPLUG, PQI_EVENT_TYPE_HARDWARE, PQI_EVENT_TYPE_PHYSICAL_DEVICE, PQI_EVENT_TYPE_LOGICAL_DEVICE, PQI_EVENT_TYPE_AIO_STATE_CHANGE, PQI_EVENT_TYPE_AIO_CONFIG_CHANGE, }; static int pqi_disable_device_id_wildcards; module_param_named(disable_device_id_wildcards, pqi_disable_device_id_wildcards, int, 0644); MODULE_PARM_DESC(disable_device_id_wildcards, "Disable device ID wildcards."); static int pqi_disable_heartbeat; module_param_named(disable_heartbeat, pqi_disable_heartbeat, int, 0644); MODULE_PARM_DESC(disable_heartbeat, "Disable heartbeat."); static int pqi_disable_ctrl_shutdown; module_param_named(disable_ctrl_shutdown, pqi_disable_ctrl_shutdown, int, 0644); MODULE_PARM_DESC(disable_ctrl_shutdown, "Disable controller shutdown when controller locked up."); static char *pqi_lockup_action_param; module_param_named(lockup_action, pqi_lockup_action_param, charp, 0644); MODULE_PARM_DESC(lockup_action, "Action to take when controller locked up.\n" "\t\tSupported: none, reboot, panic\n" "\t\tDefault: none"); static char *raid_levels[] = { "RAID-0", "RAID-4", "RAID-1(1+0)", "RAID-5", "RAID-5+1", "RAID-ADG", "RAID-1(ADM)", }; static char *pqi_raid_level_to_string(u8 raid_level) { if (raid_level < ARRAY_SIZE(raid_levels)) return raid_levels[raid_level]; return "RAID UNKNOWN"; } #define SA_RAID_0 0 #define SA_RAID_4 1 #define SA_RAID_1 2 /* also used for RAID 10 */ #define SA_RAID_5 3 /* also used for RAID 50 */ #define SA_RAID_51 4 #define SA_RAID_6 5 /* also used for RAID 60 */ #define SA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ #define SA_RAID_MAX SA_RAID_ADM #define SA_RAID_UNKNOWN 0xff static inline void pqi_scsi_done(struct scsi_cmnd *scmd) { pqi_prep_for_scsi_done(scmd); scmd->scsi_done(scmd); } static inline void pqi_disable_write_same(struct scsi_device *sdev) { sdev->no_write_same = 1; } static inline bool pqi_scsi3addr_equal(u8 *scsi3addr1, u8 *scsi3addr2) { return memcmp(scsi3addr1, scsi3addr2, 8) == 0; } static inline struct pqi_ctrl_info *shost_to_hba(struct Scsi_Host *shost) { void *hostdata = shost_priv(shost); return *((struct pqi_ctrl_info **)hostdata); } static inline bool pqi_is_logical_device(struct pqi_scsi_dev *device) { return !device->is_physical_device; } static inline bool pqi_is_external_raid_addr(u8 *scsi3addr) { return scsi3addr[2] != 0; } static inline bool pqi_ctrl_offline(struct pqi_ctrl_info *ctrl_info) { return !ctrl_info->controller_online; } static inline void pqi_check_ctrl_health(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->controller_online) if (!sis_is_firmware_running(ctrl_info)) pqi_take_ctrl_offline(ctrl_info); } static inline bool pqi_is_hba_lunid(u8 *scsi3addr) { return pqi_scsi3addr_equal(scsi3addr, RAID_CTLR_LUNID); } static inline enum pqi_ctrl_mode pqi_get_ctrl_mode( struct pqi_ctrl_info *ctrl_info) { return sis_read_driver_scratch(ctrl_info); } static inline void pqi_save_ctrl_mode(struct pqi_ctrl_info *ctrl_info, enum pqi_ctrl_mode mode) { sis_write_driver_scratch(ctrl_info, mode); } static inline void pqi_ctrl_block_requests(struct pqi_ctrl_info *ctrl_info) { ctrl_info->block_requests = true; scsi_block_requests(ctrl_info->scsi_host); } static inline void pqi_ctrl_unblock_requests(struct pqi_ctrl_info *ctrl_info) { ctrl_info->block_requests = false; wake_up_all(&ctrl_info->block_requests_wait); pqi_retry_raid_bypass_requests(ctrl_info); scsi_unblock_requests(ctrl_info->scsi_host); } static inline bool pqi_ctrl_blocked(struct pqi_ctrl_info *ctrl_info) { return ctrl_info->block_requests; } static unsigned long pqi_wait_if_ctrl_blocked(struct pqi_ctrl_info *ctrl_info, unsigned long timeout_msecs) { unsigned long remaining_msecs; if (!pqi_ctrl_blocked(ctrl_info)) return timeout_msecs; atomic_inc(&ctrl_info->num_blocked_threads); if (timeout_msecs == NO_TIMEOUT) { wait_event(ctrl_info->block_requests_wait, !pqi_ctrl_blocked(ctrl_info)); remaining_msecs = timeout_msecs; } else { unsigned long remaining_jiffies; remaining_jiffies = wait_event_timeout(ctrl_info->block_requests_wait, !pqi_ctrl_blocked(ctrl_info), msecs_to_jiffies(timeout_msecs)); remaining_msecs = jiffies_to_msecs(remaining_jiffies); } atomic_dec(&ctrl_info->num_blocked_threads); return remaining_msecs; } static inline void pqi_ctrl_busy(struct pqi_ctrl_info *ctrl_info) { atomic_inc(&ctrl_info->num_busy_threads); } static inline void pqi_ctrl_unbusy(struct pqi_ctrl_info *ctrl_info) { atomic_dec(&ctrl_info->num_busy_threads); } static inline void pqi_ctrl_wait_until_quiesced(struct pqi_ctrl_info *ctrl_info) { while (atomic_read(&ctrl_info->num_busy_threads) > atomic_read(&ctrl_info->num_blocked_threads)) usleep_range(1000, 2000); } static inline bool pqi_device_offline(struct pqi_scsi_dev *device) { return device->device_offline; } static inline void pqi_device_reset_start(struct pqi_scsi_dev *device) { device->in_reset = true; } static inline void pqi_device_reset_done(struct pqi_scsi_dev *device) { device->in_reset = false; } static inline bool pqi_device_in_reset(struct pqi_scsi_dev *device) { return device->in_reset; } static inline void pqi_device_remove_start(struct pqi_scsi_dev *device) { device->in_remove = true; } static inline bool pqi_device_in_remove(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { return device->in_remove & !ctrl_info->in_shutdown; } static inline void pqi_schedule_rescan_worker_with_delay( struct pqi_ctrl_info *ctrl_info, unsigned long delay) { if (pqi_ctrl_offline(ctrl_info)) return; schedule_delayed_work(&ctrl_info->rescan_work, delay); } static inline void pqi_schedule_rescan_worker(struct pqi_ctrl_info *ctrl_info) { pqi_schedule_rescan_worker_with_delay(ctrl_info, 0); } #define PQI_RESCAN_WORK_DELAY (10 * HZ) static inline void pqi_schedule_rescan_worker_delayed( struct pqi_ctrl_info *ctrl_info) { pqi_schedule_rescan_worker_with_delay(ctrl_info, PQI_RESCAN_WORK_DELAY); } static inline void pqi_cancel_rescan_worker(struct pqi_ctrl_info *ctrl_info) { cancel_delayed_work_sync(&ctrl_info->rescan_work); } static inline u32 pqi_read_heartbeat_counter(struct pqi_ctrl_info *ctrl_info) { if (!ctrl_info->heartbeat_counter) return 0; return readl(ctrl_info->heartbeat_counter); } static int pqi_map_single(struct pci_dev *pci_dev, struct pqi_sg_descriptor *sg_descriptor, void *buffer, size_t buffer_length, enum dma_data_direction data_direction) { dma_addr_t bus_address; if (!buffer || buffer_length == 0 || data_direction == DMA_NONE) return 0; bus_address = dma_map_single(&pci_dev->dev, buffer, buffer_length, data_direction); if (dma_mapping_error(&pci_dev->dev, bus_address)) return -ENOMEM; put_unaligned_le64((u64)bus_address, &sg_descriptor->address); put_unaligned_le32(buffer_length, &sg_descriptor->length); put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); return 0; } static void pqi_pci_unmap(struct pci_dev *pci_dev, struct pqi_sg_descriptor *descriptors, int num_descriptors, enum dma_data_direction data_direction) { int i; if (data_direction == DMA_NONE) return; for (i = 0; i < num_descriptors; i++) dma_unmap_single(&pci_dev->dev, (dma_addr_t)get_unaligned_le64(&descriptors[i].address), get_unaligned_le32(&descriptors[i].length), data_direction); } static int pqi_build_raid_path_request(struct pqi_ctrl_info *ctrl_info, struct pqi_raid_path_request *request, u8 cmd, u8 *scsi3addr, void *buffer, size_t buffer_length, u16 vpd_page, enum dma_data_direction *dir) { u8 *cdb; size_t cdb_length = buffer_length; memset(request, 0, sizeof(*request)); request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; put_unaligned_le16(offsetof(struct pqi_raid_path_request, sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request->header.iu_length); put_unaligned_le32(buffer_length, &request->buffer_length); memcpy(request->lun_number, scsi3addr, sizeof(request->lun_number)); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; cdb = request->cdb; switch (cmd) { case INQUIRY: request->data_direction = SOP_READ_FLAG; cdb[0] = INQUIRY; if (vpd_page & VPD_PAGE) { cdb[1] = 0x1; cdb[2] = (u8)vpd_page; } cdb[4] = (u8)cdb_length; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: request->data_direction = SOP_READ_FLAG; cdb[0] = cmd; if (cmd == CISS_REPORT_PHYS) cdb[1] = CISS_REPORT_PHYS_EXTENDED; else cdb[1] = CISS_REPORT_LOG_EXTENDED; put_unaligned_be32(cdb_length, &cdb[6]); break; case CISS_GET_RAID_MAP: request->data_direction = SOP_READ_FLAG; cdb[0] = CISS_READ; cdb[1] = CISS_GET_RAID_MAP; put_unaligned_be32(cdb_length, &cdb[6]); break; case SA_FLUSH_CACHE: request->data_direction = SOP_WRITE_FLAG; cdb[0] = BMIC_WRITE; cdb[6] = BMIC_FLUSH_CACHE; put_unaligned_be16(cdb_length, &cdb[7]); break; case BMIC_SENSE_DIAG_OPTIONS: cdb_length = 0; case BMIC_IDENTIFY_CONTROLLER: case BMIC_IDENTIFY_PHYSICAL_DEVICE: request->data_direction = SOP_READ_FLAG; cdb[0] = BMIC_READ; cdb[6] = cmd; put_unaligned_be16(cdb_length, &cdb[7]); break; case BMIC_SET_DIAG_OPTIONS: cdb_length = 0; case BMIC_WRITE_HOST_WELLNESS: request->data_direction = SOP_WRITE_FLAG; cdb[0] = BMIC_WRITE; cdb[6] = cmd; put_unaligned_be16(cdb_length, &cdb[7]); break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown command 0x%c\n", cmd); break; } switch (request->data_direction) { case SOP_READ_FLAG: *dir = DMA_FROM_DEVICE; break; case SOP_WRITE_FLAG: *dir = DMA_TO_DEVICE; break; case SOP_NO_DIRECTION_FLAG: *dir = DMA_NONE; break; default: *dir = DMA_BIDIRECTIONAL; break; } return pqi_map_single(ctrl_info->pci_dev, &request->sg_descriptors[0], buffer, buffer_length, *dir); } static inline void pqi_reinit_io_request(struct pqi_io_request *io_request) { io_request->scmd = NULL; io_request->status = 0; io_request->error_info = NULL; io_request->raid_bypass = false; } static struct pqi_io_request *pqi_alloc_io_request( struct pqi_ctrl_info *ctrl_info) { struct pqi_io_request *io_request; u16 i = ctrl_info->next_io_request_slot; /* benignly racy */ while (1) { io_request = &ctrl_info->io_request_pool[i]; if (atomic_inc_return(&io_request->refcount) == 1) break; atomic_dec(&io_request->refcount); i = (i + 1) % ctrl_info->max_io_slots; } /* benignly racy */ ctrl_info->next_io_request_slot = (i + 1) % ctrl_info->max_io_slots; pqi_reinit_io_request(io_request); return io_request; } static void pqi_free_io_request(struct pqi_io_request *io_request) { atomic_dec(&io_request->refcount); } static int pqi_send_scsi_raid_request(struct pqi_ctrl_info *ctrl_info, u8 cmd, u8 *scsi3addr, void *buffer, size_t buffer_length, u16 vpd_page, struct pqi_raid_error_info *error_info, unsigned long timeout_msecs) { int rc; enum dma_data_direction dir; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, cmd, scsi3addr, buffer, buffer_length, vpd_page, &dir); if (rc) return rc; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, error_info, timeout_msecs); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, dir); return rc; } /* Helper functions for pqi_send_scsi_raid_request */ static inline int pqi_send_ctrl_raid_request(struct pqi_ctrl_info *ctrl_info, u8 cmd, void *buffer, size_t buffer_length) { return pqi_send_scsi_raid_request(ctrl_info, cmd, RAID_CTLR_LUNID, buffer, buffer_length, 0, NULL, NO_TIMEOUT); } static inline int pqi_send_ctrl_raid_with_error(struct pqi_ctrl_info *ctrl_info, u8 cmd, void *buffer, size_t buffer_length, struct pqi_raid_error_info *error_info) { return pqi_send_scsi_raid_request(ctrl_info, cmd, RAID_CTLR_LUNID, buffer, buffer_length, 0, error_info, NO_TIMEOUT); } static inline int pqi_identify_controller(struct pqi_ctrl_info *ctrl_info, struct bmic_identify_controller *buffer) { return pqi_send_ctrl_raid_request(ctrl_info, BMIC_IDENTIFY_CONTROLLER, buffer, sizeof(*buffer)); } static inline int pqi_scsi_inquiry(struct pqi_ctrl_info *ctrl_info, u8 *scsi3addr, u16 vpd_page, void *buffer, size_t buffer_length) { return pqi_send_scsi_raid_request(ctrl_info, INQUIRY, scsi3addr, buffer, buffer_length, vpd_page, NULL, NO_TIMEOUT); } static bool pqi_vpd_page_supported(struct pqi_ctrl_info *ctrl_info, u8 *scsi3addr, u16 vpd_page) { int rc; int i; int pages; unsigned char *buf, bufsize; buf = kzalloc(256, GFP_KERNEL); if (!buf) return false; /* Get the size of the page list first */ rc = pqi_scsi_inquiry(ctrl_info, scsi3addr, VPD_PAGE | SCSI_VPD_SUPPORTED_PAGES, buf, SCSI_VPD_HEADER_SZ); if (rc != 0) goto exit_unsupported; pages = buf[3]; if ((pages + SCSI_VPD_HEADER_SZ) <= 255) bufsize = pages + SCSI_VPD_HEADER_SZ; else bufsize = 255; /* Get the whole VPD page list */ rc = pqi_scsi_inquiry(ctrl_info, scsi3addr, VPD_PAGE | SCSI_VPD_SUPPORTED_PAGES, buf, bufsize); if (rc != 0) goto exit_unsupported; pages = buf[3]; for (i = 1; i <= pages; i++) if (buf[3 + i] == vpd_page) goto exit_supported; exit_unsupported: kfree(buf); return false; exit_supported: kfree(buf); return true; } static int pqi_get_device_id(struct pqi_ctrl_info *ctrl_info, u8 *scsi3addr, u8 *device_id, int buflen) { int rc; unsigned char *buf; if (!pqi_vpd_page_supported(ctrl_info, scsi3addr, SCSI_VPD_DEVICE_ID)) return 1; /* function not supported */ buf = kzalloc(64, GFP_KERNEL); if (!buf) return -ENOMEM; rc = pqi_scsi_inquiry(ctrl_info, scsi3addr, VPD_PAGE | SCSI_VPD_DEVICE_ID, buf, 64); if (rc == 0) { if (buflen > 16) buflen = 16; memcpy(device_id, &buf[SCSI_VPD_DEVICE_ID_IDX], buflen); } kfree(buf); return rc; } static int pqi_identify_physical_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct bmic_identify_physical_device *buffer, size_t buffer_length) { int rc; enum dma_data_direction dir; u16 bmic_device_index; struct pqi_raid_path_request request; rc = pqi_build_raid_path_request(ctrl_info, &request, BMIC_IDENTIFY_PHYSICAL_DEVICE, RAID_CTLR_LUNID, buffer, buffer_length, 0, &dir); if (rc) return rc; bmic_device_index = CISS_GET_DRIVE_NUMBER(device->scsi3addr); request.cdb[2] = (u8)bmic_device_index; request.cdb[9] = (u8)(bmic_device_index >> 8); rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, dir); return rc; } static int pqi_flush_cache(struct pqi_ctrl_info *ctrl_info, enum bmic_flush_cache_shutdown_event shutdown_event) { int rc; struct bmic_flush_cache *flush_cache; /* * Don't bother trying to flush the cache if the controller is * locked up. */ if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; flush_cache = kzalloc(sizeof(*flush_cache), GFP_KERNEL); if (!flush_cache) return -ENOMEM; flush_cache->shutdown_event = shutdown_event; rc = pqi_send_ctrl_raid_request(ctrl_info, SA_FLUSH_CACHE, flush_cache, sizeof(*flush_cache)); kfree(flush_cache); return rc; } #define PQI_FETCH_PTRAID_DATA (1UL<<31) static int pqi_set_diag_rescan(struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_diag_options *diag; diag = kzalloc(sizeof(*diag), GFP_KERNEL); if (!diag) return -ENOMEM; rc = pqi_send_ctrl_raid_request(ctrl_info, BMIC_SENSE_DIAG_OPTIONS, diag, sizeof(*diag)); if (rc) goto out; diag->options |= cpu_to_le32(PQI_FETCH_PTRAID_DATA); rc = pqi_send_ctrl_raid_request(ctrl_info, BMIC_SET_DIAG_OPTIONS, diag, sizeof(*diag)); out: kfree(diag); return rc; } static inline int pqi_write_host_wellness(struct pqi_ctrl_info *ctrl_info, void *buffer, size_t buffer_length) { return pqi_send_ctrl_raid_request(ctrl_info, BMIC_WRITE_HOST_WELLNESS, buffer, buffer_length); } #pragma pack(1) struct bmic_host_wellness_driver_version { u8 start_tag[4]; u8 driver_version_tag[2]; __le16 driver_version_length; char driver_version[32]; u8 dont_write_tag[2]; u8 end_tag[2]; }; #pragma pack() static int pqi_write_driver_version_to_host_wellness( struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_host_wellness_driver_version *buffer; size_t buffer_length; buffer_length = sizeof(*buffer); buffer = kmalloc(buffer_length, GFP_KERNEL); if (!buffer) return -ENOMEM; buffer->start_tag[0] = '<'; buffer->start_tag[1] = 'H'; buffer->start_tag[2] = 'W'; buffer->start_tag[3] = '>'; buffer->driver_version_tag[0] = 'D'; buffer->driver_version_tag[1] = 'V'; put_unaligned_le16(sizeof(buffer->driver_version), &buffer->driver_version_length); strncpy(buffer->driver_version, "Linux " DRIVER_VERSION, sizeof(buffer->driver_version) - 1); buffer->driver_version[sizeof(buffer->driver_version) - 1] = '\0'; buffer->dont_write_tag[0] = 'D'; buffer->dont_write_tag[1] = 'W'; buffer->end_tag[0] = 'Z'; buffer->end_tag[1] = 'Z'; rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length); kfree(buffer); return rc; } #pragma pack(1) struct bmic_host_wellness_time { u8 start_tag[4]; u8 time_tag[2]; __le16 time_length; u8 time[8]; u8 dont_write_tag[2]; u8 end_tag[2]; }; #pragma pack() static int pqi_write_current_time_to_host_wellness( struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_host_wellness_time *buffer; size_t buffer_length; time64_t local_time; unsigned int year; struct tm tm; buffer_length = sizeof(*buffer); buffer = kmalloc(buffer_length, GFP_KERNEL); if (!buffer) return -ENOMEM; buffer->start_tag[0] = '<'; buffer->start_tag[1] = 'H'; buffer->start_tag[2] = 'W'; buffer->start_tag[3] = '>'; buffer->time_tag[0] = 'T'; buffer->time_tag[1] = 'D'; put_unaligned_le16(sizeof(buffer->time), &buffer->time_length); local_time = ktime_get_real_seconds(); time64_to_tm(local_time, -sys_tz.tz_minuteswest * 60, &tm); year = tm.tm_year + 1900; buffer->time[0] = bin2bcd(tm.tm_hour); buffer->time[1] = bin2bcd(tm.tm_min); buffer->time[2] = bin2bcd(tm.tm_sec); buffer->time[3] = 0; buffer->time[4] = bin2bcd(tm.tm_mon + 1); buffer->time[5] = bin2bcd(tm.tm_mday); buffer->time[6] = bin2bcd(year / 100); buffer->time[7] = bin2bcd(year % 100); buffer->dont_write_tag[0] = 'D'; buffer->dont_write_tag[1] = 'W'; buffer->end_tag[0] = 'Z'; buffer->end_tag[1] = 'Z'; rc = pqi_write_host_wellness(ctrl_info, buffer, buffer_length); kfree(buffer); return rc; } #define PQI_UPDATE_TIME_WORK_INTERVAL (24UL * 60 * 60 * HZ) static void pqi_update_time_worker(struct work_struct *work) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info, update_time_work); if (pqi_ctrl_offline(ctrl_info)) return; rc = pqi_write_current_time_to_host_wellness(ctrl_info); if (rc) dev_warn(&ctrl_info->pci_dev->dev, "error updating time on controller\n"); schedule_delayed_work(&ctrl_info->update_time_work, PQI_UPDATE_TIME_WORK_INTERVAL); } static inline void pqi_schedule_update_time_worker( struct pqi_ctrl_info *ctrl_info) { schedule_delayed_work(&ctrl_info->update_time_work, 0); } static inline void pqi_cancel_update_time_worker( struct pqi_ctrl_info *ctrl_info) { cancel_delayed_work_sync(&ctrl_info->update_time_work); } static inline int pqi_report_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd, void *buffer, size_t buffer_length) { return pqi_send_ctrl_raid_request(ctrl_info, cmd, buffer, buffer_length); } static int pqi_report_phys_logical_luns(struct pqi_ctrl_info *ctrl_info, u8 cmd, void **buffer) { int rc; size_t lun_list_length; size_t lun_data_length; size_t new_lun_list_length; void *lun_data = NULL; struct report_lun_header *report_lun_header; report_lun_header = kmalloc(sizeof(*report_lun_header), GFP_KERNEL); if (!report_lun_header) { rc = -ENOMEM; goto out; } rc = pqi_report_luns(ctrl_info, cmd, report_lun_header, sizeof(*report_lun_header)); if (rc) goto out; lun_list_length = get_unaligned_be32(&report_lun_header->list_length); again: lun_data_length = sizeof(struct report_lun_header) + lun_list_length; lun_data = kmalloc(lun_data_length, GFP_KERNEL); if (!lun_data) { rc = -ENOMEM; goto out; } if (lun_list_length == 0) { memcpy(lun_data, report_lun_header, sizeof(*report_lun_header)); goto out; } rc = pqi_report_luns(ctrl_info, cmd, lun_data, lun_data_length); if (rc) goto out; new_lun_list_length = get_unaligned_be32( &((struct report_lun_header *)lun_data)->list_length); if (new_lun_list_length > lun_list_length) { lun_list_length = new_lun_list_length; kfree(lun_data); goto again; } out: kfree(report_lun_header); if (rc) { kfree(lun_data); lun_data = NULL; } *buffer = lun_data; return rc; } static inline int pqi_report_phys_luns(struct pqi_ctrl_info *ctrl_info, void **buffer) { return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_PHYS, buffer); } static inline int pqi_report_logical_luns(struct pqi_ctrl_info *ctrl_info, void **buffer) { return pqi_report_phys_logical_luns(ctrl_info, CISS_REPORT_LOG, buffer); } static int pqi_get_device_lists(struct pqi_ctrl_info *ctrl_info, struct report_phys_lun_extended **physdev_list, struct report_log_lun_extended **logdev_list) { int rc; size_t logdev_list_length; size_t logdev_data_length; struct report_log_lun_extended *internal_logdev_list; struct report_log_lun_extended *logdev_data; struct report_lun_header report_lun_header; rc = pqi_report_phys_luns(ctrl_info, (void **)physdev_list); if (rc) dev_err(&ctrl_info->pci_dev->dev, "report physical LUNs failed\n"); rc = pqi_report_logical_luns(ctrl_info, (void **)logdev_list); if (rc) dev_err(&ctrl_info->pci_dev->dev, "report logical LUNs failed\n"); /* * Tack the controller itself onto the end of the logical device list. */ logdev_data = *logdev_list; if (logdev_data) { logdev_list_length = get_unaligned_be32(&logdev_data->header.list_length); } else { memset(&report_lun_header, 0, sizeof(report_lun_header)); logdev_data = (struct report_log_lun_extended *)&report_lun_header; logdev_list_length = 0; } logdev_data_length = sizeof(struct report_lun_header) + logdev_list_length; internal_logdev_list = kmalloc(logdev_data_length + sizeof(struct report_log_lun_extended), GFP_KERNEL); if (!internal_logdev_list) { kfree(*logdev_list); *logdev_list = NULL; return -ENOMEM; } memcpy(internal_logdev_list, logdev_data, logdev_data_length); memset((u8 *)internal_logdev_list + logdev_data_length, 0, sizeof(struct report_log_lun_extended_entry)); put_unaligned_be32(logdev_list_length + sizeof(struct report_log_lun_extended_entry), &internal_logdev_list->header.list_length); kfree(*logdev_list); *logdev_list = internal_logdev_list; return 0; } static inline void pqi_set_bus_target_lun(struct pqi_scsi_dev *device, int bus, int target, int lun) { device->bus = bus; device->target = target; device->lun = lun; } static void pqi_assign_bus_target_lun(struct pqi_scsi_dev *device) { u8 *scsi3addr; u32 lunid; int bus; int target; int lun; scsi3addr = device->scsi3addr; lunid = get_unaligned_le32(scsi3addr); if (pqi_is_hba_lunid(scsi3addr)) { /* The specified device is the controller. */ pqi_set_bus_target_lun(device, PQI_HBA_BUS, 0, lunid & 0x3fff); device->target_lun_valid = true; return; } if (pqi_is_logical_device(device)) { if (device->is_external_raid_device) { bus = PQI_EXTERNAL_RAID_VOLUME_BUS; target = (lunid >> 16) & 0x3fff; lun = lunid & 0xff; } else { bus = PQI_RAID_VOLUME_BUS; target = 0; lun = lunid & 0x3fff; } pqi_set_bus_target_lun(device, bus, target, lun); device->target_lun_valid = true; return; } /* * Defer target and LUN assignment for non-controller physical devices * because the SAS transport layer will make these assignments later. */ pqi_set_bus_target_lun(device, PQI_PHYSICAL_DEVICE_BUS, 0, 0); } static void pqi_get_raid_level(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 raid_level; u8 *buffer; raid_level = SA_RAID_UNKNOWN; buffer = kmalloc(64, GFP_KERNEL); if (buffer) { rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_DEVICE_GEOMETRY, buffer, 64); if (rc == 0) { raid_level = buffer[8]; if (raid_level > SA_RAID_MAX) raid_level = SA_RAID_UNKNOWN; } kfree(buffer); } device->raid_level = raid_level; } static int pqi_validate_raid_map(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct raid_map *raid_map) { char *err_msg; u32 raid_map_size; u32 r5or6_blocks_per_row; raid_map_size = get_unaligned_le32(&raid_map->structure_size); if (raid_map_size < offsetof(struct raid_map, disk_data)) { err_msg = "RAID map too small"; goto bad_raid_map; } if (device->raid_level == SA_RAID_1) { if (get_unaligned_le16(&raid_map->layout_map_count) != 2) { err_msg = "invalid RAID-1 map"; goto bad_raid_map; } } else if (device->raid_level == SA_RAID_ADM) { if (get_unaligned_le16(&raid_map->layout_map_count) != 3) { err_msg = "invalid RAID-1(ADM) map"; goto bad_raid_map; } } else if ((device->raid_level == SA_RAID_5 || device->raid_level == SA_RAID_6) && get_unaligned_le16(&raid_map->layout_map_count) > 1) { /* RAID 50/60 */ r5or6_blocks_per_row = get_unaligned_le16(&raid_map->strip_size) * get_unaligned_le16(&raid_map->data_disks_per_row); if (r5or6_blocks_per_row == 0) { err_msg = "invalid RAID-5 or RAID-6 map"; goto bad_raid_map; } } return 0; bad_raid_map: dev_warn(&ctrl_info->pci_dev->dev, "logical device %08x%08x %s\n", *((u32 *)&device->scsi3addr), *((u32 *)&device->scsi3addr[4]), err_msg); return -EINVAL; } static int pqi_get_raid_map(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u32 raid_map_size; struct raid_map *raid_map; raid_map = kmalloc(sizeof(*raid_map), GFP_KERNEL); if (!raid_map) return -ENOMEM; rc = pqi_send_scsi_raid_request(ctrl_info, CISS_GET_RAID_MAP, device->scsi3addr, raid_map, sizeof(*raid_map), 0, NULL, NO_TIMEOUT); if (rc) goto error; raid_map_size = get_unaligned_le32(&raid_map->structure_size); if (raid_map_size > sizeof(*raid_map)) { kfree(raid_map); raid_map = kmalloc(raid_map_size, GFP_KERNEL); if (!raid_map) return -ENOMEM; rc = pqi_send_scsi_raid_request(ctrl_info, CISS_GET_RAID_MAP, device->scsi3addr, raid_map, raid_map_size, 0, NULL, NO_TIMEOUT); if (rc) goto error; if (get_unaligned_le32(&raid_map->structure_size) != raid_map_size) { dev_warn(&ctrl_info->pci_dev->dev, "Requested %d bytes, received %d bytes", raid_map_size, get_unaligned_le32(&raid_map->structure_size)); goto error; } } rc = pqi_validate_raid_map(ctrl_info, device, raid_map); if (rc) goto error; device->raid_map = raid_map; return 0; error: kfree(raid_map); return rc; } static void pqi_get_raid_bypass_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 *buffer; u8 bypass_status; buffer = kmalloc(64, GFP_KERNEL); if (!buffer) return; rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_BYPASS_STATUS, buffer, 64); if (rc) goto out; #define RAID_BYPASS_STATUS 4 #define RAID_BYPASS_CONFIGURED 0x1 #define RAID_BYPASS_ENABLED 0x2 bypass_status = buffer[RAID_BYPASS_STATUS]; device->raid_bypass_configured = (bypass_status & RAID_BYPASS_CONFIGURED) != 0; if (device->raid_bypass_configured && (bypass_status & RAID_BYPASS_ENABLED) && pqi_get_raid_map(ctrl_info, device) == 0) device->raid_bypass_enabled = true; out: kfree(buffer); } /* * Use vendor-specific VPD to determine online/offline status of a volume. */ static void pqi_get_volume_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; size_t page_length; u8 volume_status = CISS_LV_STATUS_UNAVAILABLE; bool volume_offline = true; u32 volume_flags; struct ciss_vpd_logical_volume_status *vpd; vpd = kmalloc(sizeof(*vpd), GFP_KERNEL); if (!vpd) goto no_buffer; rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, VPD_PAGE | CISS_VPD_LV_STATUS, vpd, sizeof(*vpd)); if (rc) goto out; page_length = offsetof(struct ciss_vpd_logical_volume_status, volume_status) + vpd->page_length; if (page_length < sizeof(*vpd)) goto out; volume_status = vpd->volume_status; volume_flags = get_unaligned_be32(&vpd->flags); volume_offline = (volume_flags & CISS_LV_FLAGS_NO_HOST_IO) != 0; out: kfree(vpd); no_buffer: device->volume_status = volume_status; device->volume_offline = volume_offline; } #define PQI_INQUIRY_PAGE0_RETRIES 3 static int pqi_get_device_info(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; u8 *buffer; unsigned int retries; buffer = kmalloc(64, GFP_KERNEL); if (!buffer) return -ENOMEM; /* Send an inquiry to the device to see what it is. */ for (retries = 0;;) { rc = pqi_scsi_inquiry(ctrl_info, device->scsi3addr, 0, buffer, 64); if (rc == 0) break; if (pqi_is_logical_device(device) || rc != PQI_CMD_STATUS_ABORTED || ++retries > PQI_INQUIRY_PAGE0_RETRIES) goto out; } scsi_sanitize_inquiry_string(&buffer[8], 8); scsi_sanitize_inquiry_string(&buffer[16], 16); device->devtype = buffer[0] & 0x1f; memcpy(device->vendor, &buffer[8], sizeof(device->vendor)); memcpy(device->model, &buffer[16], sizeof(device->model)); if (pqi_is_logical_device(device) && device->devtype == TYPE_DISK) { if (device->is_external_raid_device) { device->raid_level = SA_RAID_UNKNOWN; device->volume_status = CISS_LV_OK; device->volume_offline = false; } else { pqi_get_raid_level(ctrl_info, device); pqi_get_raid_bypass_status(ctrl_info, device); pqi_get_volume_status(ctrl_info, device); } } if (pqi_get_device_id(ctrl_info, device->scsi3addr, device->unique_id, sizeof(device->unique_id)) < 0) dev_warn(&ctrl_info->pci_dev->dev, "Can't get device id for scsi %d:%d:%d:%d\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun); out: kfree(buffer); return rc; } static void pqi_get_physical_disk_info(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct bmic_identify_physical_device *id_phys) { int rc; memset(id_phys, 0, sizeof(*id_phys)); rc = pqi_identify_physical_device(ctrl_info, device, id_phys, sizeof(*id_phys)); if (rc) { device->queue_depth = PQI_PHYSICAL_DISK_DEFAULT_MAX_QUEUE_DEPTH; return; } device->queue_depth = get_unaligned_le16(&id_phys->current_queue_depth_limit); device->device_type = id_phys->device_type; device->active_path_index = id_phys->active_path_number; device->path_map = id_phys->redundant_path_present_map; memcpy(&device->box, &id_phys->alternate_paths_phys_box_on_port, sizeof(device->box)); memcpy(&device->phys_connector, &id_phys->alternate_paths_phys_connector, sizeof(device->phys_connector)); device->bay = id_phys->phys_bay_in_box; } static void pqi_show_volume_status(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { char *status; static const char unknown_state_str[] = "Volume is in an unknown state (%u)"; char unknown_state_buffer[sizeof(unknown_state_str) + 10]; switch (device->volume_status) { case CISS_LV_OK: status = "Volume online"; break; case CISS_LV_FAILED: status = "Volume failed"; break; case CISS_LV_NOT_CONFIGURED: status = "Volume not configured"; break; case CISS_LV_DEGRADED: status = "Volume degraded"; break; case CISS_LV_READY_FOR_RECOVERY: status = "Volume ready for recovery operation"; break; case CISS_LV_UNDERGOING_RECOVERY: status = "Volume undergoing recovery"; break; case CISS_LV_WRONG_PHYSICAL_DRIVE_REPLACED: status = "Wrong physical drive was replaced"; break; case CISS_LV_PHYSICAL_DRIVE_CONNECTION_PROBLEM: status = "A physical drive not properly connected"; break; case CISS_LV_HARDWARE_OVERHEATING: status = "Hardware is overheating"; break; case CISS_LV_HARDWARE_HAS_OVERHEATED: status = "Hardware has overheated"; break; case CISS_LV_UNDERGOING_EXPANSION: status = "Volume undergoing expansion"; break; case CISS_LV_NOT_AVAILABLE: status = "Volume waiting for transforming volume"; break; case CISS_LV_QUEUED_FOR_EXPANSION: status = "Volume queued for expansion"; break; case CISS_LV_DISABLED_SCSI_ID_CONFLICT: status = "Volume disabled due to SCSI ID conflict"; break; case CISS_LV_EJECTED: status = "Volume has been ejected"; break; case CISS_LV_UNDERGOING_ERASE: status = "Volume undergoing background erase"; break; case CISS_LV_READY_FOR_PREDICTIVE_SPARE_REBUILD: status = "Volume ready for predictive spare rebuild"; break; case CISS_LV_UNDERGOING_RPI: status = "Volume undergoing rapid parity initialization"; break; case CISS_LV_PENDING_RPI: status = "Volume queued for rapid parity initialization"; break; case CISS_LV_ENCRYPTED_NO_KEY: status = "Encrypted volume inaccessible - key not present"; break; case CISS_LV_UNDERGOING_ENCRYPTION: status = "Volume undergoing encryption process"; break; case CISS_LV_UNDERGOING_ENCRYPTION_REKEYING: status = "Volume undergoing encryption re-keying process"; break; case CISS_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: status = "Volume encrypted but encryption is disabled"; break; case CISS_LV_PENDING_ENCRYPTION: status = "Volume pending migration to encrypted state"; break; case CISS_LV_PENDING_ENCRYPTION_REKEYING: status = "Volume pending encryption rekeying"; break; case CISS_LV_NOT_SUPPORTED: status = "Volume not supported on this controller"; break; case CISS_LV_STATUS_UNAVAILABLE: status = "Volume status not available"; break; default: snprintf(unknown_state_buffer, sizeof(unknown_state_buffer), unknown_state_str, device->volume_status); status = unknown_state_buffer; break; } dev_info(&ctrl_info->pci_dev->dev, "scsi %d:%d:%d:%d %s\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, status); } static void pqi_rescan_worker(struct work_struct *work) { struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(to_delayed_work(work), struct pqi_ctrl_info, rescan_work); pqi_scan_scsi_devices(ctrl_info); } static int pqi_add_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; if (pqi_is_logical_device(device)) rc = scsi_add_device(ctrl_info->scsi_host, device->bus, device->target, device->lun); else rc = pqi_add_sas_device(ctrl_info->sas_host, device); return rc; } #define PQI_PENDING_IO_TIMEOUT_SECS 20 static inline void pqi_remove_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; pqi_device_remove_start(device); rc = pqi_device_wait_for_pending_io(ctrl_info, device, PQI_PENDING_IO_TIMEOUT_SECS); if (rc) dev_err(&ctrl_info->pci_dev->dev, "scsi %d:%d:%d:%d removing device with %d outstanding commands\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, atomic_read(&device->scsi_cmds_outstanding)); if (pqi_is_logical_device(device)) scsi_remove_device(device->sdev); else pqi_remove_sas_device(device); } /* Assumes the SCSI device list lock is held. */ static struct pqi_scsi_dev *pqi_find_scsi_dev(struct pqi_ctrl_info *ctrl_info, int bus, int target, int lun) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) if (device->bus == bus && device->target == target && device->lun == lun) return device; return NULL; } static inline bool pqi_device_equal(struct pqi_scsi_dev *dev1, struct pqi_scsi_dev *dev2) { if (dev1->is_physical_device != dev2->is_physical_device) return false; if (dev1->is_physical_device) return dev1->wwid == dev2->wwid; return memcmp(dev1->volume_id, dev2->volume_id, sizeof(dev1->volume_id)) == 0; } enum pqi_find_result { DEVICE_NOT_FOUND, DEVICE_CHANGED, DEVICE_SAME, }; static enum pqi_find_result pqi_scsi_find_entry(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device_to_find, struct pqi_scsi_dev **matching_device) { struct pqi_scsi_dev *device; list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (pqi_scsi3addr_equal(device_to_find->scsi3addr, device->scsi3addr)) { *matching_device = device; if (pqi_device_equal(device_to_find, device)) { if (device_to_find->volume_offline) return DEVICE_CHANGED; return DEVICE_SAME; } return DEVICE_CHANGED; } } return DEVICE_NOT_FOUND; } #define PQI_DEV_INFO_BUFFER_LENGTH 128 static void pqi_dev_info(struct pqi_ctrl_info *ctrl_info, char *action, struct pqi_scsi_dev *device) { ssize_t count; char buffer[PQI_DEV_INFO_BUFFER_LENGTH]; count = snprintf(buffer, PQI_DEV_INFO_BUFFER_LENGTH, "%d:%d:", ctrl_info->scsi_host->host_no, device->bus); if (device->target_lun_valid) count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, "%d:%d", device->target, device->lun); else count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, "-:-"); if (pqi_is_logical_device(device)) count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, " %08x%08x", *((u32 *)&device->scsi3addr), *((u32 *)&device->scsi3addr[4])); else count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, " %016llx", device->sas_address); count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, " %s %.8s %.16s ", scsi_device_type(device->devtype), device->vendor, device->model); if (pqi_is_logical_device(device)) { if (device->devtype == TYPE_DISK) count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, "SSDSmartPathCap%c En%c %-12s", device->raid_bypass_configured ? '+' : '-', device->raid_bypass_enabled ? '+' : '-', pqi_raid_level_to_string(device->raid_level)); } else { count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, "AIO%c", device->aio_enabled ? '+' : '-'); if (device->devtype == TYPE_DISK || device->devtype == TYPE_ZBC) count += snprintf(buffer + count, PQI_DEV_INFO_BUFFER_LENGTH - count, " qd=%-6d", device->queue_depth); } dev_info(&ctrl_info->pci_dev->dev, "%s %s\n", action, buffer); } /* Assumes the SCSI device list lock is held. */ static void pqi_scsi_update_device(struct pqi_scsi_dev *existing_device, struct pqi_scsi_dev *new_device) { existing_device->devtype = new_device->devtype; existing_device->device_type = new_device->device_type; existing_device->bus = new_device->bus; if (new_device->target_lun_valid) { existing_device->target = new_device->target; existing_device->lun = new_device->lun; existing_device->target_lun_valid = true; } /* By definition, the scsi3addr and wwid fields are already the same. */ existing_device->is_physical_device = new_device->is_physical_device; existing_device->is_external_raid_device = new_device->is_external_raid_device; existing_device->aio_enabled = new_device->aio_enabled; memcpy(existing_device->vendor, new_device->vendor, sizeof(existing_device->vendor)); memcpy(existing_device->model, new_device->model, sizeof(existing_device->model)); existing_device->sas_address = new_device->sas_address; existing_device->raid_level = new_device->raid_level; existing_device->queue_depth = new_device->queue_depth; existing_device->aio_handle = new_device->aio_handle; existing_device->volume_status = new_device->volume_status; existing_device->active_path_index = new_device->active_path_index; existing_device->path_map = new_device->path_map; existing_device->bay = new_device->bay; memcpy(existing_device->box, new_device->box, sizeof(existing_device->box)); memcpy(existing_device->phys_connector, new_device->phys_connector, sizeof(existing_device->phys_connector)); existing_device->offload_to_mirror = 0; kfree(existing_device->raid_map); existing_device->raid_map = new_device->raid_map; existing_device->raid_bypass_configured = new_device->raid_bypass_configured; existing_device->raid_bypass_enabled = new_device->raid_bypass_enabled; existing_device->device_offline = false; /* To prevent this from being freed later. */ new_device->raid_map = NULL; } static inline void pqi_free_device(struct pqi_scsi_dev *device) { if (device) { kfree(device->raid_map); kfree(device); } } /* * Called when exposing a new device to the OS fails in order to re-adjust * our internal SCSI device list to match the SCSI ML's view. */ static inline void pqi_fixup_botched_add(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { unsigned long flags; spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); list_del(&device->scsi_device_list_entry); spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); /* Allow the device structure to be freed later. */ device->keep_device = false; } static void pqi_update_device_list(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *new_device_list[], unsigned int num_new_devices) { int rc; unsigned int i; unsigned long flags; enum pqi_find_result find_result; struct pqi_scsi_dev *device; struct pqi_scsi_dev *next; struct pqi_scsi_dev *matching_device; LIST_HEAD(add_list); LIST_HEAD(delete_list); /* * The idea here is to do as little work as possible while holding the * spinlock. That's why we go to great pains to defer anything other * than updating the internal device list until after we release the * spinlock. */ spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); /* Assume that all devices in the existing list have gone away. */ list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) device->device_gone = true; for (i = 0; i < num_new_devices; i++) { device = new_device_list[i]; find_result = pqi_scsi_find_entry(ctrl_info, device, &matching_device); switch (find_result) { case DEVICE_SAME: /* * The newly found device is already in the existing * device list. */ device->new_device = false; matching_device->device_gone = false; pqi_scsi_update_device(matching_device, device); break; case DEVICE_NOT_FOUND: /* * The newly found device is NOT in the existing device * list. */ device->new_device = true; break; case DEVICE_CHANGED: /* * The original device has gone away and we need to add * the new device. */ device->new_device = true; break; } } /* Process all devices that have gone away. */ list_for_each_entry_safe(device, next, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->device_gone) { list_del(&device->scsi_device_list_entry); list_add_tail(&device->delete_list_entry, &delete_list); } } /* Process all new devices. */ for (i = 0; i < num_new_devices; i++) { device = new_device_list[i]; if (!device->new_device) continue; if (device->volume_offline) continue; list_add_tail(&device->scsi_device_list_entry, &ctrl_info->scsi_device_list); list_add_tail(&device->add_list_entry, &add_list); /* To prevent this device structure from being freed later. */ device->keep_device = true; } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); /* Remove all devices that have gone away. */ list_for_each_entry_safe(device, next, &delete_list, delete_list_entry) { if (device->volume_offline) { pqi_dev_info(ctrl_info, "offline", device); pqi_show_volume_status(ctrl_info, device); } else { pqi_dev_info(ctrl_info, "removed", device); } if (device->sdev) pqi_remove_device(ctrl_info, device); list_del(&device->delete_list_entry); pqi_free_device(device); } /* * Notify the SCSI ML if the queue depth of any existing device has * changed. */ list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (device->sdev && device->queue_depth != device->advertised_queue_depth) { device->advertised_queue_depth = device->queue_depth; scsi_change_queue_depth(device->sdev, device->advertised_queue_depth); } } /* Expose any new devices. */ list_for_each_entry_safe(device, next, &add_list, add_list_entry) { if (!device->sdev) { pqi_dev_info(ctrl_info, "added", device); rc = pqi_add_device(ctrl_info, device); if (rc) { dev_warn(&ctrl_info->pci_dev->dev, "scsi %d:%d:%d:%d addition failed, device not added\n", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun); pqi_fixup_botched_add(ctrl_info, device); } } } } static bool pqi_is_supported_device(struct pqi_scsi_dev *device) { bool is_supported = false; switch (device->devtype) { case TYPE_DISK: case TYPE_ZBC: case TYPE_TAPE: case TYPE_MEDIUM_CHANGER: case TYPE_ENCLOSURE: is_supported = true; break; case TYPE_RAID: /* * Only support the HBA controller itself as a RAID * controller. If it's a RAID controller other than * the HBA itself (an external RAID controller, for * example), we don't support it. */ if (pqi_is_hba_lunid(device->scsi3addr)) is_supported = true; break; } return is_supported; } static inline bool pqi_skip_device(u8 *scsi3addr) { /* Ignore all masked devices. */ if (MASKED_DEVICE(scsi3addr)) return true; return false; } static inline bool pqi_expose_device(struct pqi_scsi_dev *device) { return !device->is_physical_device || !pqi_skip_device(device->scsi3addr); } static int pqi_update_scsi_devices(struct pqi_ctrl_info *ctrl_info) { int i; int rc; LIST_HEAD(new_device_list_head); struct report_phys_lun_extended *physdev_list = NULL; struct report_log_lun_extended *logdev_list = NULL; struct report_phys_lun_extended_entry *phys_lun_ext_entry; struct report_log_lun_extended_entry *log_lun_ext_entry; struct bmic_identify_physical_device *id_phys = NULL; u32 num_physicals; u32 num_logicals; struct pqi_scsi_dev **new_device_list = NULL; struct pqi_scsi_dev *device; struct pqi_scsi_dev *next; unsigned int num_new_devices; unsigned int num_valid_devices; bool is_physical_device; u8 *scsi3addr; static char *out_of_memory_msg = "failed to allocate memory, device discovery stopped"; rc = pqi_get_device_lists(ctrl_info, &physdev_list, &logdev_list); if (rc) goto out; if (physdev_list) num_physicals = get_unaligned_be32(&physdev_list->header.list_length) / sizeof(physdev_list->lun_entries[0]); else num_physicals = 0; if (logdev_list) num_logicals = get_unaligned_be32(&logdev_list->header.list_length) / sizeof(logdev_list->lun_entries[0]); else num_logicals = 0; if (num_physicals) { /* * We need this buffer for calls to pqi_get_physical_disk_info() * below. We allocate it here instead of inside * pqi_get_physical_disk_info() because it's a fairly large * buffer. */ id_phys = kmalloc(sizeof(*id_phys), GFP_KERNEL); if (!id_phys) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } } num_new_devices = num_physicals + num_logicals; new_device_list = kmalloc_array(num_new_devices, sizeof(*new_device_list), GFP_KERNEL); if (!new_device_list) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } for (i = 0; i < num_new_devices; i++) { device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); rc = -ENOMEM; goto out; } list_add_tail(&device->new_device_list_entry, &new_device_list_head); } device = NULL; num_valid_devices = 0; for (i = 0; i < num_new_devices; i++) { if (i < num_physicals) { is_physical_device = true; phys_lun_ext_entry = &physdev_list->lun_entries[i]; log_lun_ext_entry = NULL; scsi3addr = phys_lun_ext_entry->lunid; } else { is_physical_device = false; phys_lun_ext_entry = NULL; log_lun_ext_entry = &logdev_list->lun_entries[i - num_physicals]; scsi3addr = log_lun_ext_entry->lunid; } if (is_physical_device && pqi_skip_device(scsi3addr)) continue; if (device) device = list_next_entry(device, new_device_list_entry); else device = list_first_entry(&new_device_list_head, struct pqi_scsi_dev, new_device_list_entry); memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); device->is_physical_device = is_physical_device; if (!is_physical_device) device->is_external_raid_device = pqi_is_external_raid_addr(scsi3addr); /* Gather information about the device. */ rc = pqi_get_device_info(ctrl_info, device); if (rc == -ENOMEM) { dev_warn(&ctrl_info->pci_dev->dev, "%s\n", out_of_memory_msg); goto out; } if (rc) { if (device->is_physical_device) dev_warn(&ctrl_info->pci_dev->dev, "obtaining device info failed, skipping physical device %016llx\n", get_unaligned_be64( &phys_lun_ext_entry->wwid)); else dev_warn(&ctrl_info->pci_dev->dev, "obtaining device info failed, skipping logical device %08x%08x\n", *((u32 *)&device->scsi3addr), *((u32 *)&device->scsi3addr[4])); rc = 0; continue; } if (!pqi_is_supported_device(device)) continue; pqi_assign_bus_target_lun(device); if (device->is_physical_device) { device->wwid = phys_lun_ext_entry->wwid; if ((phys_lun_ext_entry->device_flags & REPORT_PHYS_LUN_DEV_FLAG_AIO_ENABLED) && phys_lun_ext_entry->aio_handle) device->aio_enabled = true; } else { memcpy(device->volume_id, log_lun_ext_entry->volume_id, sizeof(device->volume_id)); } switch (device->devtype) { case TYPE_DISK: case TYPE_ZBC: case TYPE_ENCLOSURE: if (device->is_physical_device) { device->sas_address = get_unaligned_be64(&device->wwid); if (device->devtype == TYPE_DISK || device->devtype == TYPE_ZBC) { device->aio_handle = phys_lun_ext_entry->aio_handle; pqi_get_physical_disk_info(ctrl_info, device, id_phys); } } break; } new_device_list[num_valid_devices++] = device; } pqi_update_device_list(ctrl_info, new_device_list, num_valid_devices); out: list_for_each_entry_safe(device, next, &new_device_list_head, new_device_list_entry) { if (device->keep_device) continue; list_del(&device->new_device_list_entry); pqi_free_device(device); } kfree(new_device_list); kfree(physdev_list); kfree(logdev_list); kfree(id_phys); return rc; } static void pqi_remove_all_scsi_devices(struct pqi_ctrl_info *ctrl_info) { unsigned long flags; struct pqi_scsi_dev *device; while (1) { spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = list_first_entry_or_null(&ctrl_info->scsi_device_list, struct pqi_scsi_dev, scsi_device_list_entry); if (device) list_del(&device->scsi_device_list_entry); spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); if (!device) break; if (device->sdev) pqi_remove_device(ctrl_info, device); pqi_free_device(device); } } static int pqi_scan_scsi_devices(struct pqi_ctrl_info *ctrl_info) { int rc; if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; mutex_lock(&ctrl_info->scan_mutex); rc = pqi_update_scsi_devices(ctrl_info); if (rc) pqi_schedule_rescan_worker_delayed(ctrl_info); mutex_unlock(&ctrl_info->scan_mutex); return rc; } static void pqi_scan_start(struct Scsi_Host *shost) { pqi_scan_scsi_devices(shost_to_hba(shost)); } /* Returns TRUE if scan is finished. */ static int pqi_scan_finished(struct Scsi_Host *shost, unsigned long elapsed_time) { struct pqi_ctrl_info *ctrl_info; ctrl_info = shost_priv(shost); return !mutex_is_locked(&ctrl_info->scan_mutex); } static void pqi_wait_until_scan_finished(struct pqi_ctrl_info *ctrl_info) { mutex_lock(&ctrl_info->scan_mutex); mutex_unlock(&ctrl_info->scan_mutex); } static void pqi_wait_until_lun_reset_finished(struct pqi_ctrl_info *ctrl_info) { mutex_lock(&ctrl_info->lun_reset_mutex); mutex_unlock(&ctrl_info->lun_reset_mutex); } static inline void pqi_set_encryption_info( struct pqi_encryption_info *encryption_info, struct raid_map *raid_map, u64 first_block) { u32 volume_blk_size; /* * Set the encryption tweak values based on logical block address. * If the block size is 512, the tweak value is equal to the LBA. * For other block sizes, tweak value is (LBA * block size) / 512. */ volume_blk_size = get_unaligned_le32(&raid_map->volume_blk_size); if (volume_blk_size != 512) first_block = (first_block * volume_blk_size) / 512; encryption_info->data_encryption_key_index = get_unaligned_le16(&raid_map->data_encryption_key_index); encryption_info->encrypt_tweak_lower = lower_32_bits(first_block); encryption_info->encrypt_tweak_upper = upper_32_bits(first_block); } /* * Attempt to perform RAID bypass mapping for a logical volume I/O. */ #define PQI_RAID_BYPASS_INELIGIBLE 1 static int pqi_raid_bypass_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { struct raid_map *raid_map; bool is_write = false; u32 map_index; u64 first_block; u64 last_block; u32 block_cnt; u32 blocks_per_row; u64 first_row; u64 last_row; u32 first_row_offset; u32 last_row_offset; u32 first_column; u32 last_column; u64 r0_first_row; u64 r0_last_row; u32 r5or6_blocks_per_row; u64 r5or6_first_row; u64 r5or6_last_row; u32 r5or6_first_row_offset; u32 r5or6_last_row_offset; u32 r5or6_first_column; u32 r5or6_last_column; u16 data_disks_per_row; u32 total_disks_per_row; u16 layout_map_count; u32 stripesize; u16 strip_size; u32 first_group; u32 last_group; u32 current_group; u32 map_row; u32 aio_handle; u64 disk_block; u32 disk_block_cnt; u8 cdb[16]; u8 cdb_length; int offload_to_mirror; struct pqi_encryption_info *encryption_info_ptr; struct pqi_encryption_info encryption_info; #if BITS_PER_LONG == 32 u64 tmpdiv; #endif /* Check for valid opcode, get LBA and block count. */ switch (scmd->cmnd[0]) { case WRITE_6: is_write = true; /* fall through */ case READ_6: first_block = (u64)(((scmd->cmnd[1] & 0x1f) << 16) | (scmd->cmnd[2] << 8) | scmd->cmnd[3]); block_cnt = (u32)scmd->cmnd[4]; if (block_cnt == 0) block_cnt = 256; break; case WRITE_10: is_write = true; /* fall through */ case READ_10: first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]); block_cnt = (u32)get_unaligned_be16(&scmd->cmnd[7]); break; case WRITE_12: is_write = true; /* fall through */ case READ_12: first_block = (u64)get_unaligned_be32(&scmd->cmnd[2]); block_cnt = get_unaligned_be32(&scmd->cmnd[6]); break; case WRITE_16: is_write = true; /* fall through */ case READ_16: first_block = get_unaligned_be64(&scmd->cmnd[2]); block_cnt = get_unaligned_be32(&scmd->cmnd[10]); break; default: /* Process via normal I/O path. */ return PQI_RAID_BYPASS_INELIGIBLE; } /* Check for write to non-RAID-0. */ if (is_write && device->raid_level != SA_RAID_0) return PQI_RAID_BYPASS_INELIGIBLE; if (unlikely(block_cnt == 0)) return PQI_RAID_BYPASS_INELIGIBLE; last_block = first_block + block_cnt - 1; raid_map = device->raid_map; /* Check for invalid block or wraparound. */ if (last_block >= get_unaligned_le64(&raid_map->volume_blk_cnt) || last_block < first_block) return PQI_RAID_BYPASS_INELIGIBLE; data_disks_per_row = get_unaligned_le16(&raid_map->data_disks_per_row); strip_size = get_unaligned_le16(&raid_map->strip_size); layout_map_count = get_unaligned_le16(&raid_map->layout_map_count); /* Calculate stripe information for the request. */ blocks_per_row = data_disks_per_row * strip_size; #if BITS_PER_LONG == 32 tmpdiv = first_block; do_div(tmpdiv, blocks_per_row); first_row = tmpdiv; tmpdiv = last_block; do_div(tmpdiv, blocks_per_row); last_row = tmpdiv; first_row_offset = (u32)(first_block - (first_row * blocks_per_row)); last_row_offset = (u32)(last_block - (last_row * blocks_per_row)); tmpdiv = first_row_offset; do_div(tmpdiv, strip_size); first_column = tmpdiv; tmpdiv = last_row_offset; do_div(tmpdiv, strip_size); last_column = tmpdiv; #else first_row = first_block / blocks_per_row; last_row = last_block / blocks_per_row; first_row_offset = (u32)(first_block - (first_row * blocks_per_row)); last_row_offset = (u32)(last_block - (last_row * blocks_per_row)); first_column = first_row_offset / strip_size; last_column = last_row_offset / strip_size; #endif /* If this isn't a single row/column then give to the controller. */ if (first_row != last_row || first_column != last_column) return PQI_RAID_BYPASS_INELIGIBLE; /* Proceeding with driver mapping. */ total_disks_per_row = data_disks_per_row + get_unaligned_le16(&raid_map->metadata_disks_per_row); map_row = ((u32)(first_row >> raid_map->parity_rotation_shift)) % get_unaligned_le16(&raid_map->row_cnt); map_index = (map_row * total_disks_per_row) + first_column; /* RAID 1 */ if (device->raid_level == SA_RAID_1) { if (device->offload_to_mirror) map_index += data_disks_per_row; device->offload_to_mirror = !device->offload_to_mirror; } else if (device->raid_level == SA_RAID_ADM) { /* RAID ADM */ /* * Handles N-way mirrors (R1-ADM) and R10 with # of drives * divisible by 3. */ offload_to_mirror = device->offload_to_mirror; if (offload_to_mirror == 0) { /* use physical disk in the first mirrored group. */ map_index %= data_disks_per_row; } else { do { /* * Determine mirror group that map_index * indicates. */ current_group = map_index / data_disks_per_row; if (offload_to_mirror != current_group) { if (current_group < layout_map_count - 1) { /* * Select raid index from * next group. */ map_index += data_disks_per_row; current_group++; } else { /* * Select raid index from first * group. */ map_index %= data_disks_per_row; current_group = 0; } } } while (offload_to_mirror != current_group); } /* Set mirror group to use next time. */ offload_to_mirror = (offload_to_mirror >= layout_map_count - 1) ? 0 : offload_to_mirror + 1; WARN_ON(offload_to_mirror >= layout_map_count); device->offload_to_mirror = offload_to_mirror; /* * Avoid direct use of device->offload_to_mirror within this * function since multiple threads might simultaneously * increment it beyond the range of device->layout_map_count -1. */ } else if ((device->raid_level == SA_RAID_5 || device->raid_level == SA_RAID_6) && layout_map_count > 1) { /* RAID 50/60 */ /* Verify first and last block are in same RAID group */ r5or6_blocks_per_row = strip_size * data_disks_per_row; stripesize = r5or6_blocks_per_row * layout_map_count; #if BITS_PER_LONG == 32 tmpdiv = first_block; first_group = do_div(tmpdiv, stripesize); tmpdiv = first_group; do_div(tmpdiv, r5or6_blocks_per_row); first_group = tmpdiv; tmpdiv = last_block; last_group = do_div(tmpdiv, stripesize); tmpdiv = last_group; do_div(tmpdiv, r5or6_blocks_per_row); last_group = tmpdiv; #else first_group = (first_block % stripesize) / r5or6_blocks_per_row; last_group = (last_block % stripesize) / r5or6_blocks_per_row; #endif if (first_group != last_group) return PQI_RAID_BYPASS_INELIGIBLE; /* Verify request is in a single row of RAID 5/6 */ #if BITS_PER_LONG == 32 tmpdiv = first_block; do_div(tmpdiv, stripesize); first_row = r5or6_first_row = r0_first_row = tmpdiv; tmpdiv = last_block; do_div(tmpdiv, stripesize); r5or6_last_row = r0_last_row = tmpdiv; #else first_row = r5or6_first_row = r0_first_row = first_block / stripesize; r5or6_last_row = r0_last_row = last_block / stripesize; #endif if (r5or6_first_row != r5or6_last_row) return PQI_RAID_BYPASS_INELIGIBLE; /* Verify request is in a single column */ #if BITS_PER_LONG == 32 tmpdiv = first_block; first_row_offset = do_div(tmpdiv, stripesize); tmpdiv = first_row_offset; first_row_offset = (u32)do_div(tmpdiv, r5or6_blocks_per_row); r5or6_first_row_offset = first_row_offset; tmpdiv = last_block; r5or6_last_row_offset = do_div(tmpdiv, stripesize); tmpdiv = r5or6_last_row_offset; r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); tmpdiv = r5or6_first_row_offset; do_div(tmpdiv, strip_size); first_column = r5or6_first_column = tmpdiv; tmpdiv = r5or6_last_row_offset; do_div(tmpdiv, strip_size); r5or6_last_column = tmpdiv; #else first_row_offset = r5or6_first_row_offset = (u32)((first_block % stripesize) % r5or6_blocks_per_row); r5or6_last_row_offset = (u32)((last_block % stripesize) % r5or6_blocks_per_row); first_column = r5or6_first_row_offset / strip_size; r5or6_first_column = first_column; r5or6_last_column = r5or6_last_row_offset / strip_size; #endif if (r5or6_first_column != r5or6_last_column) return PQI_RAID_BYPASS_INELIGIBLE; /* Request is eligible */ map_row = ((u32)(first_row >> raid_map->parity_rotation_shift)) % get_unaligned_le16(&raid_map->row_cnt); map_index = (first_group * (get_unaligned_le16(&raid_map->row_cnt) * total_disks_per_row)) + (map_row * total_disks_per_row) + first_column; } aio_handle = raid_map->disk_data[map_index].aio_handle; disk_block = get_unaligned_le64(&raid_map->disk_starting_blk) + first_row * strip_size + (first_row_offset - first_column * strip_size); disk_block_cnt = block_cnt; /* Handle differing logical/physical block sizes. */ if (raid_map->phys_blk_shift) { disk_block <<= raid_map->phys_blk_shift; disk_block_cnt <<= raid_map->phys_blk_shift; } if (unlikely(disk_block_cnt > 0xffff)) return PQI_RAID_BYPASS_INELIGIBLE; /* Build the new CDB for the physical disk I/O. */ if (disk_block > 0xffffffff) { cdb[0] = is_write ? WRITE_16 : READ_16; cdb[1] = 0; put_unaligned_be64(disk_block, &cdb[2]); put_unaligned_be32(disk_block_cnt, &cdb[10]); cdb[14] = 0; cdb[15] = 0; cdb_length = 16; } else { cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; put_unaligned_be32((u32)disk_block, &cdb[2]); cdb[6] = 0; put_unaligned_be16((u16)disk_block_cnt, &cdb[7]); cdb[9] = 0; cdb_length = 10; } if (get_unaligned_le16(&raid_map->flags) & RAID_MAP_ENCRYPTION_ENABLED) { pqi_set_encryption_info(&encryption_info, raid_map, first_block); encryption_info_ptr = &encryption_info; } else { encryption_info_ptr = NULL; } return pqi_aio_submit_io(ctrl_info, scmd, aio_handle, cdb, cdb_length, queue_group, encryption_info_ptr, true); } #define PQI_STATUS_IDLE 0x0 #define PQI_CREATE_ADMIN_QUEUE_PAIR 1 #define PQI_DELETE_ADMIN_QUEUE_PAIR 2 #define PQI_DEVICE_STATE_POWER_ON_AND_RESET 0x0 #define PQI_DEVICE_STATE_STATUS_AVAILABLE 0x1 #define PQI_DEVICE_STATE_ALL_REGISTERS_READY 0x2 #define PQI_DEVICE_STATE_ADMIN_QUEUE_PAIR_READY 0x3 #define PQI_DEVICE_STATE_ERROR 0x4 #define PQI_MODE_READY_TIMEOUT_SECS 30 #define PQI_MODE_READY_POLL_INTERVAL_MSECS 1 static int pqi_wait_for_pqi_mode_ready(struct pqi_ctrl_info *ctrl_info) { struct pqi_device_registers __iomem *pqi_registers; unsigned long timeout; u64 signature; u8 status; pqi_registers = ctrl_info->pqi_registers; timeout = (PQI_MODE_READY_TIMEOUT_SECS * HZ) + jiffies; while (1) { signature = readq(&pqi_registers->signature); if (memcmp(&signature, PQI_DEVICE_SIGNATURE, sizeof(signature)) == 0) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI signature\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } while (1) { status = readb(&pqi_registers->function_and_status_code); if (status == PQI_STATUS_IDLE) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI IDLE\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } while (1) { if (readl(&pqi_registers->device_status) == PQI_DEVICE_STATE_ALL_REGISTERS_READY) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for PQI all registers ready\n"); return -ETIMEDOUT; } msleep(PQI_MODE_READY_POLL_INTERVAL_MSECS); } return 0; } static inline void pqi_aio_path_disabled(struct pqi_io_request *io_request) { struct pqi_scsi_dev *device; device = io_request->scmd->device->hostdata; device->raid_bypass_enabled = false; device->aio_enabled = false; } static inline void pqi_take_device_offline(struct scsi_device *sdev, char *path) { struct pqi_ctrl_info *ctrl_info; struct pqi_scsi_dev *device; device = sdev->hostdata; if (device->device_offline) return; device->device_offline = true; ctrl_info = shost_to_hba(sdev->host); pqi_schedule_rescan_worker(ctrl_info); dev_err(&ctrl_info->pci_dev->dev, "re-scanning %s scsi %d:%d:%d:%d\n", path, ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun); } static void pqi_process_raid_io_error(struct pqi_io_request *io_request) { u8 scsi_status; u8 host_byte; struct scsi_cmnd *scmd; struct pqi_raid_error_info *error_info; size_t sense_data_length; int residual_count; int xfer_count; struct scsi_sense_hdr sshdr; scmd = io_request->scmd; if (!scmd) return; error_info = io_request->error_info; scsi_status = error_info->status; host_byte = DID_OK; switch (error_info->data_out_result) { case PQI_DATA_IN_OUT_GOOD: break; case PQI_DATA_IN_OUT_UNDERFLOW: xfer_count = get_unaligned_le32(&error_info->data_out_transferred); residual_count = scsi_bufflen(scmd) - xfer_count; scsi_set_resid(scmd, residual_count); if (xfer_count < scmd->underflow) host_byte = DID_SOFT_ERROR; break; case PQI_DATA_IN_OUT_UNSOLICITED_ABORT: case PQI_DATA_IN_OUT_ABORTED: host_byte = DID_ABORT; break; case PQI_DATA_IN_OUT_TIMEOUT: host_byte = DID_TIME_OUT; break; case PQI_DATA_IN_OUT_BUFFER_OVERFLOW: case PQI_DATA_IN_OUT_PROTOCOL_ERROR: case PQI_DATA_IN_OUT_BUFFER_ERROR: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_DESCRIPTOR_AREA: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_BRIDGE: case PQI_DATA_IN_OUT_ERROR: case PQI_DATA_IN_OUT_HARDWARE_ERROR: case PQI_DATA_IN_OUT_PCIE_FABRIC_ERROR: case PQI_DATA_IN_OUT_PCIE_COMPLETION_TIMEOUT: case PQI_DATA_IN_OUT_PCIE_COMPLETER_ABORT_RECEIVED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST_RECEIVED: case PQI_DATA_IN_OUT_PCIE_ECRC_CHECK_FAILED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST: case PQI_DATA_IN_OUT_PCIE_ACS_VIOLATION: case PQI_DATA_IN_OUT_PCIE_TLP_PREFIX_BLOCKED: case PQI_DATA_IN_OUT_PCIE_POISONED_MEMORY_READ: default: host_byte = DID_ERROR; break; } sense_data_length = get_unaligned_le16(&error_info->sense_data_length); if (sense_data_length == 0) sense_data_length = get_unaligned_le16(&error_info->response_data_length); if (sense_data_length) { if (sense_data_length > sizeof(error_info->data)) sense_data_length = sizeof(error_info->data); if (scsi_status == SAM_STAT_CHECK_CONDITION && scsi_normalize_sense(error_info->data, sense_data_length, &sshdr) && sshdr.sense_key == HARDWARE_ERROR && sshdr.asc == 0x3e && sshdr.ascq == 0x1) { pqi_take_device_offline(scmd->device, "RAID"); host_byte = DID_NO_CONNECT; } if (sense_data_length > SCSI_SENSE_BUFFERSIZE) sense_data_length = SCSI_SENSE_BUFFERSIZE; memcpy(scmd->sense_buffer, error_info->data, sense_data_length); } scmd->result = scsi_status; set_host_byte(scmd, host_byte); } static void pqi_process_aio_io_error(struct pqi_io_request *io_request) { u8 scsi_status; u8 host_byte; struct scsi_cmnd *scmd; struct pqi_aio_error_info *error_info; size_t sense_data_length; int residual_count; int xfer_count; bool device_offline; scmd = io_request->scmd; error_info = io_request->error_info; host_byte = DID_OK; sense_data_length = 0; device_offline = false; switch (error_info->service_response) { case PQI_AIO_SERV_RESPONSE_COMPLETE: scsi_status = error_info->status; break; case PQI_AIO_SERV_RESPONSE_FAILURE: switch (error_info->status) { case PQI_AIO_STATUS_IO_ABORTED: scsi_status = SAM_STAT_TASK_ABORTED; break; case PQI_AIO_STATUS_UNDERRUN: scsi_status = SAM_STAT_GOOD; residual_count = get_unaligned_le32( &error_info->residual_count); scsi_set_resid(scmd, residual_count); xfer_count = scsi_bufflen(scmd) - residual_count; if (xfer_count < scmd->underflow) host_byte = DID_SOFT_ERROR; break; case PQI_AIO_STATUS_OVERRUN: scsi_status = SAM_STAT_GOOD; break; case PQI_AIO_STATUS_AIO_PATH_DISABLED: pqi_aio_path_disabled(io_request); scsi_status = SAM_STAT_GOOD; io_request->status = -EAGAIN; break; case PQI_AIO_STATUS_NO_PATH_TO_DEVICE: case PQI_AIO_STATUS_INVALID_DEVICE: if (!io_request->raid_bypass) { device_offline = true; pqi_take_device_offline(scmd->device, "AIO"); host_byte = DID_NO_CONNECT; } scsi_status = SAM_STAT_CHECK_CONDITION; break; case PQI_AIO_STATUS_IO_ERROR: default: scsi_status = SAM_STAT_CHECK_CONDITION; break; } break; case PQI_AIO_SERV_RESPONSE_TMF_COMPLETE: case PQI_AIO_SERV_RESPONSE_TMF_SUCCEEDED: scsi_status = SAM_STAT_GOOD; break; case PQI_AIO_SERV_RESPONSE_TMF_REJECTED: case PQI_AIO_SERV_RESPONSE_TMF_INCORRECT_LUN: default: scsi_status = SAM_STAT_CHECK_CONDITION; break; } if (error_info->data_present) { sense_data_length = get_unaligned_le16(&error_info->data_length); if (sense_data_length) { if (sense_data_length > sizeof(error_info->data)) sense_data_length = sizeof(error_info->data); if (sense_data_length > SCSI_SENSE_BUFFERSIZE) sense_data_length = SCSI_SENSE_BUFFERSIZE; memcpy(scmd->sense_buffer, error_info->data, sense_data_length); } } if (device_offline && sense_data_length == 0) scsi_build_sense_buffer(0, scmd->sense_buffer, HARDWARE_ERROR, 0x3e, 0x1); scmd->result = scsi_status; set_host_byte(scmd, host_byte); } static void pqi_process_io_error(unsigned int iu_type, struct pqi_io_request *io_request) { switch (iu_type) { case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR: pqi_process_raid_io_error(io_request); break; case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR: pqi_process_aio_io_error(io_request); break; } } static int pqi_interpret_task_management_response( struct pqi_task_management_response *response) { int rc; switch (response->response_code) { case SOP_TMF_COMPLETE: case SOP_TMF_FUNCTION_SUCCEEDED: rc = 0; break; case SOP_TMF_REJECTED: rc = -EAGAIN; break; default: rc = -EIO; break; } return rc; } static unsigned int pqi_process_io_intr(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group) { unsigned int num_responses; pqi_index_t oq_pi; pqi_index_t oq_ci; struct pqi_io_request *io_request; struct pqi_io_response *response; u16 request_id; num_responses = 0; oq_ci = queue_group->oq_ci_copy; while (1) { oq_pi = readl(queue_group->oq_pi); if (oq_pi == oq_ci) break; num_responses++; response = queue_group->oq_element_array + (oq_ci * PQI_OPERATIONAL_OQ_ELEMENT_LENGTH); request_id = get_unaligned_le16(&response->request_id); WARN_ON(request_id >= ctrl_info->max_io_slots); io_request = &ctrl_info->io_request_pool[request_id]; WARN_ON(atomic_read(&io_request->refcount) == 0); switch (response->header.iu_type) { case PQI_RESPONSE_IU_RAID_PATH_IO_SUCCESS: case PQI_RESPONSE_IU_AIO_PATH_IO_SUCCESS: case PQI_RESPONSE_IU_GENERAL_MANAGEMENT: break; case PQI_RESPONSE_IU_VENDOR_GENERAL: io_request->status = get_unaligned_le16( &((struct pqi_vendor_general_response *) response)->status); break; case PQI_RESPONSE_IU_TASK_MANAGEMENT: io_request->status = pqi_interpret_task_management_response( (void *)response); break; case PQI_RESPONSE_IU_AIO_PATH_DISABLED: pqi_aio_path_disabled(io_request); io_request->status = -EAGAIN; break; case PQI_RESPONSE_IU_RAID_PATH_IO_ERROR: case PQI_RESPONSE_IU_AIO_PATH_IO_ERROR: io_request->error_info = ctrl_info->error_buffer + (get_unaligned_le16(&response->error_index) * PQI_ERROR_BUFFER_ELEMENT_LENGTH); pqi_process_io_error(response->header.iu_type, io_request); break; default: dev_err(&ctrl_info->pci_dev->dev, "unexpected IU type: 0x%x\n", response->header.iu_type); break; } io_request->io_complete_callback(io_request, io_request->context); /* * Note that the I/O request structure CANNOT BE TOUCHED after * returning from the I/O completion callback! */ oq_ci = (oq_ci + 1) % ctrl_info->num_elements_per_oq; } if (num_responses) { queue_group->oq_ci_copy = oq_ci; writel(oq_ci, queue_group->oq_ci); } return num_responses; } static inline unsigned int pqi_num_elements_free(unsigned int pi, unsigned int ci, unsigned int elements_in_queue) { unsigned int num_elements_used; if (pi >= ci) num_elements_used = pi - ci; else num_elements_used = elements_in_queue - ci + pi; return elements_in_queue - num_elements_used - 1; } static void pqi_send_event_ack(struct pqi_ctrl_info *ctrl_info, struct pqi_event_acknowledge_request *iu, size_t iu_length) { pqi_index_t iq_pi; pqi_index_t iq_ci; unsigned long flags; void *next_element; struct pqi_queue_group *queue_group; queue_group = &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP]; put_unaligned_le16(queue_group->oq_id, &iu->header.response_queue_id); while (1) { spin_lock_irqsave(&queue_group->submit_lock[RAID_PATH], flags); iq_pi = queue_group->iq_pi_copy[RAID_PATH]; iq_ci = readl(queue_group->iq_ci[RAID_PATH]); if (pqi_num_elements_free(iq_pi, iq_ci, ctrl_info->num_elements_per_iq)) break; spin_unlock_irqrestore( &queue_group->submit_lock[RAID_PATH], flags); if (pqi_ctrl_offline(ctrl_info)) return; } next_element = queue_group->iq_element_array[RAID_PATH] + (iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); memcpy(next_element, iu, iu_length); iq_pi = (iq_pi + 1) % ctrl_info->num_elements_per_iq; queue_group->iq_pi_copy[RAID_PATH] = iq_pi; /* * This write notifies the controller that an IU is available to be * processed. */ writel(iq_pi, queue_group->iq_pi[RAID_PATH]); spin_unlock_irqrestore(&queue_group->submit_lock[RAID_PATH], flags); } static void pqi_acknowledge_event(struct pqi_ctrl_info *ctrl_info, struct pqi_event *event) { struct pqi_event_acknowledge_request request; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_ACKNOWLEDGE_VENDOR_EVENT; put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); request.event_type = event->event_type; request.event_id = event->event_id; request.additional_event_id = event->additional_event_id; pqi_send_event_ack(ctrl_info, &request, sizeof(request)); } static void pqi_event_worker(struct work_struct *work) { unsigned int i; struct pqi_ctrl_info *ctrl_info; struct pqi_event *event; ctrl_info = container_of(work, struct pqi_ctrl_info, event_work); pqi_ctrl_busy(ctrl_info); pqi_wait_if_ctrl_blocked(ctrl_info, NO_TIMEOUT); if (pqi_ctrl_offline(ctrl_info)) goto out; pqi_schedule_rescan_worker_delayed(ctrl_info); event = ctrl_info->events; for (i = 0; i < PQI_NUM_SUPPORTED_EVENTS; i++) { if (event->pending) { event->pending = false; pqi_acknowledge_event(ctrl_info, event); } event++; } out: pqi_ctrl_unbusy(ctrl_info); } #define PQI_HEARTBEAT_TIMER_INTERVAL (10 * HZ) static void pqi_heartbeat_timer_handler(struct timer_list *t) { int num_interrupts; u32 heartbeat_count; struct pqi_ctrl_info *ctrl_info = from_timer(ctrl_info, t, heartbeat_timer); pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return; num_interrupts = atomic_read(&ctrl_info->num_interrupts); heartbeat_count = pqi_read_heartbeat_counter(ctrl_info); if (num_interrupts == ctrl_info->previous_num_interrupts) { if (heartbeat_count == ctrl_info->previous_heartbeat_count) { dev_err(&ctrl_info->pci_dev->dev, "no heartbeat detected - last heartbeat count: %u\n", heartbeat_count); pqi_take_ctrl_offline(ctrl_info); return; } } else { ctrl_info->previous_num_interrupts = num_interrupts; } ctrl_info->previous_heartbeat_count = heartbeat_count; mod_timer(&ctrl_info->heartbeat_timer, jiffies + PQI_HEARTBEAT_TIMER_INTERVAL); } static void pqi_start_heartbeat_timer(struct pqi_ctrl_info *ctrl_info) { if (!ctrl_info->heartbeat_counter) return; ctrl_info->previous_num_interrupts = atomic_read(&ctrl_info->num_interrupts); ctrl_info->previous_heartbeat_count = pqi_read_heartbeat_counter(ctrl_info); ctrl_info->heartbeat_timer.expires = jiffies + PQI_HEARTBEAT_TIMER_INTERVAL; add_timer(&ctrl_info->heartbeat_timer); } static inline void pqi_stop_heartbeat_timer(struct pqi_ctrl_info *ctrl_info) { del_timer_sync(&ctrl_info->heartbeat_timer); } static inline int pqi_event_type_to_event_index(unsigned int event_type) { int index; for (index = 0; index < ARRAY_SIZE(pqi_supported_event_types); index++) if (event_type == pqi_supported_event_types[index]) return index; return -1; } static inline bool pqi_is_supported_event(unsigned int event_type) { return pqi_event_type_to_event_index(event_type) != -1; } static unsigned int pqi_process_event_intr(struct pqi_ctrl_info *ctrl_info) { unsigned int num_events; pqi_index_t oq_pi; pqi_index_t oq_ci; struct pqi_event_queue *event_queue; struct pqi_event_response *response; struct pqi_event *event; int event_index; event_queue = &ctrl_info->event_queue; num_events = 0; oq_ci = event_queue->oq_ci_copy; while (1) { oq_pi = readl(event_queue->oq_pi); if (oq_pi == oq_ci) break; num_events++; response = event_queue->oq_element_array + (oq_ci * PQI_EVENT_OQ_ELEMENT_LENGTH); event_index = pqi_event_type_to_event_index(response->event_type); if (event_index >= 0) { if (response->request_acknowlege) { event = &ctrl_info->events[event_index]; event->pending = true; event->event_type = response->event_type; event->event_id = response->event_id; event->additional_event_id = response->additional_event_id; } } oq_ci = (oq_ci + 1) % PQI_NUM_EVENT_QUEUE_ELEMENTS; } if (num_events) { event_queue->oq_ci_copy = oq_ci; writel(oq_ci, event_queue->oq_ci); schedule_work(&ctrl_info->event_work); } return num_events; } #define PQI_LEGACY_INTX_MASK 0x1 static inline void pqi_configure_legacy_intx(struct pqi_ctrl_info *ctrl_info, bool enable_intx) { u32 intx_mask; struct pqi_device_registers __iomem *pqi_registers; volatile void __iomem *register_addr; pqi_registers = ctrl_info->pqi_registers; if (enable_intx) register_addr = &pqi_registers->legacy_intx_mask_clear; else register_addr = &pqi_registers->legacy_intx_mask_set; intx_mask = readl(register_addr); intx_mask |= PQI_LEGACY_INTX_MASK; writel(intx_mask, register_addr); } static void pqi_change_irq_mode(struct pqi_ctrl_info *ctrl_info, enum pqi_irq_mode new_mode) { switch (ctrl_info->irq_mode) { case IRQ_MODE_MSIX: switch (new_mode) { case IRQ_MODE_MSIX: break; case IRQ_MODE_INTX: pqi_configure_legacy_intx(ctrl_info, true); sis_enable_intx(ctrl_info); break; case IRQ_MODE_NONE: break; } break; case IRQ_MODE_INTX: switch (new_mode) { case IRQ_MODE_MSIX: pqi_configure_legacy_intx(ctrl_info, false); sis_enable_msix(ctrl_info); break; case IRQ_MODE_INTX: break; case IRQ_MODE_NONE: pqi_configure_legacy_intx(ctrl_info, false); break; } break; case IRQ_MODE_NONE: switch (new_mode) { case IRQ_MODE_MSIX: sis_enable_msix(ctrl_info); break; case IRQ_MODE_INTX: pqi_configure_legacy_intx(ctrl_info, true); sis_enable_intx(ctrl_info); break; case IRQ_MODE_NONE: break; } break; } ctrl_info->irq_mode = new_mode; } #define PQI_LEGACY_INTX_PENDING 0x1 static inline bool pqi_is_valid_irq(struct pqi_ctrl_info *ctrl_info) { bool valid_irq; u32 intx_status; switch (ctrl_info->irq_mode) { case IRQ_MODE_MSIX: valid_irq = true; break; case IRQ_MODE_INTX: intx_status = readl(&ctrl_info->pqi_registers->legacy_intx_status); if (intx_status & PQI_LEGACY_INTX_PENDING) valid_irq = true; else valid_irq = false; break; case IRQ_MODE_NONE: default: valid_irq = false; break; } return valid_irq; } static irqreturn_t pqi_irq_handler(int irq, void *data) { struct pqi_ctrl_info *ctrl_info; struct pqi_queue_group *queue_group; unsigned int num_responses_handled; queue_group = data; ctrl_info = queue_group->ctrl_info; if (!pqi_is_valid_irq(ctrl_info)) return IRQ_NONE; num_responses_handled = pqi_process_io_intr(ctrl_info, queue_group); if (irq == ctrl_info->event_irq) num_responses_handled += pqi_process_event_intr(ctrl_info); if (num_responses_handled) atomic_inc(&ctrl_info->num_interrupts); pqi_start_io(ctrl_info, queue_group, RAID_PATH, NULL); pqi_start_io(ctrl_info, queue_group, AIO_PATH, NULL); return IRQ_HANDLED; } static int pqi_request_irqs(struct pqi_ctrl_info *ctrl_info) { struct pci_dev *pci_dev = ctrl_info->pci_dev; int i; int rc; ctrl_info->event_irq = pci_irq_vector(pci_dev, 0); for (i = 0; i < ctrl_info->num_msix_vectors_enabled; i++) { rc = request_irq(pci_irq_vector(pci_dev, i), pqi_irq_handler, 0, DRIVER_NAME_SHORT, &ctrl_info->queue_groups[i]); if (rc) { dev_err(&pci_dev->dev, "irq %u init failed with error %d\n", pci_irq_vector(pci_dev, i), rc); return rc; } ctrl_info->num_msix_vectors_initialized++; } return 0; } static void pqi_free_irqs(struct pqi_ctrl_info *ctrl_info) { int i; for (i = 0; i < ctrl_info->num_msix_vectors_initialized; i++) free_irq(pci_irq_vector(ctrl_info->pci_dev, i), &ctrl_info->queue_groups[i]); ctrl_info->num_msix_vectors_initialized = 0; } static int pqi_enable_msix_interrupts(struct pqi_ctrl_info *ctrl_info) { int num_vectors_enabled; num_vectors_enabled = pci_alloc_irq_vectors(ctrl_info->pci_dev, PQI_MIN_MSIX_VECTORS, ctrl_info->num_queue_groups, PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); if (num_vectors_enabled < 0) { dev_err(&ctrl_info->pci_dev->dev, "MSI-X init failed with error %d\n", num_vectors_enabled); return num_vectors_enabled; } ctrl_info->num_msix_vectors_enabled = num_vectors_enabled; ctrl_info->irq_mode = IRQ_MODE_MSIX; return 0; } static void pqi_disable_msix_interrupts(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->num_msix_vectors_enabled) { pci_free_irq_vectors(ctrl_info->pci_dev); ctrl_info->num_msix_vectors_enabled = 0; } } static int pqi_alloc_operational_queues(struct pqi_ctrl_info *ctrl_info) { unsigned int i; size_t alloc_length; size_t element_array_length_per_iq; size_t element_array_length_per_oq; void *element_array; void __iomem *next_queue_index; void *aligned_pointer; unsigned int num_inbound_queues; unsigned int num_outbound_queues; unsigned int num_queue_indexes; struct pqi_queue_group *queue_group; element_array_length_per_iq = PQI_OPERATIONAL_IQ_ELEMENT_LENGTH * ctrl_info->num_elements_per_iq; element_array_length_per_oq = PQI_OPERATIONAL_OQ_ELEMENT_LENGTH * ctrl_info->num_elements_per_oq; num_inbound_queues = ctrl_info->num_queue_groups * 2; num_outbound_queues = ctrl_info->num_queue_groups; num_queue_indexes = (ctrl_info->num_queue_groups * 3) + 1; aligned_pointer = NULL; for (i = 0; i < num_inbound_queues; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += element_array_length_per_iq; } for (i = 0; i < num_outbound_queues; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += element_array_length_per_oq; } aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); aligned_pointer += PQI_NUM_EVENT_QUEUE_ELEMENTS * PQI_EVENT_OQ_ELEMENT_LENGTH; for (i = 0; i < num_queue_indexes; i++) { aligned_pointer = PTR_ALIGN(aligned_pointer, PQI_OPERATIONAL_INDEX_ALIGNMENT); aligned_pointer += sizeof(pqi_index_t); } alloc_length = (size_t)aligned_pointer + PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT; alloc_length += PQI_EXTRA_SGL_MEMORY; ctrl_info->queue_memory_base = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, alloc_length, &ctrl_info->queue_memory_base_dma_handle, GFP_KERNEL); if (!ctrl_info->queue_memory_base) return -ENOMEM; ctrl_info->queue_memory_length = alloc_length; element_array = PTR_ALIGN(ctrl_info->queue_memory_base, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->iq_element_array[RAID_PATH] = element_array; queue_group->iq_element_array_bus_addr[RAID_PATH] = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_iq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); queue_group->iq_element_array[AIO_PATH] = element_array; queue_group->iq_element_array_bus_addr[AIO_PATH] = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_iq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); } for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->oq_element_array = element_array; queue_group->oq_element_array_bus_addr = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += element_array_length_per_oq; element_array = PTR_ALIGN(element_array, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); } ctrl_info->event_queue.oq_element_array = element_array; ctrl_info->event_queue.oq_element_array_bus_addr = ctrl_info->queue_memory_base_dma_handle + (element_array - ctrl_info->queue_memory_base); element_array += PQI_NUM_EVENT_QUEUE_ELEMENTS * PQI_EVENT_OQ_ELEMENT_LENGTH; next_queue_index = (void __iomem *)PTR_ALIGN(element_array, PQI_OPERATIONAL_INDEX_ALIGNMENT); for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; queue_group->iq_ci[RAID_PATH] = next_queue_index; queue_group->iq_ci_bus_addr[RAID_PATH] = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - (void __iomem *)ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); queue_group->iq_ci[AIO_PATH] = next_queue_index; queue_group->iq_ci_bus_addr[AIO_PATH] = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - (void __iomem *)ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); queue_group->oq_pi = next_queue_index; queue_group->oq_pi_bus_addr = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - (void __iomem *)ctrl_info->queue_memory_base); next_queue_index += sizeof(pqi_index_t); next_queue_index = PTR_ALIGN(next_queue_index, PQI_OPERATIONAL_INDEX_ALIGNMENT); } ctrl_info->event_queue.oq_pi = next_queue_index; ctrl_info->event_queue.oq_pi_bus_addr = ctrl_info->queue_memory_base_dma_handle + (next_queue_index - (void __iomem *)ctrl_info->queue_memory_base); return 0; } static void pqi_init_operational_queues(struct pqi_ctrl_info *ctrl_info) { unsigned int i; u16 next_iq_id = PQI_MIN_OPERATIONAL_QUEUE_ID; u16 next_oq_id = PQI_MIN_OPERATIONAL_QUEUE_ID; /* * Initialize the backpointers to the controller structure in * each operational queue group structure. */ for (i = 0; i < ctrl_info->num_queue_groups; i++) ctrl_info->queue_groups[i].ctrl_info = ctrl_info; /* * Assign IDs to all operational queues. Note that the IDs * assigned to operational IQs are independent of the IDs * assigned to operational OQs. */ ctrl_info->event_queue.oq_id = next_oq_id++; for (i = 0; i < ctrl_info->num_queue_groups; i++) { ctrl_info->queue_groups[i].iq_id[RAID_PATH] = next_iq_id++; ctrl_info->queue_groups[i].iq_id[AIO_PATH] = next_iq_id++; ctrl_info->queue_groups[i].oq_id = next_oq_id++; } /* * Assign MSI-X table entry indexes to all queues. Note that the * interrupt for the event queue is shared with the first queue group. */ ctrl_info->event_queue.int_msg_num = 0; for (i = 0; i < ctrl_info->num_queue_groups; i++) ctrl_info->queue_groups[i].int_msg_num = i; for (i = 0; i < ctrl_info->num_queue_groups; i++) { spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[0]); spin_lock_init(&ctrl_info->queue_groups[i].submit_lock[1]); INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[0]); INIT_LIST_HEAD(&ctrl_info->queue_groups[i].request_list[1]); } } static int pqi_alloc_admin_queues(struct pqi_ctrl_info *ctrl_info) { size_t alloc_length; struct pqi_admin_queues_aligned *admin_queues_aligned; struct pqi_admin_queues *admin_queues; alloc_length = sizeof(struct pqi_admin_queues_aligned) + PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT; ctrl_info->admin_queue_memory_base = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, alloc_length, &ctrl_info->admin_queue_memory_base_dma_handle, GFP_KERNEL); if (!ctrl_info->admin_queue_memory_base) return -ENOMEM; ctrl_info->admin_queue_memory_length = alloc_length; admin_queues = &ctrl_info->admin_queues; admin_queues_aligned = PTR_ALIGN(ctrl_info->admin_queue_memory_base, PQI_QUEUE_ELEMENT_ARRAY_ALIGNMENT); admin_queues->iq_element_array = &admin_queues_aligned->iq_element_array; admin_queues->oq_element_array = &admin_queues_aligned->oq_element_array; admin_queues->iq_ci = &admin_queues_aligned->iq_ci; admin_queues->oq_pi = (pqi_index_t __iomem *)&admin_queues_aligned->oq_pi; admin_queues->iq_element_array_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + (admin_queues->iq_element_array - ctrl_info->admin_queue_memory_base); admin_queues->oq_element_array_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + (admin_queues->oq_element_array - ctrl_info->admin_queue_memory_base); admin_queues->iq_ci_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + ((void *)admin_queues->iq_ci - ctrl_info->admin_queue_memory_base); admin_queues->oq_pi_bus_addr = ctrl_info->admin_queue_memory_base_dma_handle + ((void __iomem *)admin_queues->oq_pi - (void __iomem *)ctrl_info->admin_queue_memory_base); return 0; } #define PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES HZ #define PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS 1 static int pqi_create_admin_queues(struct pqi_ctrl_info *ctrl_info) { struct pqi_device_registers __iomem *pqi_registers; struct pqi_admin_queues *admin_queues; unsigned long timeout; u8 status; u32 reg; pqi_registers = ctrl_info->pqi_registers; admin_queues = &ctrl_info->admin_queues; writeq((u64)admin_queues->iq_element_array_bus_addr, &pqi_registers->admin_iq_element_array_addr); writeq((u64)admin_queues->oq_element_array_bus_addr, &pqi_registers->admin_oq_element_array_addr); writeq((u64)admin_queues->iq_ci_bus_addr, &pqi_registers->admin_iq_ci_addr); writeq((u64)admin_queues->oq_pi_bus_addr, &pqi_registers->admin_oq_pi_addr); reg = PQI_ADMIN_IQ_NUM_ELEMENTS | (PQI_ADMIN_OQ_NUM_ELEMENTS) << 8 | (admin_queues->int_msg_num << 16); writel(reg, &pqi_registers->admin_iq_num_elements); writel(PQI_CREATE_ADMIN_QUEUE_PAIR, &pqi_registers->function_and_status_code); timeout = PQI_ADMIN_QUEUE_CREATE_TIMEOUT_JIFFIES + jiffies; while (1) { status = readb(&pqi_registers->function_and_status_code); if (status == PQI_STATUS_IDLE) break; if (time_after(jiffies, timeout)) return -ETIMEDOUT; msleep(PQI_ADMIN_QUEUE_CREATE_POLL_INTERVAL_MSECS); } /* * The offset registers are not initialized to the correct * offsets until *after* the create admin queue pair command * completes successfully. */ admin_queues->iq_pi = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + readq(&pqi_registers->admin_iq_pi_offset); admin_queues->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + readq(&pqi_registers->admin_oq_ci_offset); return 0; } static void pqi_submit_admin_request(struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_request *request) { struct pqi_admin_queues *admin_queues; void *next_element; pqi_index_t iq_pi; admin_queues = &ctrl_info->admin_queues; iq_pi = admin_queues->iq_pi_copy; next_element = admin_queues->iq_element_array + (iq_pi * PQI_ADMIN_IQ_ELEMENT_LENGTH); memcpy(next_element, request, sizeof(*request)); iq_pi = (iq_pi + 1) % PQI_ADMIN_IQ_NUM_ELEMENTS; admin_queues->iq_pi_copy = iq_pi; /* * This write notifies the controller that an IU is available to be * processed. */ writel(iq_pi, admin_queues->iq_pi); } #define PQI_ADMIN_REQUEST_TIMEOUT_SECS 60 static int pqi_poll_for_admin_response(struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_response *response) { struct pqi_admin_queues *admin_queues; pqi_index_t oq_pi; pqi_index_t oq_ci; unsigned long timeout; admin_queues = &ctrl_info->admin_queues; oq_ci = admin_queues->oq_ci_copy; timeout = (PQI_ADMIN_REQUEST_TIMEOUT_SECS * HZ) + jiffies; while (1) { oq_pi = readl(admin_queues->oq_pi); if (oq_pi != oq_ci) break; if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for admin response\n"); return -ETIMEDOUT; } if (!sis_is_firmware_running(ctrl_info)) return -ENXIO; usleep_range(1000, 2000); } memcpy(response, admin_queues->oq_element_array + (oq_ci * PQI_ADMIN_OQ_ELEMENT_LENGTH), sizeof(*response)); oq_ci = (oq_ci + 1) % PQI_ADMIN_OQ_NUM_ELEMENTS; admin_queues->oq_ci_copy = oq_ci; writel(oq_ci, admin_queues->oq_ci); return 0; } static void pqi_start_io(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group, enum pqi_io_path path, struct pqi_io_request *io_request) { struct pqi_io_request *next; void *next_element; pqi_index_t iq_pi; pqi_index_t iq_ci; size_t iu_length; unsigned long flags; unsigned int num_elements_needed; unsigned int num_elements_to_end_of_queue; size_t copy_count; struct pqi_iu_header *request; spin_lock_irqsave(&queue_group->submit_lock[path], flags); if (io_request) { io_request->queue_group = queue_group; list_add_tail(&io_request->request_list_entry, &queue_group->request_list[path]); } iq_pi = queue_group->iq_pi_copy[path]; list_for_each_entry_safe(io_request, next, &queue_group->request_list[path], request_list_entry) { request = io_request->iu; iu_length = get_unaligned_le16(&request->iu_length) + PQI_REQUEST_HEADER_LENGTH; num_elements_needed = DIV_ROUND_UP(iu_length, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); iq_ci = readl(queue_group->iq_ci[path]); if (num_elements_needed > pqi_num_elements_free(iq_pi, iq_ci, ctrl_info->num_elements_per_iq)) break; put_unaligned_le16(queue_group->oq_id, &request->response_queue_id); next_element = queue_group->iq_element_array[path] + (iq_pi * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); num_elements_to_end_of_queue = ctrl_info->num_elements_per_iq - iq_pi; if (num_elements_needed <= num_elements_to_end_of_queue) { memcpy(next_element, request, iu_length); } else { copy_count = num_elements_to_end_of_queue * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH; memcpy(next_element, request, copy_count); memcpy(queue_group->iq_element_array[path], (u8 *)request + copy_count, iu_length - copy_count); } iq_pi = (iq_pi + num_elements_needed) % ctrl_info->num_elements_per_iq; list_del(&io_request->request_list_entry); } if (iq_pi != queue_group->iq_pi_copy[path]) { queue_group->iq_pi_copy[path] = iq_pi; /* * This write notifies the controller that one or more IUs are * available to be processed. */ writel(iq_pi, queue_group->iq_pi[path]); } spin_unlock_irqrestore(&queue_group->submit_lock[path], flags); } #define PQI_WAIT_FOR_COMPLETION_IO_TIMEOUT_SECS 10 static int pqi_wait_for_completion_io(struct pqi_ctrl_info *ctrl_info, struct completion *wait) { int rc; while (1) { if (wait_for_completion_io_timeout(wait, PQI_WAIT_FOR_COMPLETION_IO_TIMEOUT_SECS * HZ)) { rc = 0; break; } pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) { rc = -ENXIO; break; } } return rc; } static void pqi_raid_synchronous_complete(struct pqi_io_request *io_request, void *context) { struct completion *waiting = context; complete(waiting); } static int pqi_process_raid_io_error_synchronous(struct pqi_raid_error_info *error_info) { int rc = -EIO; switch (error_info->data_out_result) { case PQI_DATA_IN_OUT_GOOD: if (error_info->status == SAM_STAT_GOOD) rc = 0; break; case PQI_DATA_IN_OUT_UNDERFLOW: if (error_info->status == SAM_STAT_GOOD || error_info->status == SAM_STAT_CHECK_CONDITION) rc = 0; break; case PQI_DATA_IN_OUT_ABORTED: rc = PQI_CMD_STATUS_ABORTED; break; } return rc; } static int pqi_submit_raid_request_synchronous(struct pqi_ctrl_info *ctrl_info, struct pqi_iu_header *request, unsigned int flags, struct pqi_raid_error_info *error_info, unsigned long timeout_msecs) { int rc = 0; struct pqi_io_request *io_request; unsigned long start_jiffies; unsigned long msecs_blocked; size_t iu_length; DECLARE_COMPLETION_ONSTACK(wait); /* * Note that specifying PQI_SYNC_FLAGS_INTERRUPTABLE and a timeout value * are mutually exclusive. */ if (flags & PQI_SYNC_FLAGS_INTERRUPTABLE) { if (down_interruptible(&ctrl_info->sync_request_sem)) return -ERESTARTSYS; } else { if (timeout_msecs == NO_TIMEOUT) { down(&ctrl_info->sync_request_sem); } else { start_jiffies = jiffies; if (down_timeout(&ctrl_info->sync_request_sem, msecs_to_jiffies(timeout_msecs))) return -ETIMEDOUT; msecs_blocked = jiffies_to_msecs(jiffies - start_jiffies); if (msecs_blocked >= timeout_msecs) return -ETIMEDOUT; timeout_msecs -= msecs_blocked; } } pqi_ctrl_busy(ctrl_info); timeout_msecs = pqi_wait_if_ctrl_blocked(ctrl_info, timeout_msecs); if (timeout_msecs == 0) { pqi_ctrl_unbusy(ctrl_info); rc = -ETIMEDOUT; goto out; } if (pqi_ctrl_offline(ctrl_info)) { pqi_ctrl_unbusy(ctrl_info); rc = -ENXIO; goto out; } io_request = pqi_alloc_io_request(ctrl_info); put_unaligned_le16(io_request->index, &(((struct pqi_raid_path_request *)request)->request_id)); if (request->iu_type == PQI_REQUEST_IU_RAID_PATH_IO) ((struct pqi_raid_path_request *)request)->error_index = ((struct pqi_raid_path_request *)request)->request_id; iu_length = get_unaligned_le16(&request->iu_length) + PQI_REQUEST_HEADER_LENGTH; memcpy(io_request->iu, request, iu_length); io_request->io_complete_callback = pqi_raid_synchronous_complete; io_request->context = &wait; pqi_start_io(ctrl_info, &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH, io_request); pqi_ctrl_unbusy(ctrl_info); if (timeout_msecs == NO_TIMEOUT) { pqi_wait_for_completion_io(ctrl_info, &wait); } else { if (!wait_for_completion_io_timeout(&wait, msecs_to_jiffies(timeout_msecs))) { dev_warn(&ctrl_info->pci_dev->dev, "command timed out\n"); rc = -ETIMEDOUT; } } if (error_info) { if (io_request->error_info) memcpy(error_info, io_request->error_info, sizeof(*error_info)); else memset(error_info, 0, sizeof(*error_info)); } else if (rc == 0 && io_request->error_info) { rc = pqi_process_raid_io_error_synchronous( io_request->error_info); } pqi_free_io_request(io_request); out: up(&ctrl_info->sync_request_sem); return rc; } static int pqi_validate_admin_response( struct pqi_general_admin_response *response, u8 expected_function_code) { if (response->header.iu_type != PQI_RESPONSE_IU_GENERAL_ADMIN) return -EINVAL; if (get_unaligned_le16(&response->header.iu_length) != PQI_GENERAL_ADMIN_IU_LENGTH) return -EINVAL; if (response->function_code != expected_function_code) return -EINVAL; if (response->status != PQI_GENERAL_ADMIN_STATUS_SUCCESS) return -EINVAL; return 0; } static int pqi_submit_admin_request_synchronous( struct pqi_ctrl_info *ctrl_info, struct pqi_general_admin_request *request, struct pqi_general_admin_response *response) { int rc; pqi_submit_admin_request(ctrl_info, request); rc = pqi_poll_for_admin_response(ctrl_info, response); if (rc == 0) rc = pqi_validate_admin_response(response, request->function_code); return rc; } static int pqi_report_device_capability(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_general_admin_request request; struct pqi_general_admin_response response; struct pqi_device_capability *capability; struct pqi_iu_layer_descriptor *sop_iu_layer_descriptor; capability = kmalloc(sizeof(*capability), GFP_KERNEL); if (!capability) return -ENOMEM; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_REPORT_DEVICE_CAPABILITY; put_unaligned_le32(sizeof(*capability), &request.data.report_device_capability.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, &request.data.report_device_capability.sg_descriptor, capability, sizeof(*capability), DMA_FROM_DEVICE); if (rc) goto out; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); pqi_pci_unmap(ctrl_info->pci_dev, &request.data.report_device_capability.sg_descriptor, 1, DMA_FROM_DEVICE); if (rc) goto out; if (response.status != PQI_GENERAL_ADMIN_STATUS_SUCCESS) { rc = -EIO; goto out; } ctrl_info->max_inbound_queues = get_unaligned_le16(&capability->max_inbound_queues); ctrl_info->max_elements_per_iq = get_unaligned_le16(&capability->max_elements_per_iq); ctrl_info->max_iq_element_length = get_unaligned_le16(&capability->max_iq_element_length) * 16; ctrl_info->max_outbound_queues = get_unaligned_le16(&capability->max_outbound_queues); ctrl_info->max_elements_per_oq = get_unaligned_le16(&capability->max_elements_per_oq); ctrl_info->max_oq_element_length = get_unaligned_le16(&capability->max_oq_element_length) * 16; sop_iu_layer_descriptor = &capability->iu_layer_descriptors[PQI_PROTOCOL_SOP]; ctrl_info->max_inbound_iu_length_per_firmware = get_unaligned_le16( &sop_iu_layer_descriptor->max_inbound_iu_length); ctrl_info->inbound_spanning_supported = sop_iu_layer_descriptor->inbound_spanning_supported; ctrl_info->outbound_spanning_supported = sop_iu_layer_descriptor->outbound_spanning_supported; out: kfree(capability); return rc; } static int pqi_validate_device_capability(struct pqi_ctrl_info *ctrl_info) { if (ctrl_info->max_iq_element_length < PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. inbound queue element length of %d is less than the required length of %d\n", ctrl_info->max_iq_element_length, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); return -EINVAL; } if (ctrl_info->max_oq_element_length < PQI_OPERATIONAL_OQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. outbound queue element length of %d is less than the required length of %d\n", ctrl_info->max_oq_element_length, PQI_OPERATIONAL_OQ_ELEMENT_LENGTH); return -EINVAL; } if (ctrl_info->max_inbound_iu_length_per_firmware < PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) { dev_err(&ctrl_info->pci_dev->dev, "max. inbound IU length of %u is less than the min. required length of %d\n", ctrl_info->max_inbound_iu_length_per_firmware, PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); return -EINVAL; } if (!ctrl_info->inbound_spanning_supported) { dev_err(&ctrl_info->pci_dev->dev, "the controller does not support inbound spanning\n"); return -EINVAL; } if (ctrl_info->outbound_spanning_supported) { dev_err(&ctrl_info->pci_dev->dev, "the controller supports outbound spanning but this driver does not\n"); return -EINVAL; } return 0; } static int pqi_create_event_queue(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_event_queue *event_queue; struct pqi_general_admin_request request; struct pqi_general_admin_response response; event_queue = &ctrl_info->event_queue; /* * Create OQ (Outbound Queue - device to host queue) to dedicate * to events. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ; put_unaligned_le16(event_queue->oq_id, &request.data.create_operational_oq.queue_id); put_unaligned_le64((u64)event_queue->oq_element_array_bus_addr, &request.data.create_operational_oq.element_array_addr); put_unaligned_le64((u64)event_queue->oq_pi_bus_addr, &request.data.create_operational_oq.pi_addr); put_unaligned_le16(PQI_NUM_EVENT_QUEUE_ELEMENTS, &request.data.create_operational_oq.num_elements); put_unaligned_le16(PQI_EVENT_OQ_ELEMENT_LENGTH / 16, &request.data.create_operational_oq.element_length); request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP; put_unaligned_le16(event_queue->int_msg_num, &request.data.create_operational_oq.int_msg_num); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) return rc; event_queue->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_oq.oq_ci_offset); return 0; } static int pqi_create_queue_group(struct pqi_ctrl_info *ctrl_info, unsigned int group_number) { int rc; struct pqi_queue_group *queue_group; struct pqi_general_admin_request request; struct pqi_general_admin_response response; queue_group = &ctrl_info->queue_groups[group_number]; /* * Create IQ (Inbound Queue - host to device queue) for * RAID path. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ; put_unaligned_le16(queue_group->iq_id[RAID_PATH], &request.data.create_operational_iq.queue_id); put_unaligned_le64( (u64)queue_group->iq_element_array_bus_addr[RAID_PATH], &request.data.create_operational_iq.element_array_addr); put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[RAID_PATH], &request.data.create_operational_iq.ci_addr); put_unaligned_le16(ctrl_info->num_elements_per_iq, &request.data.create_operational_iq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16, &request.data.create_operational_iq.element_length); request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating inbound RAID queue\n"); return rc; } queue_group->iq_pi[RAID_PATH] = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_iq.iq_pi_offset); /* * Create IQ (Inbound Queue - host to device queue) for * Advanced I/O (AIO) path. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_IQ; put_unaligned_le16(queue_group->iq_id[AIO_PATH], &request.data.create_operational_iq.queue_id); put_unaligned_le64((u64)queue_group-> iq_element_array_bus_addr[AIO_PATH], &request.data.create_operational_iq.element_array_addr); put_unaligned_le64((u64)queue_group->iq_ci_bus_addr[AIO_PATH], &request.data.create_operational_iq.ci_addr); put_unaligned_le16(ctrl_info->num_elements_per_iq, &request.data.create_operational_iq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH / 16, &request.data.create_operational_iq.element_length); request.data.create_operational_iq.queue_protocol = PQI_PROTOCOL_SOP; rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating inbound AIO queue\n"); return rc; } queue_group->iq_pi[AIO_PATH] = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_iq.iq_pi_offset); /* * Designate the 2nd IQ as the AIO path. By default, all IQs are * assumed to be for RAID path I/O unless we change the queue's * property. */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CHANGE_IQ_PROPERTY; put_unaligned_le16(queue_group->iq_id[AIO_PATH], &request.data.change_operational_iq_properties.queue_id); put_unaligned_le32(PQI_IQ_PROPERTY_IS_AIO_QUEUE, &request.data.change_operational_iq_properties.vendor_specific); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error changing queue property\n"); return rc; } /* * Create OQ (Outbound Queue - device to host queue). */ memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_GENERAL_ADMIN; put_unaligned_le16(PQI_GENERAL_ADMIN_IU_LENGTH, &request.header.iu_length); request.function_code = PQI_GENERAL_ADMIN_FUNCTION_CREATE_OQ; put_unaligned_le16(queue_group->oq_id, &request.data.create_operational_oq.queue_id); put_unaligned_le64((u64)queue_group->oq_element_array_bus_addr, &request.data.create_operational_oq.element_array_addr); put_unaligned_le64((u64)queue_group->oq_pi_bus_addr, &request.data.create_operational_oq.pi_addr); put_unaligned_le16(ctrl_info->num_elements_per_oq, &request.data.create_operational_oq.num_elements); put_unaligned_le16(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH / 16, &request.data.create_operational_oq.element_length); request.data.create_operational_oq.queue_protocol = PQI_PROTOCOL_SOP; put_unaligned_le16(queue_group->int_msg_num, &request.data.create_operational_oq.int_msg_num); rc = pqi_submit_admin_request_synchronous(ctrl_info, &request, &response); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating outbound queue\n"); return rc; } queue_group->oq_ci = ctrl_info->iomem_base + PQI_DEVICE_REGISTERS_OFFSET + get_unaligned_le64( &response.data.create_operational_oq.oq_ci_offset); return 0; } static int pqi_create_queues(struct pqi_ctrl_info *ctrl_info) { int rc; unsigned int i; rc = pqi_create_event_queue(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating event queue\n"); return rc; } for (i = 0; i < ctrl_info->num_queue_groups; i++) { rc = pqi_create_queue_group(ctrl_info, i); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating queue group number %u/%u\n", i, ctrl_info->num_queue_groups); return rc; } } return 0; } #define PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH \ (offsetof(struct pqi_event_config, descriptors) + \ (PQI_MAX_EVENT_DESCRIPTORS * sizeof(struct pqi_event_descriptor))) static int pqi_configure_events(struct pqi_ctrl_info *ctrl_info, bool enable_events) { int rc; unsigned int i; struct pqi_event_config *event_config; struct pqi_event_descriptor *event_descriptor; struct pqi_general_management_request request; event_config = kmalloc(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, GFP_KERNEL); if (!event_config) return -ENOMEM; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_REPORT_VENDOR_EVENT_CONFIG; put_unaligned_le16(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, &request.data.report_event_configuration.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, DMA_FROM_DEVICE); if (rc) goto out; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, 1, DMA_FROM_DEVICE); if (rc) goto out; for (i = 0; i < event_config->num_event_descriptors; i++) { event_descriptor = &event_config->descriptors[i]; if (enable_events && pqi_is_supported_event(event_descriptor->event_type)) put_unaligned_le16(ctrl_info->event_queue.oq_id, &event_descriptor->oq_id); else put_unaligned_le16(0, &event_descriptor->oq_id); } memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_SET_VENDOR_EVENT_CONFIG; put_unaligned_le16(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors[1]) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); put_unaligned_le32(PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, &request.data.report_event_configuration.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, event_config, PQI_REPORT_EVENT_CONFIG_BUFFER_LENGTH, DMA_TO_DEVICE); if (rc) goto out; rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); pqi_pci_unmap(ctrl_info->pci_dev, request.data.report_event_configuration.sg_descriptors, 1, DMA_TO_DEVICE); out: kfree(event_config); return rc; } static inline int pqi_enable_events(struct pqi_ctrl_info *ctrl_info) { return pqi_configure_events(ctrl_info, true); } static inline int pqi_disable_events(struct pqi_ctrl_info *ctrl_info) { return pqi_configure_events(ctrl_info, false); } static void pqi_free_all_io_requests(struct pqi_ctrl_info *ctrl_info) { unsigned int i; struct device *dev; size_t sg_chain_buffer_length; struct pqi_io_request *io_request; if (!ctrl_info->io_request_pool) return; dev = &ctrl_info->pci_dev->dev; sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length; io_request = ctrl_info->io_request_pool; for (i = 0; i < ctrl_info->max_io_slots; i++) { kfree(io_request->iu); if (!io_request->sg_chain_buffer) break; dma_free_coherent(dev, sg_chain_buffer_length, io_request->sg_chain_buffer, io_request->sg_chain_buffer_dma_handle); io_request++; } kfree(ctrl_info->io_request_pool); ctrl_info->io_request_pool = NULL; } static inline int pqi_alloc_error_buffer(struct pqi_ctrl_info *ctrl_info) { ctrl_info->error_buffer = dma_zalloc_coherent(&ctrl_info->pci_dev->dev, ctrl_info->error_buffer_length, &ctrl_info->error_buffer_dma_handle, GFP_KERNEL); if (!ctrl_info->error_buffer) return -ENOMEM; return 0; } static int pqi_alloc_io_resources(struct pqi_ctrl_info *ctrl_info) { unsigned int i; void *sg_chain_buffer; size_t sg_chain_buffer_length; dma_addr_t sg_chain_buffer_dma_handle; struct device *dev; struct pqi_io_request *io_request; ctrl_info->io_request_pool = kcalloc(ctrl_info->max_io_slots, sizeof(ctrl_info->io_request_pool[0]), GFP_KERNEL); if (!ctrl_info->io_request_pool) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate I/O request pool\n"); goto error; } dev = &ctrl_info->pci_dev->dev; sg_chain_buffer_length = ctrl_info->sg_chain_buffer_length; io_request = ctrl_info->io_request_pool; for (i = 0; i < ctrl_info->max_io_slots; i++) { io_request->iu = kmalloc(ctrl_info->max_inbound_iu_length, GFP_KERNEL); if (!io_request->iu) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate IU buffers\n"); goto error; } sg_chain_buffer = dma_alloc_coherent(dev, sg_chain_buffer_length, &sg_chain_buffer_dma_handle, GFP_KERNEL); if (!sg_chain_buffer) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate PQI scatter-gather chain buffers\n"); goto error; } io_request->index = i; io_request->sg_chain_buffer = sg_chain_buffer; io_request->sg_chain_buffer_dma_handle = sg_chain_buffer_dma_handle; io_request++; } return 0; error: pqi_free_all_io_requests(ctrl_info); return -ENOMEM; } /* * Calculate required resources that are sized based on max. outstanding * requests and max. transfer size. */ static void pqi_calculate_io_resources(struct pqi_ctrl_info *ctrl_info) { u32 max_transfer_size; u32 max_sg_entries; ctrl_info->scsi_ml_can_queue = ctrl_info->max_outstanding_requests - PQI_RESERVED_IO_SLOTS; ctrl_info->max_io_slots = ctrl_info->max_outstanding_requests; ctrl_info->error_buffer_length = ctrl_info->max_io_slots * PQI_ERROR_BUFFER_ELEMENT_LENGTH; if (reset_devices) max_transfer_size = min(ctrl_info->max_transfer_size, PQI_MAX_TRANSFER_SIZE_KDUMP); else max_transfer_size = min(ctrl_info->max_transfer_size, PQI_MAX_TRANSFER_SIZE); max_sg_entries = max_transfer_size / PAGE_SIZE; /* +1 to cover when the buffer is not page-aligned. */ max_sg_entries++; max_sg_entries = min(ctrl_info->max_sg_entries, max_sg_entries); max_transfer_size = (max_sg_entries - 1) * PAGE_SIZE; ctrl_info->sg_chain_buffer_length = (max_sg_entries * sizeof(struct pqi_sg_descriptor)) + PQI_EXTRA_SGL_MEMORY; ctrl_info->sg_tablesize = max_sg_entries; ctrl_info->max_sectors = max_transfer_size / 512; } static void pqi_calculate_queue_resources(struct pqi_ctrl_info *ctrl_info) { int num_queue_groups; u16 num_elements_per_iq; u16 num_elements_per_oq; if (reset_devices) { num_queue_groups = 1; } else { int num_cpus; int max_queue_groups; max_queue_groups = min(ctrl_info->max_inbound_queues / 2, ctrl_info->max_outbound_queues - 1); max_queue_groups = min(max_queue_groups, PQI_MAX_QUEUE_GROUPS); num_cpus = num_online_cpus(); num_queue_groups = min(num_cpus, ctrl_info->max_msix_vectors); num_queue_groups = min(num_queue_groups, max_queue_groups); } ctrl_info->num_queue_groups = num_queue_groups; ctrl_info->max_hw_queue_index = num_queue_groups - 1; /* * Make sure that the max. inbound IU length is an even multiple * of our inbound element length. */ ctrl_info->max_inbound_iu_length = (ctrl_info->max_inbound_iu_length_per_firmware / PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) * PQI_OPERATIONAL_IQ_ELEMENT_LENGTH; num_elements_per_iq = (ctrl_info->max_inbound_iu_length / PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); /* Add one because one element in each queue is unusable. */ num_elements_per_iq++; num_elements_per_iq = min(num_elements_per_iq, ctrl_info->max_elements_per_iq); num_elements_per_oq = ((num_elements_per_iq - 1) * 2) + 1; num_elements_per_oq = min(num_elements_per_oq, ctrl_info->max_elements_per_oq); ctrl_info->num_elements_per_iq = num_elements_per_iq; ctrl_info->num_elements_per_oq = num_elements_per_oq; ctrl_info->max_sg_per_iu = ((ctrl_info->max_inbound_iu_length - PQI_OPERATIONAL_IQ_ELEMENT_LENGTH) / sizeof(struct pqi_sg_descriptor)) + PQI_MAX_EMBEDDED_SG_DESCRIPTORS; } static inline void pqi_set_sg_descriptor( struct pqi_sg_descriptor *sg_descriptor, struct scatterlist *sg) { u64 address = (u64)sg_dma_address(sg); unsigned int length = sg_dma_len(sg); put_unaligned_le64(address, &sg_descriptor->address); put_unaligned_le32(length, &sg_descriptor->length); put_unaligned_le32(0, &sg_descriptor->flags); } static int pqi_build_raid_sg_list(struct pqi_ctrl_info *ctrl_info, struct pqi_raid_path_request *request, struct scsi_cmnd *scmd, struct pqi_io_request *io_request) { int i; u16 iu_length; int sg_count; bool chained; unsigned int num_sg_in_iu; unsigned int max_sg_per_iu; struct scatterlist *sg; struct pqi_sg_descriptor *sg_descriptor; sg_count = scsi_dma_map(scmd); if (sg_count < 0) return sg_count; iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; if (sg_count == 0) goto out; sg = scsi_sglist(scmd); sg_descriptor = request->sg_descriptors; max_sg_per_iu = ctrl_info->max_sg_per_iu - 1; chained = false; num_sg_in_iu = 0; i = 0; while (1) { pqi_set_sg_descriptor(sg_descriptor, sg); if (!chained) num_sg_in_iu++; i++; if (i == sg_count) break; sg_descriptor++; if (i == max_sg_per_iu) { put_unaligned_le64( (u64)io_request->sg_chain_buffer_dma_handle, &sg_descriptor->address); put_unaligned_le32((sg_count - num_sg_in_iu) * sizeof(*sg_descriptor), &sg_descriptor->length); put_unaligned_le32(CISS_SG_CHAIN, &sg_descriptor->flags); chained = true; num_sg_in_iu++; sg_descriptor = io_request->sg_chain_buffer; } sg = sg_next(sg); } put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); request->partial = chained; iu_length += num_sg_in_iu * sizeof(*sg_descriptor); out: put_unaligned_le16(iu_length, &request->header.iu_length); return 0; } static int pqi_build_aio_sg_list(struct pqi_ctrl_info *ctrl_info, struct pqi_aio_path_request *request, struct scsi_cmnd *scmd, struct pqi_io_request *io_request) { int i; u16 iu_length; int sg_count; bool chained; unsigned int num_sg_in_iu; unsigned int max_sg_per_iu; struct scatterlist *sg; struct pqi_sg_descriptor *sg_descriptor; sg_count = scsi_dma_map(scmd); if (sg_count < 0) return sg_count; iu_length = offsetof(struct pqi_aio_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; num_sg_in_iu = 0; if (sg_count == 0) goto out; sg = scsi_sglist(scmd); sg_descriptor = request->sg_descriptors; max_sg_per_iu = ctrl_info->max_sg_per_iu - 1; chained = false; i = 0; while (1) { pqi_set_sg_descriptor(sg_descriptor, sg); if (!chained) num_sg_in_iu++; i++; if (i == sg_count) break; sg_descriptor++; if (i == max_sg_per_iu) { put_unaligned_le64( (u64)io_request->sg_chain_buffer_dma_handle, &sg_descriptor->address); put_unaligned_le32((sg_count - num_sg_in_iu) * sizeof(*sg_descriptor), &sg_descriptor->length); put_unaligned_le32(CISS_SG_CHAIN, &sg_descriptor->flags); chained = true; num_sg_in_iu++; sg_descriptor = io_request->sg_chain_buffer; } sg = sg_next(sg); } put_unaligned_le32(CISS_SG_LAST, &sg_descriptor->flags); request->partial = chained; iu_length += num_sg_in_iu * sizeof(*sg_descriptor); out: put_unaligned_le16(iu_length, &request->header.iu_length); request->num_sg_descriptors = num_sg_in_iu; return 0; } static void pqi_raid_io_complete(struct pqi_io_request *io_request, void *context) { struct scsi_cmnd *scmd; scmd = io_request->scmd; pqi_free_io_request(io_request); scsi_dma_unmap(scmd); pqi_scsi_done(scmd); } static int pqi_raid_submit_scsi_cmd_with_io_request( struct pqi_ctrl_info *ctrl_info, struct pqi_io_request *io_request, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { int rc; size_t cdb_length; struct pqi_raid_path_request *request; io_request->io_complete_callback = pqi_raid_io_complete; io_request->scmd = scmd; request = io_request->iu; memset(request, 0, offsetof(struct pqi_raid_path_request, sg_descriptors)); request->header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; put_unaligned_le16(io_request->index, &request->request_id); request->error_index = request->request_id; memcpy(request->lun_number, device->scsi3addr, sizeof(request->lun_number)); cdb_length = min_t(size_t, scmd->cmd_len, sizeof(request->cdb)); memcpy(request->cdb, scmd->cmnd, cdb_length); switch (cdb_length) { case 6: case 10: case 12: case 16: /* No bytes in the Additional CDB bytes field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; break; case 20: /* 4 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_4; break; case 24: /* 8 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_8; break; case 28: /* 12 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_12; break; case 32: default: /* 16 bytes in the Additional cdb field */ request->additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_16; break; } switch (scmd->sc_data_direction) { case DMA_TO_DEVICE: request->data_direction = SOP_READ_FLAG; break; case DMA_FROM_DEVICE: request->data_direction = SOP_WRITE_FLAG; break; case DMA_NONE: request->data_direction = SOP_NO_DIRECTION_FLAG; break; case DMA_BIDIRECTIONAL: request->data_direction = SOP_BIDIRECTIONAL; break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown data direction: %d\n", scmd->sc_data_direction); break; } rc = pqi_build_raid_sg_list(ctrl_info, request, scmd, io_request); if (rc) { pqi_free_io_request(io_request); return SCSI_MLQUEUE_HOST_BUSY; } pqi_start_io(ctrl_info, queue_group, RAID_PATH, io_request); return 0; } static inline int pqi_raid_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { struct pqi_io_request *io_request; io_request = pqi_alloc_io_request(ctrl_info); return pqi_raid_submit_scsi_cmd_with_io_request(ctrl_info, io_request, device, scmd, queue_group); } static inline void pqi_schedule_bypass_retry(struct pqi_ctrl_info *ctrl_info) { if (!pqi_ctrl_blocked(ctrl_info)) schedule_work(&ctrl_info->raid_bypass_retry_work); } static bool pqi_raid_bypass_retry_needed(struct pqi_io_request *io_request) { struct scsi_cmnd *scmd; struct pqi_scsi_dev *device; struct pqi_ctrl_info *ctrl_info; if (!io_request->raid_bypass) return false; scmd = io_request->scmd; if ((scmd->result & 0xff) == SAM_STAT_GOOD) return false; if (host_byte(scmd->result) == DID_NO_CONNECT) return false; device = scmd->device->hostdata; if (pqi_device_offline(device)) return false; ctrl_info = shost_to_hba(scmd->device->host); if (pqi_ctrl_offline(ctrl_info)) return false; return true; } static inline void pqi_add_to_raid_bypass_retry_list( struct pqi_ctrl_info *ctrl_info, struct pqi_io_request *io_request, bool at_head) { unsigned long flags; spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags); if (at_head) list_add(&io_request->request_list_entry, &ctrl_info->raid_bypass_retry_list); else list_add_tail(&io_request->request_list_entry, &ctrl_info->raid_bypass_retry_list); spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags); } static void pqi_queued_raid_bypass_complete(struct pqi_io_request *io_request, void *context) { struct scsi_cmnd *scmd; scmd = io_request->scmd; pqi_free_io_request(io_request); pqi_scsi_done(scmd); } static void pqi_queue_raid_bypass_retry(struct pqi_io_request *io_request) { struct scsi_cmnd *scmd; struct pqi_ctrl_info *ctrl_info; io_request->io_complete_callback = pqi_queued_raid_bypass_complete; scmd = io_request->scmd; scmd->result = 0; ctrl_info = shost_to_hba(scmd->device->host); pqi_add_to_raid_bypass_retry_list(ctrl_info, io_request, false); pqi_schedule_bypass_retry(ctrl_info); } static int pqi_retry_raid_bypass(struct pqi_io_request *io_request) { struct scsi_cmnd *scmd; struct pqi_scsi_dev *device; struct pqi_ctrl_info *ctrl_info; struct pqi_queue_group *queue_group; scmd = io_request->scmd; device = scmd->device->hostdata; if (pqi_device_in_reset(device)) { pqi_free_io_request(io_request); set_host_byte(scmd, DID_RESET); pqi_scsi_done(scmd); return 0; } ctrl_info = shost_to_hba(scmd->device->host); queue_group = io_request->queue_group; pqi_reinit_io_request(io_request); return pqi_raid_submit_scsi_cmd_with_io_request(ctrl_info, io_request, device, scmd, queue_group); } static inline struct pqi_io_request *pqi_next_queued_raid_bypass_request( struct pqi_ctrl_info *ctrl_info) { unsigned long flags; struct pqi_io_request *io_request; spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags); io_request = list_first_entry_or_null( &ctrl_info->raid_bypass_retry_list, struct pqi_io_request, request_list_entry); if (io_request) list_del(&io_request->request_list_entry); spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags); return io_request; } static void pqi_retry_raid_bypass_requests(struct pqi_ctrl_info *ctrl_info) { int rc; struct pqi_io_request *io_request; pqi_ctrl_busy(ctrl_info); while (1) { if (pqi_ctrl_blocked(ctrl_info)) break; io_request = pqi_next_queued_raid_bypass_request(ctrl_info); if (!io_request) break; rc = pqi_retry_raid_bypass(io_request); if (rc) { pqi_add_to_raid_bypass_retry_list(ctrl_info, io_request, true); pqi_schedule_bypass_retry(ctrl_info); break; } } pqi_ctrl_unbusy(ctrl_info); } static void pqi_raid_bypass_retry_worker(struct work_struct *work) { struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(work, struct pqi_ctrl_info, raid_bypass_retry_work); pqi_retry_raid_bypass_requests(ctrl_info); } static void pqi_clear_all_queued_raid_bypass_retries( struct pqi_ctrl_info *ctrl_info) { unsigned long flags; spin_lock_irqsave(&ctrl_info->raid_bypass_retry_list_lock, flags); INIT_LIST_HEAD(&ctrl_info->raid_bypass_retry_list); spin_unlock_irqrestore(&ctrl_info->raid_bypass_retry_list_lock, flags); } static void pqi_aio_io_complete(struct pqi_io_request *io_request, void *context) { struct scsi_cmnd *scmd; scmd = io_request->scmd; scsi_dma_unmap(scmd); if (io_request->status == -EAGAIN) set_host_byte(scmd, DID_IMM_RETRY); else if (pqi_raid_bypass_retry_needed(io_request)) { pqi_queue_raid_bypass_retry(io_request); return; } pqi_free_io_request(io_request); pqi_scsi_done(scmd); } static inline int pqi_aio_submit_scsi_cmd(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct scsi_cmnd *scmd, struct pqi_queue_group *queue_group) { return pqi_aio_submit_io(ctrl_info, scmd, device->aio_handle, scmd->cmnd, scmd->cmd_len, queue_group, NULL, false); } static int pqi_aio_submit_io(struct pqi_ctrl_info *ctrl_info, struct scsi_cmnd *scmd, u32 aio_handle, u8 *cdb, unsigned int cdb_length, struct pqi_queue_group *queue_group, struct pqi_encryption_info *encryption_info, bool raid_bypass) { int rc; struct pqi_io_request *io_request; struct pqi_aio_path_request *request; io_request = pqi_alloc_io_request(ctrl_info); io_request->io_complete_callback = pqi_aio_io_complete; io_request->scmd = scmd; io_request->raid_bypass = raid_bypass; request = io_request->iu; memset(request, 0, offsetof(struct pqi_raid_path_request, sg_descriptors)); request->header.iu_type = PQI_REQUEST_IU_AIO_PATH_IO; put_unaligned_le32(aio_handle, &request->nexus_id); put_unaligned_le32(scsi_bufflen(scmd), &request->buffer_length); request->task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; put_unaligned_le16(io_request->index, &request->request_id); request->error_index = request->request_id; if (cdb_length > sizeof(request->cdb)) cdb_length = sizeof(request->cdb); request->cdb_length = cdb_length; memcpy(request->cdb, cdb, cdb_length); switch (scmd->sc_data_direction) { case DMA_TO_DEVICE: request->data_direction = SOP_READ_FLAG; break; case DMA_FROM_DEVICE: request->data_direction = SOP_WRITE_FLAG; break; case DMA_NONE: request->data_direction = SOP_NO_DIRECTION_FLAG; break; case DMA_BIDIRECTIONAL: request->data_direction = SOP_BIDIRECTIONAL; break; default: dev_err(&ctrl_info->pci_dev->dev, "unknown data direction: %d\n", scmd->sc_data_direction); break; } if (encryption_info) { request->encryption_enable = true; put_unaligned_le16(encryption_info->data_encryption_key_index, &request->data_encryption_key_index); put_unaligned_le32(encryption_info->encrypt_tweak_lower, &request->encrypt_tweak_lower); put_unaligned_le32(encryption_info->encrypt_tweak_upper, &request->encrypt_tweak_upper); } rc = pqi_build_aio_sg_list(ctrl_info, request, scmd, io_request); if (rc) { pqi_free_io_request(io_request); return SCSI_MLQUEUE_HOST_BUSY; } pqi_start_io(ctrl_info, queue_group, AIO_PATH, io_request); return 0; } static inline u16 pqi_get_hw_queue(struct pqi_ctrl_info *ctrl_info, struct scsi_cmnd *scmd) { u16 hw_queue; hw_queue = blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(scmd->request)); if (hw_queue > ctrl_info->max_hw_queue_index) hw_queue = 0; return hw_queue; } /* * This function gets called just before we hand the completed SCSI request * back to the SML. */ void pqi_prep_for_scsi_done(struct scsi_cmnd *scmd) { struct pqi_scsi_dev *device; if (!scmd->device) { set_host_byte(scmd, DID_NO_CONNECT); return; } device = scmd->device->hostdata; if (!device) { set_host_byte(scmd, DID_NO_CONNECT); return; } atomic_dec(&device->scsi_cmds_outstanding); } static int pqi_scsi_queue_command(struct Scsi_Host *shost, struct scsi_cmnd *scmd) { int rc; struct pqi_ctrl_info *ctrl_info; struct pqi_scsi_dev *device; u16 hw_queue; struct pqi_queue_group *queue_group; bool raid_bypassed; device = scmd->device->hostdata; ctrl_info = shost_to_hba(shost); if (!device) { set_host_byte(scmd, DID_NO_CONNECT); pqi_scsi_done(scmd); return 0; } atomic_inc(&device->scsi_cmds_outstanding); if (pqi_ctrl_offline(ctrl_info) || pqi_device_in_remove(ctrl_info, device)) { set_host_byte(scmd, DID_NO_CONNECT); pqi_scsi_done(scmd); return 0; } pqi_ctrl_busy(ctrl_info); if (pqi_ctrl_blocked(ctrl_info) || pqi_device_in_reset(device)) { rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } /* * This is necessary because the SML doesn't zero out this field during * error recovery. */ scmd->result = 0; hw_queue = pqi_get_hw_queue(ctrl_info, scmd); queue_group = &ctrl_info->queue_groups[hw_queue]; if (pqi_is_logical_device(device)) { raid_bypassed = false; if (device->raid_bypass_enabled && !blk_rq_is_passthrough(scmd->request)) { rc = pqi_raid_bypass_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); if (rc == 0 || rc == SCSI_MLQUEUE_HOST_BUSY) raid_bypassed = true; } if (!raid_bypassed) rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); } else { if (device->aio_enabled) rc = pqi_aio_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); else rc = pqi_raid_submit_scsi_cmd(ctrl_info, device, scmd, queue_group); } out: pqi_ctrl_unbusy(ctrl_info); if (rc) atomic_dec(&device->scsi_cmds_outstanding); return rc; } static int pqi_wait_until_queued_io_drained(struct pqi_ctrl_info *ctrl_info, struct pqi_queue_group *queue_group) { unsigned int path; unsigned long flags; bool list_is_empty; for (path = 0; path < 2; path++) { while (1) { spin_lock_irqsave( &queue_group->submit_lock[path], flags); list_is_empty = list_empty(&queue_group->request_list[path]); spin_unlock_irqrestore( &queue_group->submit_lock[path], flags); if (list_is_empty) break; pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; usleep_range(1000, 2000); } } return 0; } static int pqi_wait_until_inbound_queues_empty(struct pqi_ctrl_info *ctrl_info) { int rc; unsigned int i; unsigned int path; struct pqi_queue_group *queue_group; pqi_index_t iq_pi; pqi_index_t iq_ci; for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; rc = pqi_wait_until_queued_io_drained(ctrl_info, queue_group); if (rc) return rc; for (path = 0; path < 2; path++) { iq_pi = queue_group->iq_pi_copy[path]; while (1) { iq_ci = readl(queue_group->iq_ci[path]); if (iq_ci == iq_pi) break; pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; usleep_range(1000, 2000); } } } return 0; } static void pqi_fail_io_queued_for_device(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { unsigned int i; unsigned int path; struct pqi_queue_group *queue_group; unsigned long flags; struct pqi_io_request *io_request; struct pqi_io_request *next; struct scsi_cmnd *scmd; struct pqi_scsi_dev *scsi_device; for (i = 0; i < ctrl_info->num_queue_groups; i++) { queue_group = &ctrl_info->queue_groups[i]; for (path = 0; path < 2; path++) { spin_lock_irqsave( &queue_group->submit_lock[path], flags); list_for_each_entry_safe(io_request, next, &queue_group->request_list[path], request_list_entry) { scmd = io_request->scmd; if (!scmd) continue; scsi_device = scmd->device->hostdata; if (scsi_device != device) continue; list_del(&io_request->request_list_entry); set_host_byte(scmd, DID_RESET); pqi_scsi_done(scmd); } spin_unlock_irqrestore( &queue_group->submit_lock[path], flags); } } } static int pqi_device_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, unsigned long timeout_secs) { unsigned long timeout; timeout = (timeout_secs * HZ) + jiffies; while (atomic_read(&device->scsi_cmds_outstanding)) { pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; if (timeout_secs != NO_TIMEOUT) { if (time_after(jiffies, timeout)) { dev_err(&ctrl_info->pci_dev->dev, "timed out waiting for pending IO\n"); return -ETIMEDOUT; } } usleep_range(1000, 2000); } return 0; } static int pqi_ctrl_wait_for_pending_io(struct pqi_ctrl_info *ctrl_info) { bool io_pending; unsigned long flags; struct pqi_scsi_dev *device; while (1) { io_pending = false; spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); list_for_each_entry(device, &ctrl_info->scsi_device_list, scsi_device_list_entry) { if (atomic_read(&device->scsi_cmds_outstanding)) { io_pending = true; break; } } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); if (!io_pending) break; pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; usleep_range(1000, 2000); } return 0; } static void pqi_lun_reset_complete(struct pqi_io_request *io_request, void *context) { struct completion *waiting = context; complete(waiting); } #define PQI_LUN_RESET_TIMEOUT_SECS 10 static int pqi_wait_for_lun_reset_completion(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device, struct completion *wait) { int rc; while (1) { if (wait_for_completion_io_timeout(wait, PQI_LUN_RESET_TIMEOUT_SECS * HZ)) { rc = 0; break; } pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) { rc = -ENXIO; break; } } return rc; } static int pqi_lun_reset(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; struct pqi_io_request *io_request; DECLARE_COMPLETION_ONSTACK(wait); struct pqi_task_management_request *request; io_request = pqi_alloc_io_request(ctrl_info); io_request->io_complete_callback = pqi_lun_reset_complete; io_request->context = &wait; request = io_request->iu; memset(request, 0, sizeof(*request)); request->header.iu_type = PQI_REQUEST_IU_TASK_MANAGEMENT; put_unaligned_le16(sizeof(*request) - PQI_REQUEST_HEADER_LENGTH, &request->header.iu_length); put_unaligned_le16(io_request->index, &request->request_id); memcpy(request->lun_number, device->scsi3addr, sizeof(request->lun_number)); request->task_management_function = SOP_TASK_MANAGEMENT_LUN_RESET; pqi_start_io(ctrl_info, &ctrl_info->queue_groups[PQI_DEFAULT_QUEUE_GROUP], RAID_PATH, io_request); rc = pqi_wait_for_lun_reset_completion(ctrl_info, device, &wait); if (rc == 0) rc = io_request->status; pqi_free_io_request(io_request); return rc; } #define PQI_LUN_RESET_RETRIES 3 #define PQI_LUN_RESET_RETRY_INTERVAL_MSECS 10000 /* Performs a reset at the LUN level. */ static int pqi_device_reset(struct pqi_ctrl_info *ctrl_info, struct pqi_scsi_dev *device) { int rc; unsigned int retries; for (retries = 0;;) { rc = pqi_lun_reset(ctrl_info, device); if (rc != -EAGAIN || ++retries > PQI_LUN_RESET_RETRIES) break; msleep(PQI_LUN_RESET_RETRY_INTERVAL_MSECS); } if (rc == 0) rc = pqi_device_wait_for_pending_io(ctrl_info, device, NO_TIMEOUT); return rc == 0 ? SUCCESS : FAILED; } static int pqi_eh_device_reset_handler(struct scsi_cmnd *scmd) { int rc; struct Scsi_Host *shost; struct pqi_ctrl_info *ctrl_info; struct pqi_scsi_dev *device; shost = scmd->device->host; ctrl_info = shost_to_hba(shost); device = scmd->device->hostdata; dev_err(&ctrl_info->pci_dev->dev, "resetting scsi %d:%d:%d:%d\n", shost->host_no, device->bus, device->target, device->lun); pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) { rc = FAILED; goto out; } mutex_lock(&ctrl_info->lun_reset_mutex); pqi_ctrl_block_requests(ctrl_info); pqi_ctrl_wait_until_quiesced(ctrl_info); pqi_fail_io_queued_for_device(ctrl_info, device); rc = pqi_wait_until_inbound_queues_empty(ctrl_info); pqi_device_reset_start(device); pqi_ctrl_unblock_requests(ctrl_info); if (rc) rc = FAILED; else rc = pqi_device_reset(ctrl_info, device); pqi_device_reset_done(device); mutex_unlock(&ctrl_info->lun_reset_mutex); out: dev_err(&ctrl_info->pci_dev->dev, "reset of scsi %d:%d:%d:%d: %s\n", shost->host_no, device->bus, device->target, device->lun, rc == SUCCESS ? "SUCCESS" : "FAILED"); return rc; } static int pqi_slave_alloc(struct scsi_device *sdev) { struct pqi_scsi_dev *device; unsigned long flags; struct pqi_ctrl_info *ctrl_info; struct scsi_target *starget; struct sas_rphy *rphy; ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); if (sdev_channel(sdev) == PQI_PHYSICAL_DEVICE_BUS) { starget = scsi_target(sdev); rphy = target_to_rphy(starget); device = pqi_find_device_by_sas_rphy(ctrl_info, rphy); if (device) { device->target = sdev_id(sdev); device->lun = sdev->lun; device->target_lun_valid = true; } } else { device = pqi_find_scsi_dev(ctrl_info, sdev_channel(sdev), sdev_id(sdev), sdev->lun); } if (device) { sdev->hostdata = device; device->sdev = sdev; if (device->queue_depth) { device->advertised_queue_depth = device->queue_depth; scsi_change_queue_depth(sdev, device->advertised_queue_depth); } if (pqi_is_logical_device(device)) pqi_disable_write_same(sdev); else sdev->allow_restart = 1; } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return 0; } static int pqi_map_queues(struct Scsi_Host *shost) { struct pqi_ctrl_info *ctrl_info = shost_to_hba(shost); return blk_mq_pci_map_queues(&shost->tag_set, ctrl_info->pci_dev, 0); } static int pqi_getpciinfo_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg) { struct pci_dev *pci_dev; u32 subsystem_vendor; u32 subsystem_device; cciss_pci_info_struct pciinfo; if (!arg) return -EINVAL; pci_dev = ctrl_info->pci_dev; pciinfo.domain = pci_domain_nr(pci_dev->bus); pciinfo.bus = pci_dev->bus->number; pciinfo.dev_fn = pci_dev->devfn; subsystem_vendor = pci_dev->subsystem_vendor; subsystem_device = pci_dev->subsystem_device; pciinfo.board_id = ((subsystem_device << 16) & 0xffff0000) | subsystem_vendor; if (copy_to_user(arg, &pciinfo, sizeof(pciinfo))) return -EFAULT; return 0; } static int pqi_getdrivver_ioctl(void __user *arg) { u32 version; if (!arg) return -EINVAL; version = (DRIVER_MAJOR << 28) | (DRIVER_MINOR << 24) | (DRIVER_RELEASE << 16) | DRIVER_REVISION; if (copy_to_user(arg, &version, sizeof(version))) return -EFAULT; return 0; } struct ciss_error_info { u8 scsi_status; int command_status; size_t sense_data_length; }; static void pqi_error_info_to_ciss(struct pqi_raid_error_info *pqi_error_info, struct ciss_error_info *ciss_error_info) { int ciss_cmd_status; size_t sense_data_length; switch (pqi_error_info->data_out_result) { case PQI_DATA_IN_OUT_GOOD: ciss_cmd_status = CISS_CMD_STATUS_SUCCESS; break; case PQI_DATA_IN_OUT_UNDERFLOW: ciss_cmd_status = CISS_CMD_STATUS_DATA_UNDERRUN; break; case PQI_DATA_IN_OUT_BUFFER_OVERFLOW: ciss_cmd_status = CISS_CMD_STATUS_DATA_OVERRUN; break; case PQI_DATA_IN_OUT_PROTOCOL_ERROR: case PQI_DATA_IN_OUT_BUFFER_ERROR: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_DESCRIPTOR_AREA: case PQI_DATA_IN_OUT_BUFFER_OVERFLOW_BRIDGE: case PQI_DATA_IN_OUT_ERROR: ciss_cmd_status = CISS_CMD_STATUS_PROTOCOL_ERROR; break; case PQI_DATA_IN_OUT_HARDWARE_ERROR: case PQI_DATA_IN_OUT_PCIE_FABRIC_ERROR: case PQI_DATA_IN_OUT_PCIE_COMPLETION_TIMEOUT: case PQI_DATA_IN_OUT_PCIE_COMPLETER_ABORT_RECEIVED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST_RECEIVED: case PQI_DATA_IN_OUT_PCIE_ECRC_CHECK_FAILED: case PQI_DATA_IN_OUT_PCIE_UNSUPPORTED_REQUEST: case PQI_DATA_IN_OUT_PCIE_ACS_VIOLATION: case PQI_DATA_IN_OUT_PCIE_TLP_PREFIX_BLOCKED: case PQI_DATA_IN_OUT_PCIE_POISONED_MEMORY_READ: ciss_cmd_status = CISS_CMD_STATUS_HARDWARE_ERROR; break; case PQI_DATA_IN_OUT_UNSOLICITED_ABORT: ciss_cmd_status = CISS_CMD_STATUS_UNSOLICITED_ABORT; break; case PQI_DATA_IN_OUT_ABORTED: ciss_cmd_status = CISS_CMD_STATUS_ABORTED; break; case PQI_DATA_IN_OUT_TIMEOUT: ciss_cmd_status = CISS_CMD_STATUS_TIMEOUT; break; default: ciss_cmd_status = CISS_CMD_STATUS_TARGET_STATUS; break; } sense_data_length = get_unaligned_le16(&pqi_error_info->sense_data_length); if (sense_data_length == 0) sense_data_length = get_unaligned_le16(&pqi_error_info->response_data_length); if (sense_data_length) if (sense_data_length > sizeof(pqi_error_info->data)) sense_data_length = sizeof(pqi_error_info->data); ciss_error_info->scsi_status = pqi_error_info->status; ciss_error_info->command_status = ciss_cmd_status; ciss_error_info->sense_data_length = sense_data_length; } static int pqi_passthru_ioctl(struct pqi_ctrl_info *ctrl_info, void __user *arg) { int rc; char *kernel_buffer = NULL; u16 iu_length; size_t sense_data_length; IOCTL_Command_struct iocommand; struct pqi_raid_path_request request; struct pqi_raid_error_info pqi_error_info; struct ciss_error_info ciss_error_info; if (pqi_ctrl_offline(ctrl_info)) return -ENXIO; if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, arg, sizeof(iocommand))) return -EFAULT; if (iocommand.buf_size < 1 && iocommand.Request.Type.Direction != XFER_NONE) return -EINVAL; if (iocommand.Request.CDBLen > sizeof(request.cdb)) return -EINVAL; if (iocommand.Request.Type.Type != TYPE_CMD) return -EINVAL; switch (iocommand.Request.Type.Direction) { case XFER_NONE: case XFER_WRITE: case XFER_READ: case XFER_READ | XFER_WRITE: break; default: return -EINVAL; } if (iocommand.buf_size > 0) { kernel_buffer = kmalloc(iocommand.buf_size, GFP_KERNEL); if (!kernel_buffer) return -ENOMEM; if (iocommand.Request.Type.Direction & XFER_WRITE) { if (copy_from_user(kernel_buffer, iocommand.buf, iocommand.buf_size)) { rc = -EFAULT; goto out; } } else { memset(kernel_buffer, 0, iocommand.buf_size); } } memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_RAID_PATH_IO; iu_length = offsetof(struct pqi_raid_path_request, sg_descriptors) - PQI_REQUEST_HEADER_LENGTH; memcpy(request.lun_number, iocommand.LUN_info.LunAddrBytes, sizeof(request.lun_number)); memcpy(request.cdb, iocommand.Request.CDB, iocommand.Request.CDBLen); request.additional_cdb_bytes_usage = SOP_ADDITIONAL_CDB_BYTES_0; switch (iocommand.Request.Type.Direction) { case XFER_NONE: request.data_direction = SOP_NO_DIRECTION_FLAG; break; case XFER_WRITE: request.data_direction = SOP_WRITE_FLAG; break; case XFER_READ: request.data_direction = SOP_READ_FLAG; break; case XFER_READ | XFER_WRITE: request.data_direction = SOP_BIDIRECTIONAL; break; } request.task_attribute = SOP_TASK_ATTRIBUTE_SIMPLE; if (iocommand.buf_size > 0) { put_unaligned_le32(iocommand.buf_size, &request.buffer_length); rc = pqi_map_single(ctrl_info->pci_dev, &request.sg_descriptors[0], kernel_buffer, iocommand.buf_size, DMA_BIDIRECTIONAL); if (rc) goto out; iu_length += sizeof(request.sg_descriptors[0]); } put_unaligned_le16(iu_length, &request.header.iu_length); rc = pqi_submit_raid_request_synchronous(ctrl_info, &request.header, PQI_SYNC_FLAGS_INTERRUPTABLE, &pqi_error_info, NO_TIMEOUT); if (iocommand.buf_size > 0) pqi_pci_unmap(ctrl_info->pci_dev, request.sg_descriptors, 1, DMA_BIDIRECTIONAL); memset(&iocommand.error_info, 0, sizeof(iocommand.error_info)); if (rc == 0) { pqi_error_info_to_ciss(&pqi_error_info, &ciss_error_info); iocommand.error_info.ScsiStatus = ciss_error_info.scsi_status; iocommand.error_info.CommandStatus = ciss_error_info.command_status; sense_data_length = ciss_error_info.sense_data_length; if (sense_data_length) { if (sense_data_length > sizeof(iocommand.error_info.SenseInfo)) sense_data_length = sizeof(iocommand.error_info.SenseInfo); memcpy(iocommand.error_info.SenseInfo, pqi_error_info.data, sense_data_length); iocommand.error_info.SenseLen = sense_data_length; } } if (copy_to_user(arg, &iocommand, sizeof(iocommand))) { rc = -EFAULT; goto out; } if (rc == 0 && iocommand.buf_size > 0 && (iocommand.Request.Type.Direction & XFER_READ)) { if (copy_to_user(iocommand.buf, kernel_buffer, iocommand.buf_size)) { rc = -EFAULT; } } out: kfree(kernel_buffer); return rc; } static int pqi_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = shost_to_hba(sdev->host); switch (cmd) { case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: rc = pqi_scan_scsi_devices(ctrl_info); break; case CCISS_GETPCIINFO: rc = pqi_getpciinfo_ioctl(ctrl_info, arg); break; case CCISS_GETDRIVVER: rc = pqi_getdrivver_ioctl(arg); break; case CCISS_PASSTHRU: rc = pqi_passthru_ioctl(ctrl_info, arg); break; default: rc = -EINVAL; break; } return rc; } static ssize_t pqi_version_show(struct device *dev, struct device_attribute *attr, char *buffer) { ssize_t count = 0; struct Scsi_Host *shost; struct pqi_ctrl_info *ctrl_info; shost = class_to_shost(dev); ctrl_info = shost_to_hba(shost); count += snprintf(buffer + count, PAGE_SIZE - count, " driver: %s\n", DRIVER_VERSION BUILD_TIMESTAMP); count += snprintf(buffer + count, PAGE_SIZE - count, "firmware: %s\n", ctrl_info->firmware_version); return count; } static ssize_t pqi_host_rescan_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); pqi_scan_start(shost); return count; } static ssize_t pqi_lockup_action_show(struct device *dev, struct device_attribute *attr, char *buffer) { int count = 0; unsigned int i; for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) { if (pqi_lockup_actions[i].action == pqi_lockup_action) count += snprintf(buffer + count, PAGE_SIZE - count, "[%s] ", pqi_lockup_actions[i].name); else count += snprintf(buffer + count, PAGE_SIZE - count, "%s ", pqi_lockup_actions[i].name); } count += snprintf(buffer + count, PAGE_SIZE - count, "\n"); return count; } static ssize_t pqi_lockup_action_store(struct device *dev, struct device_attribute *attr, const char *buffer, size_t count) { unsigned int i; char *action_name; char action_name_buffer[32]; strlcpy(action_name_buffer, buffer, sizeof(action_name_buffer)); action_name = strstrip(action_name_buffer); for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) { if (strcmp(action_name, pqi_lockup_actions[i].name) == 0) { pqi_lockup_action = pqi_lockup_actions[i].action; return count; } } return -EINVAL; } static DEVICE_ATTR(version, 0444, pqi_version_show, NULL); static DEVICE_ATTR(rescan, 0200, NULL, pqi_host_rescan_store); static DEVICE_ATTR(lockup_action, 0644, pqi_lockup_action_show, pqi_lockup_action_store); static struct device_attribute *pqi_shost_attrs[] = { &dev_attr_version, &dev_attr_rescan, &dev_attr_lockup_action, NULL }; static ssize_t pqi_unique_id_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; unsigned char uid[16]; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (!device) { spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return -ENODEV; } memcpy(uid, device->unique_id, sizeof(uid)); spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return snprintf(buffer, PAGE_SIZE, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6], uid[7], uid[8], uid[9], uid[10], uid[11], uid[12], uid[13], uid[14], uid[15]); } static ssize_t pqi_lunid_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; u8 lunid[8]; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (!device) { spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return -ENODEV; } memcpy(lunid, device->scsi3addr, sizeof(lunid)); spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return snprintf(buffer, PAGE_SIZE, "0x%8phN\n", lunid); } #define MAX_PATHS 8 static ssize_t pqi_path_info_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; int i; int output_len = 0; u8 box; u8 bay; u8 path_map_index = 0; char *active; unsigned char phys_connector[2]; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (!device) { spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return -ENODEV; } bay = device->bay; for (i = 0; i < MAX_PATHS; i++) { path_map_index = 1<active_path_index) active = "Active"; else if (device->path_map & path_map_index) active = "Inactive"; else continue; output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "[%d:%d:%d:%d] %20.20s ", ctrl_info->scsi_host->host_no, device->bus, device->target, device->lun, scsi_device_type(device->devtype)); if (device->devtype == TYPE_RAID || pqi_is_logical_device(device)) goto end_buffer; memcpy(&phys_connector, &device->phys_connector[i], sizeof(phys_connector)); if (phys_connector[0] < '0') phys_connector[0] = '0'; if (phys_connector[1] < '0') phys_connector[1] = '0'; output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "PORT: %.2s ", phys_connector); box = device->box[i]; if (box != 0 && box != 0xFF) output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "BOX: %hhu ", box); if ((device->devtype == TYPE_DISK || device->devtype == TYPE_ZBC) && pqi_expose_device(device)) output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "BAY: %hhu ", bay); end_buffer: output_len += scnprintf(buf + output_len, PAGE_SIZE - output_len, "%s\n", active); } spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return output_len; } static ssize_t pqi_sas_address_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; u64 sas_address; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (pqi_is_logical_device(device)) { spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return -ENODEV; } sas_address = device->sas_address; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return snprintf(buffer, PAGE_SIZE, "0x%016llx\n", sas_address); } static ssize_t pqi_ssd_smart_path_enabled_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; buffer[0] = device->raid_bypass_enabled ? '1' : '0'; buffer[1] = '\n'; buffer[2] = '\0'; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return 2; } static ssize_t pqi_raid_level_show(struct device *dev, struct device_attribute *attr, char *buffer) { struct pqi_ctrl_info *ctrl_info; struct scsi_device *sdev; struct pqi_scsi_dev *device; unsigned long flags; char *raid_level; sdev = to_scsi_device(dev); ctrl_info = shost_to_hba(sdev->host); spin_lock_irqsave(&ctrl_info->scsi_device_list_lock, flags); device = sdev->hostdata; if (pqi_is_logical_device(device)) raid_level = pqi_raid_level_to_string(device->raid_level); else raid_level = "N/A"; spin_unlock_irqrestore(&ctrl_info->scsi_device_list_lock, flags); return snprintf(buffer, PAGE_SIZE, "%s\n", raid_level); } static DEVICE_ATTR(lunid, 0444, pqi_lunid_show, NULL); static DEVICE_ATTR(unique_id, 0444, pqi_unique_id_show, NULL); static DEVICE_ATTR(path_info, 0444, pqi_path_info_show, NULL); static DEVICE_ATTR(sas_address, 0444, pqi_sas_address_show, NULL); static DEVICE_ATTR(ssd_smart_path_enabled, 0444, pqi_ssd_smart_path_enabled_show, NULL); static DEVICE_ATTR(raid_level, 0444, pqi_raid_level_show, NULL); static struct device_attribute *pqi_sdev_attrs[] = { &dev_attr_lunid, &dev_attr_unique_id, &dev_attr_path_info, &dev_attr_sas_address, &dev_attr_ssd_smart_path_enabled, &dev_attr_raid_level, NULL }; static struct scsi_host_template pqi_driver_template = { .module = THIS_MODULE, .name = DRIVER_NAME_SHORT, .proc_name = DRIVER_NAME_SHORT, .queuecommand = pqi_scsi_queue_command, .scan_start = pqi_scan_start, .scan_finished = pqi_scan_finished, .this_id = -1, .eh_device_reset_handler = pqi_eh_device_reset_handler, .ioctl = pqi_ioctl, .slave_alloc = pqi_slave_alloc, .map_queues = pqi_map_queues, .sdev_attrs = pqi_sdev_attrs, .shost_attrs = pqi_shost_attrs, }; static int pqi_register_scsi(struct pqi_ctrl_info *ctrl_info) { int rc; struct Scsi_Host *shost; shost = scsi_host_alloc(&pqi_driver_template, sizeof(ctrl_info)); if (!shost) { dev_err(&ctrl_info->pci_dev->dev, "scsi_host_alloc failed for controller %u\n", ctrl_info->ctrl_id); return -ENOMEM; } shost->io_port = 0; shost->n_io_port = 0; shost->this_id = -1; shost->max_channel = PQI_MAX_BUS; shost->max_cmd_len = MAX_COMMAND_SIZE; shost->max_lun = ~0; shost->max_id = ~0; shost->max_sectors = ctrl_info->max_sectors; shost->can_queue = ctrl_info->scsi_ml_can_queue; shost->cmd_per_lun = shost->can_queue; shost->sg_tablesize = ctrl_info->sg_tablesize; shost->transportt = pqi_sas_transport_template; shost->irq = pci_irq_vector(ctrl_info->pci_dev, 0); shost->unique_id = shost->irq; shost->nr_hw_queues = ctrl_info->num_queue_groups; shost->hostdata[0] = (unsigned long)ctrl_info; rc = scsi_add_host(shost, &ctrl_info->pci_dev->dev); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "scsi_add_host failed for controller %u\n", ctrl_info->ctrl_id); goto free_host; } rc = pqi_add_sas_host(shost, ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "add SAS host failed for controller %u\n", ctrl_info->ctrl_id); goto remove_host; } ctrl_info->scsi_host = shost; return 0; remove_host: scsi_remove_host(shost); free_host: scsi_host_put(shost); return rc; } static void pqi_unregister_scsi(struct pqi_ctrl_info *ctrl_info) { struct Scsi_Host *shost; pqi_delete_sas_host(ctrl_info); shost = ctrl_info->scsi_host; if (!shost) return; scsi_remove_host(shost); scsi_host_put(shost); } static int pqi_wait_for_pqi_reset_completion(struct pqi_ctrl_info *ctrl_info) { int rc = 0; struct pqi_device_registers __iomem *pqi_registers; unsigned long timeout; unsigned int timeout_msecs; union pqi_reset_register reset_reg; pqi_registers = ctrl_info->pqi_registers; timeout_msecs = readw(&pqi_registers->max_reset_timeout) * 100; timeout = msecs_to_jiffies(timeout_msecs) + jiffies; while (1) { msleep(PQI_RESET_POLL_INTERVAL_MSECS); reset_reg.all_bits = readl(&pqi_registers->device_reset); if (reset_reg.bits.reset_action == PQI_RESET_ACTION_COMPLETED) break; pqi_check_ctrl_health(ctrl_info); if (pqi_ctrl_offline(ctrl_info)) { rc = -ENXIO; break; } if (time_after(jiffies, timeout)) { rc = -ETIMEDOUT; break; } } return rc; } static int pqi_reset(struct pqi_ctrl_info *ctrl_info) { int rc; union pqi_reset_register reset_reg; if (ctrl_info->pqi_reset_quiesce_supported) { rc = sis_pqi_reset_quiesce(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "PQI reset failed during quiesce with error %d\n", rc); return rc; } } reset_reg.all_bits = 0; reset_reg.bits.reset_type = PQI_RESET_TYPE_HARD_RESET; reset_reg.bits.reset_action = PQI_RESET_ACTION_RESET; writel(reset_reg.all_bits, &ctrl_info->pqi_registers->device_reset); rc = pqi_wait_for_pqi_reset_completion(ctrl_info); if (rc) dev_err(&ctrl_info->pci_dev->dev, "PQI reset failed with error %d\n", rc); return rc; } static int pqi_get_ctrl_firmware_version(struct pqi_ctrl_info *ctrl_info) { int rc; struct bmic_identify_controller *identify; identify = kmalloc(sizeof(*identify), GFP_KERNEL); if (!identify) return -ENOMEM; rc = pqi_identify_controller(ctrl_info, identify); if (rc) goto out; memcpy(ctrl_info->firmware_version, identify->firmware_version, sizeof(identify->firmware_version)); ctrl_info->firmware_version[sizeof(identify->firmware_version)] = '\0'; snprintf(ctrl_info->firmware_version + strlen(ctrl_info->firmware_version), sizeof(ctrl_info->firmware_version), "-%u", get_unaligned_le16(&identify->firmware_build_number)); out: kfree(identify); return rc; } struct pqi_config_table_section_info { struct pqi_ctrl_info *ctrl_info; void *section; u32 section_offset; void __iomem *section_iomem_addr; }; static inline bool pqi_is_firmware_feature_supported( struct pqi_config_table_firmware_features *firmware_features, unsigned int bit_position) { unsigned int byte_index; byte_index = bit_position / BITS_PER_BYTE; if (byte_index >= le16_to_cpu(firmware_features->num_elements)) return false; return firmware_features->features_supported[byte_index] & (1 << (bit_position % BITS_PER_BYTE)) ? true : false; } static inline bool pqi_is_firmware_feature_enabled( struct pqi_config_table_firmware_features *firmware_features, void __iomem *firmware_features_iomem_addr, unsigned int bit_position) { unsigned int byte_index; u8 __iomem *features_enabled_iomem_addr; byte_index = (bit_position / BITS_PER_BYTE) + (le16_to_cpu(firmware_features->num_elements) * 2); features_enabled_iomem_addr = firmware_features_iomem_addr + offsetof(struct pqi_config_table_firmware_features, features_supported) + byte_index; return *((__force u8 *)features_enabled_iomem_addr) & (1 << (bit_position % BITS_PER_BYTE)) ? true : false; } static inline void pqi_request_firmware_feature( struct pqi_config_table_firmware_features *firmware_features, unsigned int bit_position) { unsigned int byte_index; byte_index = (bit_position / BITS_PER_BYTE) + le16_to_cpu(firmware_features->num_elements); firmware_features->features_supported[byte_index] |= (1 << (bit_position % BITS_PER_BYTE)); } static int pqi_config_table_update(struct pqi_ctrl_info *ctrl_info, u16 first_section, u16 last_section) { struct pqi_vendor_general_request request; memset(&request, 0, sizeof(request)); request.header.iu_type = PQI_REQUEST_IU_VENDOR_GENERAL; put_unaligned_le16(sizeof(request) - PQI_REQUEST_HEADER_LENGTH, &request.header.iu_length); put_unaligned_le16(PQI_VENDOR_GENERAL_CONFIG_TABLE_UPDATE, &request.function_code); put_unaligned_le16(first_section, &request.data.config_table_update.first_section); put_unaligned_le16(last_section, &request.data.config_table_update.last_section); return pqi_submit_raid_request_synchronous(ctrl_info, &request.header, 0, NULL, NO_TIMEOUT); } static int pqi_enable_firmware_features(struct pqi_ctrl_info *ctrl_info, struct pqi_config_table_firmware_features *firmware_features, void __iomem *firmware_features_iomem_addr) { void *features_requested; void __iomem *features_requested_iomem_addr; features_requested = firmware_features->features_supported + le16_to_cpu(firmware_features->num_elements); features_requested_iomem_addr = firmware_features_iomem_addr + (features_requested - (void *)firmware_features); memcpy_toio(features_requested_iomem_addr, features_requested, le16_to_cpu(firmware_features->num_elements)); return pqi_config_table_update(ctrl_info, PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES, PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES); } struct pqi_firmware_feature { char *feature_name; unsigned int feature_bit; bool supported; bool enabled; void (*feature_status)(struct pqi_ctrl_info *ctrl_info, struct pqi_firmware_feature *firmware_feature); }; static void pqi_firmware_feature_status(struct pqi_ctrl_info *ctrl_info, struct pqi_firmware_feature *firmware_feature) { if (!firmware_feature->supported) { dev_info(&ctrl_info->pci_dev->dev, "%s not supported by controller\n", firmware_feature->feature_name); return; } if (firmware_feature->enabled) { dev_info(&ctrl_info->pci_dev->dev, "%s enabled\n", firmware_feature->feature_name); return; } dev_err(&ctrl_info->pci_dev->dev, "failed to enable %s\n", firmware_feature->feature_name); } static inline void pqi_firmware_feature_update(struct pqi_ctrl_info *ctrl_info, struct pqi_firmware_feature *firmware_feature) { if (firmware_feature->feature_status) firmware_feature->feature_status(ctrl_info, firmware_feature); } static DEFINE_MUTEX(pqi_firmware_features_mutex); static struct pqi_firmware_feature pqi_firmware_features[] = { { .feature_name = "Online Firmware Activation", .feature_bit = PQI_FIRMWARE_FEATURE_OFA, .feature_status = pqi_firmware_feature_status, }, { .feature_name = "Serial Management Protocol", .feature_bit = PQI_FIRMWARE_FEATURE_SMP, .feature_status = pqi_firmware_feature_status, }, }; static void pqi_process_firmware_features( struct pqi_config_table_section_info *section_info) { int rc; struct pqi_ctrl_info *ctrl_info; struct pqi_config_table_firmware_features *firmware_features; void __iomem *firmware_features_iomem_addr; unsigned int i; unsigned int num_features_supported; ctrl_info = section_info->ctrl_info; firmware_features = section_info->section; firmware_features_iomem_addr = section_info->section_iomem_addr; for (i = 0, num_features_supported = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) { if (pqi_is_firmware_feature_supported(firmware_features, pqi_firmware_features[i].feature_bit)) { pqi_firmware_features[i].supported = true; num_features_supported++; } else { pqi_firmware_feature_update(ctrl_info, &pqi_firmware_features[i]); } } if (num_features_supported == 0) return; for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) { if (!pqi_firmware_features[i].supported) continue; pqi_request_firmware_feature(firmware_features, pqi_firmware_features[i].feature_bit); } rc = pqi_enable_firmware_features(ctrl_info, firmware_features, firmware_features_iomem_addr); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to enable firmware features in PQI configuration table\n"); for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) { if (!pqi_firmware_features[i].supported) continue; pqi_firmware_feature_update(ctrl_info, &pqi_firmware_features[i]); } return; } for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) { if (!pqi_firmware_features[i].supported) continue; if (pqi_is_firmware_feature_enabled(firmware_features, firmware_features_iomem_addr, pqi_firmware_features[i].feature_bit)) pqi_firmware_features[i].enabled = true; pqi_firmware_feature_update(ctrl_info, &pqi_firmware_features[i]); } } static void pqi_init_firmware_features(void) { unsigned int i; for (i = 0; i < ARRAY_SIZE(pqi_firmware_features); i++) { pqi_firmware_features[i].supported = false; pqi_firmware_features[i].enabled = false; } } static void pqi_process_firmware_features_section( struct pqi_config_table_section_info *section_info) { mutex_lock(&pqi_firmware_features_mutex); pqi_init_firmware_features(); pqi_process_firmware_features(section_info); mutex_unlock(&pqi_firmware_features_mutex); } static int pqi_process_config_table(struct pqi_ctrl_info *ctrl_info) { u32 table_length; u32 section_offset; void __iomem *table_iomem_addr; struct pqi_config_table *config_table; struct pqi_config_table_section_header *section; struct pqi_config_table_section_info section_info; table_length = ctrl_info->config_table_length; if (table_length == 0) return 0; config_table = kmalloc(table_length, GFP_KERNEL); if (!config_table) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate memory for PQI configuration table\n"); return -ENOMEM; } /* * Copy the config table contents from I/O memory space into the * temporary buffer. */ table_iomem_addr = ctrl_info->iomem_base + ctrl_info->config_table_offset; memcpy_fromio(config_table, table_iomem_addr, table_length); section_info.ctrl_info = ctrl_info; section_offset = get_unaligned_le32(&config_table->first_section_offset); while (section_offset) { section = (void *)config_table + section_offset; section_info.section = section; section_info.section_offset = section_offset; section_info.section_iomem_addr = table_iomem_addr + section_offset; switch (get_unaligned_le16(§ion->section_id)) { case PQI_CONFIG_TABLE_SECTION_FIRMWARE_FEATURES: pqi_process_firmware_features_section(§ion_info); break; case PQI_CONFIG_TABLE_SECTION_HEARTBEAT: if (pqi_disable_heartbeat) dev_warn(&ctrl_info->pci_dev->dev, "heartbeat disabled by module parameter\n"); else ctrl_info->heartbeat_counter = table_iomem_addr + section_offset + offsetof( struct pqi_config_table_heartbeat, heartbeat_counter); break; } section_offset = get_unaligned_le16(§ion->next_section_offset); } kfree(config_table); return 0; } /* Switches the controller from PQI mode back into SIS mode. */ static int pqi_revert_to_sis_mode(struct pqi_ctrl_info *ctrl_info) { int rc; pqi_change_irq_mode(ctrl_info, IRQ_MODE_NONE); rc = pqi_reset(ctrl_info); if (rc) return rc; rc = sis_reenable_sis_mode(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "re-enabling SIS mode failed with error %d\n", rc); return rc; } pqi_save_ctrl_mode(ctrl_info, SIS_MODE); return 0; } /* * If the controller isn't already in SIS mode, this function forces it into * SIS mode. */ static int pqi_force_sis_mode(struct pqi_ctrl_info *ctrl_info) { if (!sis_is_firmware_running(ctrl_info)) return -ENXIO; if (pqi_get_ctrl_mode(ctrl_info) == SIS_MODE) return 0; if (sis_is_kernel_up(ctrl_info)) { pqi_save_ctrl_mode(ctrl_info, SIS_MODE); return 0; } return pqi_revert_to_sis_mode(ctrl_info); } static int pqi_ctrl_init(struct pqi_ctrl_info *ctrl_info) { int rc; rc = pqi_force_sis_mode(ctrl_info); if (rc) return rc; /* * Wait until the controller is ready to start accepting SIS * commands. */ rc = sis_wait_for_ctrl_ready(ctrl_info); if (rc) return rc; /* * Get the controller properties. This allows us to determine * whether or not it supports PQI mode. */ rc = sis_get_ctrl_properties(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining controller properties\n"); return rc; } rc = sis_get_pqi_capabilities(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining controller capabilities\n"); return rc; } if (reset_devices) { if (ctrl_info->max_outstanding_requests > PQI_MAX_OUTSTANDING_REQUESTS_KDUMP) ctrl_info->max_outstanding_requests = PQI_MAX_OUTSTANDING_REQUESTS_KDUMP; } else { if (ctrl_info->max_outstanding_requests > PQI_MAX_OUTSTANDING_REQUESTS) ctrl_info->max_outstanding_requests = PQI_MAX_OUTSTANDING_REQUESTS; } pqi_calculate_io_resources(ctrl_info); rc = pqi_alloc_error_buffer(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate PQI error buffer\n"); return rc; } /* * If the function we are about to call succeeds, the * controller will transition from legacy SIS mode * into PQI mode. */ rc = sis_init_base_struct_addr(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error initializing PQI mode\n"); return rc; } /* Wait for the controller to complete the SIS -> PQI transition. */ rc = pqi_wait_for_pqi_mode_ready(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "transition to PQI mode failed\n"); return rc; } /* From here on, we are running in PQI mode. */ ctrl_info->pqi_mode_enabled = true; pqi_save_ctrl_mode(ctrl_info, PQI_MODE); rc = pqi_alloc_admin_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate admin queues\n"); return rc; } rc = pqi_create_admin_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating admin queues\n"); return rc; } rc = pqi_report_device_capability(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "obtaining device capability failed\n"); return rc; } rc = pqi_validate_device_capability(ctrl_info); if (rc) return rc; pqi_calculate_queue_resources(ctrl_info); rc = pqi_enable_msix_interrupts(ctrl_info); if (rc) return rc; if (ctrl_info->num_msix_vectors_enabled < ctrl_info->num_queue_groups) { ctrl_info->max_msix_vectors = ctrl_info->num_msix_vectors_enabled; pqi_calculate_queue_resources(ctrl_info); } rc = pqi_alloc_io_resources(ctrl_info); if (rc) return rc; rc = pqi_alloc_operational_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to allocate operational queues\n"); return rc; } pqi_init_operational_queues(ctrl_info); rc = pqi_request_irqs(ctrl_info); if (rc) return rc; rc = pqi_create_queues(ctrl_info); if (rc) return rc; pqi_change_irq_mode(ctrl_info, IRQ_MODE_MSIX); ctrl_info->controller_online = true; rc = pqi_process_config_table(ctrl_info); if (rc) return rc; pqi_start_heartbeat_timer(ctrl_info); rc = pqi_enable_events(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error enabling events\n"); return rc; } /* Register with the SCSI subsystem. */ rc = pqi_register_scsi(ctrl_info); if (rc) return rc; rc = pqi_get_ctrl_firmware_version(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error obtaining firmware version\n"); return rc; } rc = pqi_set_diag_rescan(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error enabling multi-lun rescan\n"); return rc; } rc = pqi_write_driver_version_to_host_wellness(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error updating host wellness\n"); return rc; } pqi_schedule_update_time_worker(ctrl_info); pqi_scan_scsi_devices(ctrl_info); return 0; } static void pqi_reinit_queues(struct pqi_ctrl_info *ctrl_info) { unsigned int i; struct pqi_admin_queues *admin_queues; struct pqi_event_queue *event_queue; admin_queues = &ctrl_info->admin_queues; admin_queues->iq_pi_copy = 0; admin_queues->oq_ci_copy = 0; writel(0, admin_queues->oq_pi); for (i = 0; i < ctrl_info->num_queue_groups; i++) { ctrl_info->queue_groups[i].iq_pi_copy[RAID_PATH] = 0; ctrl_info->queue_groups[i].iq_pi_copy[AIO_PATH] = 0; ctrl_info->queue_groups[i].oq_ci_copy = 0; writel(0, ctrl_info->queue_groups[i].iq_ci[RAID_PATH]); writel(0, ctrl_info->queue_groups[i].iq_ci[AIO_PATH]); writel(0, ctrl_info->queue_groups[i].oq_pi); } event_queue = &ctrl_info->event_queue; writel(0, event_queue->oq_pi); event_queue->oq_ci_copy = 0; } static int pqi_ctrl_init_resume(struct pqi_ctrl_info *ctrl_info) { int rc; rc = pqi_force_sis_mode(ctrl_info); if (rc) return rc; /* * Wait until the controller is ready to start accepting SIS * commands. */ rc = sis_wait_for_ctrl_ready_resume(ctrl_info); if (rc) return rc; /* * If the function we are about to call succeeds, the * controller will transition from legacy SIS mode * into PQI mode. */ rc = sis_init_base_struct_addr(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error initializing PQI mode\n"); return rc; } /* Wait for the controller to complete the SIS -> PQI transition. */ rc = pqi_wait_for_pqi_mode_ready(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "transition to PQI mode failed\n"); return rc; } /* From here on, we are running in PQI mode. */ ctrl_info->pqi_mode_enabled = true; pqi_save_ctrl_mode(ctrl_info, PQI_MODE); pqi_reinit_queues(ctrl_info); rc = pqi_create_admin_queues(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error creating admin queues\n"); return rc; } rc = pqi_create_queues(ctrl_info); if (rc) return rc; pqi_change_irq_mode(ctrl_info, IRQ_MODE_MSIX); ctrl_info->controller_online = true; pqi_start_heartbeat_timer(ctrl_info); pqi_ctrl_unblock_requests(ctrl_info); rc = pqi_enable_events(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error enabling events\n"); return rc; } rc = pqi_set_diag_rescan(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error enabling multi-lun rescan\n"); return rc; } rc = pqi_write_driver_version_to_host_wellness(ctrl_info); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "error updating host wellness\n"); return rc; } pqi_schedule_update_time_worker(ctrl_info); pqi_scan_scsi_devices(ctrl_info); return 0; } static inline int pqi_set_pcie_completion_timeout(struct pci_dev *pci_dev, u16 timeout) { return pcie_capability_clear_and_set_word(pci_dev, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_COMP_TIMEOUT, timeout); } static int pqi_pci_init(struct pqi_ctrl_info *ctrl_info) { int rc; u64 mask; rc = pci_enable_device(ctrl_info->pci_dev); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to enable PCI device\n"); return rc; } if (sizeof(dma_addr_t) > 4) mask = DMA_BIT_MASK(64); else mask = DMA_BIT_MASK(32); rc = dma_set_mask(&ctrl_info->pci_dev->dev, mask); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to set DMA mask\n"); goto disable_device; } rc = pci_request_regions(ctrl_info->pci_dev, DRIVER_NAME_SHORT); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to obtain PCI resources\n"); goto disable_device; } ctrl_info->iomem_base = ioremap_nocache(pci_resource_start( ctrl_info->pci_dev, 0), sizeof(struct pqi_ctrl_registers)); if (!ctrl_info->iomem_base) { dev_err(&ctrl_info->pci_dev->dev, "failed to map memory for controller registers\n"); rc = -ENOMEM; goto release_regions; } #define PCI_EXP_COMP_TIMEOUT_65_TO_210_MS 0x6 /* Increase the PCIe completion timeout. */ rc = pqi_set_pcie_completion_timeout(ctrl_info->pci_dev, PCI_EXP_COMP_TIMEOUT_65_TO_210_MS); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "failed to set PCIe completion timeout\n"); goto release_regions; } /* Enable bus mastering. */ pci_set_master(ctrl_info->pci_dev); ctrl_info->registers = ctrl_info->iomem_base; ctrl_info->pqi_registers = &ctrl_info->registers->pqi_registers; pci_set_drvdata(ctrl_info->pci_dev, ctrl_info); return 0; release_regions: pci_release_regions(ctrl_info->pci_dev); disable_device: pci_disable_device(ctrl_info->pci_dev); return rc; } static void pqi_cleanup_pci_init(struct pqi_ctrl_info *ctrl_info) { iounmap(ctrl_info->iomem_base); pci_release_regions(ctrl_info->pci_dev); if (pci_is_enabled(ctrl_info->pci_dev)) pci_disable_device(ctrl_info->pci_dev); pci_set_drvdata(ctrl_info->pci_dev, NULL); } static struct pqi_ctrl_info *pqi_alloc_ctrl_info(int numa_node) { struct pqi_ctrl_info *ctrl_info; ctrl_info = kzalloc_node(sizeof(struct pqi_ctrl_info), GFP_KERNEL, numa_node); if (!ctrl_info) return NULL; mutex_init(&ctrl_info->scan_mutex); mutex_init(&ctrl_info->lun_reset_mutex); INIT_LIST_HEAD(&ctrl_info->scsi_device_list); spin_lock_init(&ctrl_info->scsi_device_list_lock); INIT_WORK(&ctrl_info->event_work, pqi_event_worker); atomic_set(&ctrl_info->num_interrupts, 0); INIT_DELAYED_WORK(&ctrl_info->rescan_work, pqi_rescan_worker); INIT_DELAYED_WORK(&ctrl_info->update_time_work, pqi_update_time_worker); timer_setup(&ctrl_info->heartbeat_timer, pqi_heartbeat_timer_handler, 0); INIT_WORK(&ctrl_info->ctrl_offline_work, pqi_ctrl_offline_worker); sema_init(&ctrl_info->sync_request_sem, PQI_RESERVED_IO_SLOTS_SYNCHRONOUS_REQUESTS); init_waitqueue_head(&ctrl_info->block_requests_wait); INIT_LIST_HEAD(&ctrl_info->raid_bypass_retry_list); spin_lock_init(&ctrl_info->raid_bypass_retry_list_lock); INIT_WORK(&ctrl_info->raid_bypass_retry_work, pqi_raid_bypass_retry_worker); ctrl_info->ctrl_id = atomic_inc_return(&pqi_controller_count) - 1; ctrl_info->irq_mode = IRQ_MODE_NONE; ctrl_info->max_msix_vectors = PQI_MAX_MSIX_VECTORS; return ctrl_info; } static inline void pqi_free_ctrl_info(struct pqi_ctrl_info *ctrl_info) { kfree(ctrl_info); } static void pqi_free_interrupts(struct pqi_ctrl_info *ctrl_info) { pqi_free_irqs(ctrl_info); pqi_disable_msix_interrupts(ctrl_info); } static void pqi_free_ctrl_resources(struct pqi_ctrl_info *ctrl_info) { pqi_stop_heartbeat_timer(ctrl_info); pqi_free_interrupts(ctrl_info); if (ctrl_info->queue_memory_base) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->queue_memory_length, ctrl_info->queue_memory_base, ctrl_info->queue_memory_base_dma_handle); if (ctrl_info->admin_queue_memory_base) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->admin_queue_memory_length, ctrl_info->admin_queue_memory_base, ctrl_info->admin_queue_memory_base_dma_handle); pqi_free_all_io_requests(ctrl_info); if (ctrl_info->error_buffer) dma_free_coherent(&ctrl_info->pci_dev->dev, ctrl_info->error_buffer_length, ctrl_info->error_buffer, ctrl_info->error_buffer_dma_handle); if (ctrl_info->iomem_base) pqi_cleanup_pci_init(ctrl_info); pqi_free_ctrl_info(ctrl_info); } static void pqi_remove_ctrl(struct pqi_ctrl_info *ctrl_info) { pqi_cancel_rescan_worker(ctrl_info); pqi_cancel_update_time_worker(ctrl_info); pqi_remove_all_scsi_devices(ctrl_info); pqi_unregister_scsi(ctrl_info); if (ctrl_info->pqi_mode_enabled) pqi_revert_to_sis_mode(ctrl_info); pqi_free_ctrl_resources(ctrl_info); } static void pqi_perform_lockup_action(void) { switch (pqi_lockup_action) { case PANIC: panic("FATAL: Smart Family Controller lockup detected"); break; case REBOOT: emergency_restart(); break; case NONE: default: break; } } static struct pqi_raid_error_info pqi_ctrl_offline_raid_error_info = { .data_out_result = PQI_DATA_IN_OUT_HARDWARE_ERROR, .status = SAM_STAT_CHECK_CONDITION, }; static void pqi_fail_all_outstanding_requests(struct pqi_ctrl_info *ctrl_info) { unsigned int i; struct pqi_io_request *io_request; struct scsi_cmnd *scmd; for (i = 0; i < ctrl_info->max_io_slots; i++) { io_request = &ctrl_info->io_request_pool[i]; if (atomic_read(&io_request->refcount) == 0) continue; scmd = io_request->scmd; if (scmd) { set_host_byte(scmd, DID_NO_CONNECT); } else { io_request->status = -ENXIO; io_request->error_info = &pqi_ctrl_offline_raid_error_info; } io_request->io_complete_callback(io_request, io_request->context); } } static void pqi_take_ctrl_offline_deferred(struct pqi_ctrl_info *ctrl_info) { pqi_perform_lockup_action(); pqi_stop_heartbeat_timer(ctrl_info); pqi_free_interrupts(ctrl_info); pqi_cancel_rescan_worker(ctrl_info); pqi_cancel_update_time_worker(ctrl_info); pqi_ctrl_wait_until_quiesced(ctrl_info); pqi_fail_all_outstanding_requests(ctrl_info); pqi_clear_all_queued_raid_bypass_retries(ctrl_info); pqi_ctrl_unblock_requests(ctrl_info); } static void pqi_ctrl_offline_worker(struct work_struct *work) { struct pqi_ctrl_info *ctrl_info; ctrl_info = container_of(work, struct pqi_ctrl_info, ctrl_offline_work); pqi_take_ctrl_offline_deferred(ctrl_info); } static void pqi_take_ctrl_offline(struct pqi_ctrl_info *ctrl_info) { if (!ctrl_info->controller_online) return; ctrl_info->controller_online = false; ctrl_info->pqi_mode_enabled = false; pqi_ctrl_block_requests(ctrl_info); if (!pqi_disable_ctrl_shutdown) sis_shutdown_ctrl(ctrl_info); pci_disable_device(ctrl_info->pci_dev); dev_err(&ctrl_info->pci_dev->dev, "controller offline\n"); schedule_work(&ctrl_info->ctrl_offline_work); } static void pqi_print_ctrl_info(struct pci_dev *pci_dev, const struct pci_device_id *id) { char *ctrl_description; if (id->driver_data) ctrl_description = (char *)id->driver_data; else ctrl_description = "Microsemi Smart Family Controller"; dev_info(&pci_dev->dev, "%s found\n", ctrl_description); } static int pqi_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { int rc; int node, cp_node; struct pqi_ctrl_info *ctrl_info; pqi_print_ctrl_info(pci_dev, id); if (pqi_disable_device_id_wildcards && id->subvendor == PCI_ANY_ID && id->subdevice == PCI_ANY_ID) { dev_warn(&pci_dev->dev, "controller not probed because device ID wildcards are disabled\n"); return -ENODEV; } if (id->subvendor == PCI_ANY_ID || id->subdevice == PCI_ANY_ID) dev_warn(&pci_dev->dev, "controller device ID matched using wildcards\n"); node = dev_to_node(&pci_dev->dev); if (node == NUMA_NO_NODE) { cp_node = cpu_to_node(0); if (cp_node == NUMA_NO_NODE) cp_node = 0; set_dev_node(&pci_dev->dev, cp_node); } ctrl_info = pqi_alloc_ctrl_info(node); if (!ctrl_info) { dev_err(&pci_dev->dev, "failed to allocate controller info block\n"); return -ENOMEM; } ctrl_info->pci_dev = pci_dev; rc = pqi_pci_init(ctrl_info); if (rc) goto error; rc = pqi_ctrl_init(ctrl_info); if (rc) goto error; return 0; error: pqi_remove_ctrl(ctrl_info); return rc; } static void pqi_pci_remove(struct pci_dev *pci_dev) { struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pci_dev); if (!ctrl_info) return; ctrl_info->in_shutdown = true; pqi_remove_ctrl(ctrl_info); } static void pqi_shutdown(struct pci_dev *pci_dev) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pci_dev); if (!ctrl_info) goto error; /* * Write all data in the controller's battery-backed cache to * storage. */ rc = pqi_flush_cache(ctrl_info, SHUTDOWN); pqi_reset(ctrl_info); if (rc == 0) return; error: dev_warn(&pci_dev->dev, "unable to flush controller cache\n"); } static void pqi_process_lockup_action_param(void) { unsigned int i; if (!pqi_lockup_action_param) return; for (i = 0; i < ARRAY_SIZE(pqi_lockup_actions); i++) { if (strcmp(pqi_lockup_action_param, pqi_lockup_actions[i].name) == 0) { pqi_lockup_action = pqi_lockup_actions[i].action; return; } } pr_warn("%s: invalid lockup action setting \"%s\" - supported settings: none, reboot, panic\n", DRIVER_NAME_SHORT, pqi_lockup_action_param); } static void pqi_process_module_params(void) { pqi_process_lockup_action_param(); } static __maybe_unused int pqi_suspend(struct pci_dev *pci_dev, pm_message_t state) { struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pci_dev); pqi_disable_events(ctrl_info); pqi_cancel_update_time_worker(ctrl_info); pqi_cancel_rescan_worker(ctrl_info); pqi_wait_until_scan_finished(ctrl_info); pqi_wait_until_lun_reset_finished(ctrl_info); pqi_flush_cache(ctrl_info, SUSPEND); pqi_ctrl_block_requests(ctrl_info); pqi_ctrl_wait_until_quiesced(ctrl_info); pqi_wait_until_inbound_queues_empty(ctrl_info); pqi_ctrl_wait_for_pending_io(ctrl_info); pqi_stop_heartbeat_timer(ctrl_info); if (state.event == PM_EVENT_FREEZE) return 0; pci_save_state(pci_dev); pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state)); ctrl_info->controller_online = false; ctrl_info->pqi_mode_enabled = false; return 0; } static __maybe_unused int pqi_resume(struct pci_dev *pci_dev) { int rc; struct pqi_ctrl_info *ctrl_info; ctrl_info = pci_get_drvdata(pci_dev); if (pci_dev->current_state != PCI_D0) { ctrl_info->max_hw_queue_index = 0; pqi_free_interrupts(ctrl_info); pqi_change_irq_mode(ctrl_info, IRQ_MODE_INTX); rc = request_irq(pci_irq_vector(pci_dev, 0), pqi_irq_handler, IRQF_SHARED, DRIVER_NAME_SHORT, &ctrl_info->queue_groups[0]); if (rc) { dev_err(&ctrl_info->pci_dev->dev, "irq %u init failed with error %d\n", pci_dev->irq, rc); return rc; } pqi_start_heartbeat_timer(ctrl_info); pqi_ctrl_unblock_requests(ctrl_info); return 0; } pci_set_power_state(pci_dev, PCI_D0); pci_restore_state(pci_dev); return pqi_ctrl_init_resume(ctrl_info); } /* Define the PCI IDs for the controllers that we support. */ static const struct pci_device_id pqi_pci_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x105b, 0x1211) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x105b, 0x1321) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x152d, 0x8a22) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x152d, 0x8a23) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x152d, 0x8a24) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x152d, 0x8a36) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x152d, 0x8a37) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0x8460) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0x8461) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0xc460) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0xc461) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0xf460) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x193d, 0xf461) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x0045) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x0046) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x0047) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x0048) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x004a) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x004b) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x1bd4, 0x004c) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd227) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd228) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd229) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd22a) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd22b) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, 0x19e5, 0xd22c) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0110) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0608) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0800) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0801) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0802) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0803) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0804) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0805) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0806) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0807) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0900) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0901) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0902) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0903) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0904) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0905) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0906) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0907) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x0908) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x090a) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1200) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1201) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1202) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1280) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1281) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1282) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1300) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1301) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1302) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1303) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADAPTEC2, 0x1380) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_ADVANTECH, 0x8312) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_DELL, 0x1fe0) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0600) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0601) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0602) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0603) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0609) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0650) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0651) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0652) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0653) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0654) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0655) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0700) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x0701) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1001) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1100) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_VENDOR_ID_HP, 0x1101) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_ADAPTEC2, 0x028f, PCI_ANY_ID, PCI_ANY_ID) }, { 0 } }; MODULE_DEVICE_TABLE(pci, pqi_pci_id_table); static struct pci_driver pqi_pci_driver = { .name = DRIVER_NAME_SHORT, .id_table = pqi_pci_id_table, .probe = pqi_pci_probe, .remove = pqi_pci_remove, .shutdown = pqi_shutdown, #if defined(CONFIG_PM) .suspend = pqi_suspend, .resume = pqi_resume, #endif }; static int __init pqi_init(void) { int rc; pr_info(DRIVER_NAME "\n"); pqi_sas_transport_template = sas_attach_transport(&pqi_sas_transport_functions); if (!pqi_sas_transport_template) return -ENODEV; pqi_process_module_params(); rc = pci_register_driver(&pqi_pci_driver); if (rc) sas_release_transport(pqi_sas_transport_template); return rc; } static void __exit pqi_cleanup(void) { pci_unregister_driver(&pqi_pci_driver); sas_release_transport(pqi_sas_transport_template); } module_init(pqi_init); module_exit(pqi_cleanup); static void __attribute__((unused)) verify_structures(void) { BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_host_to_ctrl_doorbell) != 0x20); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_interrupt_mask) != 0x34); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_ctrl_to_host_doorbell) != 0x9c); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_ctrl_to_host_doorbell_clear) != 0xa0); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_driver_scratch) != 0xb0); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_firmware_status) != 0xbc); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, sis_mailbox) != 0x1000); BUILD_BUG_ON(offsetof(struct pqi_ctrl_registers, pqi_registers) != 0x4000); BUILD_BUG_ON(offsetof(struct pqi_iu_header, iu_type) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_iu_header, iu_length) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_iu_header, response_queue_id) != 0x4); BUILD_BUG_ON(offsetof(struct pqi_iu_header, work_area) != 0x6); BUILD_BUG_ON(sizeof(struct pqi_iu_header) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, status) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, service_response) != 0x1); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data_present) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, reserved) != 0x3); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, residual_count) != 0x4); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data_length) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, reserved1) != 0xa); BUILD_BUG_ON(offsetof(struct pqi_aio_error_info, data) != 0xc); BUILD_BUG_ON(sizeof(struct pqi_aio_error_info) != 0x10c); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_in_result) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_out_result) != 0x1); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, reserved) != 0x2); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, status) != 0x5); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, status_qualifier) != 0x6); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, sense_data_length) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, response_data_length) != 0xa); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_in_transferred) != 0xc); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data_out_transferred) != 0x10); BUILD_BUG_ON(offsetof(struct pqi_raid_error_info, data) != 0x14); BUILD_BUG_ON(sizeof(struct pqi_raid_error_info) != 0x114); BUILD_BUG_ON(offsetof(struct pqi_device_registers, signature) != 0x0); BUILD_BUG_ON(offsetof(struct pqi_device_registers, function_and_status_code) != 0x8); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_admin_iq_elements) != 0x10); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_admin_oq_elements) != 0x11); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_element_length) != 0x12); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_element_length) != 0x13); BUILD_BUG_ON(offsetof(struct pqi_device_registers, max_reset_timeout) != 0x14); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_status) != 0x18); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_mask_set) != 0x1c); BUILD_BUG_ON(offsetof(struct pqi_device_registers, legacy_intx_mask_clear) != 0x20); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_status) != 0x40); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_pi_offset) != 0x48); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_ci_offset) != 0x50); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_element_array_addr) != 0x58); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_element_array_addr) != 0x60); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_ci_addr) != 0x68); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_pi_addr) != 0x70); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_iq_num_elements) != 0x78); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_oq_num_elements) != 0x79); BUILD_BUG_ON(offsetof(struct pqi_device_registers, admin_queue_int_msg_num) != 0x7a); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_error) != 0x80); BUILD_BUG_ON(offsetof(struct pqi_device_registers, error_details) != 0x88); BUILD_BUG_ON(offsetof(struct pqi_device_registers, device_reset) != 0x90); BUILD_BUG_ON(offsetof(struct pqi_device_registers, power_action) != 0x94); BUILD_BUG_ON(sizeof(struct pqi_device_registers) != 0x100); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, function_code) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.report_device_capability.buffer_length) != 44); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.report_device_capability.sg_descriptor) != 48); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.queue_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.element_array_addr) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.ci_addr) != 24); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.num_elements) != 32); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.element_length) != 34); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_iq.queue_protocol) != 36); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.queue_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.element_array_addr) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.pi_addr) != 24); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.num_elements) != 32); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.element_length) != 34); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.queue_protocol) != 36); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.int_msg_num) != 40); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.coalescing_count) != 42); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.min_coalescing_time) != 44); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.create_operational_oq.max_coalescing_time) != 48); BUILD_BUG_ON(offsetof(struct pqi_general_admin_request, data.delete_operational_queue.queue_id) != 12); BUILD_BUG_ON(sizeof(struct pqi_general_admin_request) != 64); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.create_operational_iq) != 64 - 11); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.create_operational_oq) != 64 - 11); BUILD_BUG_ON(FIELD_SIZEOF(struct pqi_general_admin_request, data.delete_operational_queue) != 64 - 11); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, function_code) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, status) != 11); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_iq.status_descriptor) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_iq.iq_pi_offset) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_oq.status_descriptor) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_admin_response, data.create_operational_oq.oq_ci_offset) != 16); BUILD_BUG_ON(sizeof(struct pqi_general_admin_response) != 64); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, lun_number) != 16); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, protocol_specific) != 24); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, error_index) != 27); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, cdb) != 32); BUILD_BUG_ON(offsetof(struct pqi_raid_path_request, sg_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_raid_path_request) != PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, header.work_area) != 6); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, nexus_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, buffer_length) != 16); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, data_encryption_key_index) != 22); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, encrypt_tweak_lower) != 24); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, encrypt_tweak_upper) != 28); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, cdb) != 32); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, error_index) != 48); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, num_sg_descriptors) != 50); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, cdb_length) != 51); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, lun_number) != 52); BUILD_BUG_ON(offsetof(struct pqi_aio_path_request, sg_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_aio_path_request) != PQI_OPERATIONAL_IQ_ELEMENT_LENGTH); BUILD_BUG_ON(offsetof(struct pqi_io_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_io_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_io_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_io_response, error_index) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, header.response_queue_id) != 4); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.report_event_configuration.buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.report_event_configuration.sg_descriptors) != 16); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.global_event_oq_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.buffer_length) != 12); BUILD_BUG_ON(offsetof(struct pqi_general_management_request, data.set_event_configuration.sg_descriptors) != 16); BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor, max_inbound_iu_length) != 6); BUILD_BUG_ON(offsetof(struct pqi_iu_layer_descriptor, max_outbound_iu_length) != 14); BUILD_BUG_ON(sizeof(struct pqi_iu_layer_descriptor) != 16); BUILD_BUG_ON(offsetof(struct pqi_device_capability, data_length) != 0); BUILD_BUG_ON(offsetof(struct pqi_device_capability, iq_arbitration_priority_support_bitmask) != 8); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_a) != 9); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_b) != 10); BUILD_BUG_ON(offsetof(struct pqi_device_capability, maximum_aw_c) != 11); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_inbound_queues) != 16); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_elements_per_iq) != 18); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_iq_element_length) != 24); BUILD_BUG_ON(offsetof(struct pqi_device_capability, min_iq_element_length) != 26); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_outbound_queues) != 30); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_elements_per_oq) != 32); BUILD_BUG_ON(offsetof(struct pqi_device_capability, intr_coalescing_time_granularity) != 34); BUILD_BUG_ON(offsetof(struct pqi_device_capability, max_oq_element_length) != 36); BUILD_BUG_ON(offsetof(struct pqi_device_capability, min_oq_element_length) != 38); BUILD_BUG_ON(offsetof(struct pqi_device_capability, iu_layer_descriptors) != 64); BUILD_BUG_ON(sizeof(struct pqi_device_capability) != 576); BUILD_BUG_ON(offsetof(struct pqi_event_descriptor, event_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_descriptor, oq_id) != 2); BUILD_BUG_ON(sizeof(struct pqi_event_descriptor) != 4); BUILD_BUG_ON(offsetof(struct pqi_event_config, num_event_descriptors) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_config, descriptors) != 4); BUILD_BUG_ON(PQI_NUM_SUPPORTED_EVENTS != ARRAY_SIZE(pqi_supported_event_types)); BUILD_BUG_ON(offsetof(struct pqi_event_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_response, event_type) != 8); BUILD_BUG_ON(offsetof(struct pqi_event_response, event_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_event_response, additional_event_id) != 12); BUILD_BUG_ON(offsetof(struct pqi_event_response, data) != 16); BUILD_BUG_ON(sizeof(struct pqi_event_response) != 32); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, event_type) != 8); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, event_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_event_acknowledge_request, additional_event_id) != 12); BUILD_BUG_ON(sizeof(struct pqi_event_acknowledge_request) != 16); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, lun_number) != 16); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, protocol_specific) != 24); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, outbound_queue_id_to_manage) != 26); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, request_id_to_manage) != 28); BUILD_BUG_ON(offsetof(struct pqi_task_management_request, task_management_function) != 30); BUILD_BUG_ON(sizeof(struct pqi_task_management_request) != 32); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, header.iu_type) != 0); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, header.iu_length) != 2); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, request_id) != 8); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, nexus_id) != 10); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, additional_response_info) != 12); BUILD_BUG_ON(offsetof(struct pqi_task_management_response, response_code) != 15); BUILD_BUG_ON(sizeof(struct pqi_task_management_response) != 16); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, configured_logical_drive_count) != 0); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, configuration_signature) != 1); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, firmware_version) != 5); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, extended_logical_unit_count) != 154); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, firmware_build_number) != 190); BUILD_BUG_ON(offsetof(struct bmic_identify_controller, controller_mode) != 292); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, phys_bay_in_box) != 115); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, device_type) != 120); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, redundant_path_present_map) != 1736); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, active_path_number) != 1738); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, alternate_paths_phys_connector) != 1739); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, alternate_paths_phys_box_on_port) != 1755); BUILD_BUG_ON(offsetof(struct bmic_identify_physical_device, current_queue_depth_limit) != 1796); BUILD_BUG_ON(sizeof(struct bmic_identify_physical_device) != 2560); BUILD_BUG_ON(PQI_ADMIN_IQ_NUM_ELEMENTS > 255); BUILD_BUG_ON(PQI_ADMIN_OQ_NUM_ELEMENTS > 255); BUILD_BUG_ON(PQI_ADMIN_IQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_ADMIN_OQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH > 1048560); BUILD_BUG_ON(PQI_OPERATIONAL_IQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH > 1048560); BUILD_BUG_ON(PQI_OPERATIONAL_OQ_ELEMENT_LENGTH % PQI_QUEUE_ELEMENT_LENGTH_ALIGNMENT != 0); BUILD_BUG_ON(PQI_RESERVED_IO_SLOTS >= PQI_MAX_OUTSTANDING_REQUESTS); BUILD_BUG_ON(PQI_RESERVED_IO_SLOTS >= PQI_MAX_OUTSTANDING_REQUESTS_KDUMP); }