/* * sd.c Copyright (C) 1992 Drew Eckhardt * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale * * Linux scsi disk driver * Initial versions: Drew Eckhardt * Subsequent revisions: Eric Youngdale * Modification history: * - Drew Eckhardt original * - Eric Youngdale add scatter-gather, multiple * outstanding request, and other enhancements. * Support loadable low-level scsi drivers. * - Jirka Hanika support more scsi disks using * eight major numbers. * - Richard Gooch support devfs. * - Torben Mathiasen Resource allocation fixes in * sd_init and cleanups. * - Alex Davis Fix problem where partition info * not being read in sd_open. Fix problem where removable media * could be ejected after sd_open. * - Douglas Gilbert cleanup for lk 2.5.x * - Badari Pulavarty , Matthew Wilcox * , Kurt Garloff : * Support 32k/1M disks. * * Logging policy (needs CONFIG_SCSI_LOGGING defined): * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 * - entering other commands: SCSI_LOG_HLQUEUE level 3 * Note: when the logging level is set by the user, it must be greater * than the level indicated above to trigger output. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sd.h" #include "scsi_priv.h" #include "scsi_logging.h" MODULE_AUTHOR("Eric Youngdale"); MODULE_DESCRIPTION("SCSI disk (sd) driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) #define SD_MINORS 16 #else #define SD_MINORS 0 #endif static void sd_config_discard(struct scsi_disk *, unsigned int); static void sd_config_write_same(struct scsi_disk *); static int sd_revalidate_disk(struct gendisk *); static void sd_unlock_native_capacity(struct gendisk *disk); static int sd_probe(struct device *); static int sd_remove(struct device *); static void sd_shutdown(struct device *); static int sd_suspend_system(struct device *); static int sd_suspend_runtime(struct device *); static int sd_resume(struct device *); static void sd_rescan(struct device *); static int sd_init_command(struct scsi_cmnd *SCpnt); static void sd_uninit_command(struct scsi_cmnd *SCpnt); static int sd_done(struct scsi_cmnd *); static int sd_eh_action(struct scsi_cmnd *, int); static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); static void scsi_disk_release(struct device *cdev); static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); static void sd_print_result(struct scsi_disk *, int); static DEFINE_SPINLOCK(sd_index_lock); static DEFINE_IDA(sd_index_ida); /* This semaphore is used to mediate the 0->1 reference get in the * face of object destruction (i.e. we can't allow a get on an * object after last put) */ static DEFINE_MUTEX(sd_ref_mutex); static struct kmem_cache *sd_cdb_cache; static mempool_t *sd_cdb_pool; static const char *sd_cache_types[] = { "write through", "none", "write back", "write back, no read (daft)" }; static void sd_set_flush_flag(struct scsi_disk *sdkp) { unsigned flush = 0; if (sdkp->WCE) { flush |= REQ_FLUSH; if (sdkp->DPOFUA) flush |= REQ_FUA; } blk_queue_flush(sdkp->disk->queue, flush); } static ssize_t cache_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int i, ct = -1, rcd, wce, sp; struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; char buffer[64]; char *buffer_data; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; static const char temp[] = "temporary "; int len; if (sdp->type != TYPE_DISK) /* no cache control on RBC devices; theoretically they * can do it, but there's probably so many exceptions * it's not worth the risk */ return -EINVAL; if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { buf += sizeof(temp) - 1; sdkp->cache_override = 1; } else { sdkp->cache_override = 0; } for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { len = strlen(sd_cache_types[i]); if (strncmp(sd_cache_types[i], buf, len) == 0 && buf[len] == '\n') { ct = i; break; } } if (ct < 0) return -EINVAL; rcd = ct & 0x01 ? 1 : 0; wce = ct & 0x02 ? 1 : 0; if (sdkp->cache_override) { sdkp->WCE = wce; sdkp->RCD = rcd; sd_set_flush_flag(sdkp); return count; } if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, SD_MAX_RETRIES, &data, NULL)) return -EINVAL; len = min_t(size_t, sizeof(buffer), data.length - data.header_length - data.block_descriptor_length); buffer_data = buffer + data.header_length + data.block_descriptor_length; buffer_data[2] &= ~0x05; buffer_data[2] |= wce << 2 | rcd; sp = buffer_data[0] & 0x80 ? 1 : 0; if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, SD_MAX_RETRIES, &data, &sshdr)) { if (scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return -EINVAL; } revalidate_disk(sdkp->disk); return count; } static ssize_t manage_start_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); } static ssize_t manage_start_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); return count; } static DEVICE_ATTR_RW(manage_start_stop); static ssize_t allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); } static ssize_t allow_restart_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK) return -EINVAL; sdp->allow_restart = simple_strtoul(buf, NULL, 10); return count; } static DEVICE_ATTR_RW(allow_restart); static ssize_t cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); int ct = sdkp->RCD + 2*sdkp->WCE; return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); } static DEVICE_ATTR_RW(cache_type); static ssize_t FUA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); } static DEVICE_ATTR_RO(FUA); static ssize_t protection_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->protection_type); } static ssize_t protection_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); unsigned int val; int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; err = kstrtouint(buf, 10, &val); if (err) return err; if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) sdkp->protection_type = val; return count; } static DEVICE_ATTR_RW(protection_type); static ssize_t protection_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; unsigned int dif, dix; dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { dif = 0; dix = 1; } if (!dif && !dix) return snprintf(buf, 20, "none\n"); return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); } static DEVICE_ATTR_RO(protection_mode); static ssize_t app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->ATO); } static DEVICE_ATTR_RO(app_tag_own); static ssize_t thin_provisioning_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->lbpme); } static DEVICE_ATTR_RO(thin_provisioning); static const char *lbp_mode[] = { [SD_LBP_FULL] = "full", [SD_LBP_UNMAP] = "unmap", [SD_LBP_WS16] = "writesame_16", [SD_LBP_WS10] = "writesame_10", [SD_LBP_ZERO] = "writesame_zero", [SD_LBP_DISABLE] = "disabled", }; static ssize_t provisioning_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); } static ssize_t provisioning_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK) return -EINVAL; if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) sd_config_discard(sdkp, SD_LBP_UNMAP); else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) sd_config_discard(sdkp, SD_LBP_WS16); else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) sd_config_discard(sdkp, SD_LBP_WS10); else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) sd_config_discard(sdkp, SD_LBP_ZERO); else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) sd_config_discard(sdkp, SD_LBP_DISABLE); else return -EINVAL; return count; } static DEVICE_ATTR_RW(provisioning_mode); static ssize_t max_medium_access_timeouts_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); } static ssize_t max_medium_access_timeouts_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); return err ? err : count; } static DEVICE_ATTR_RW(max_medium_access_timeouts); static ssize_t max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); } static ssize_t max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; unsigned long max; int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK) return -EINVAL; err = kstrtoul(buf, 10, &max); if (err) return err; if (max == 0) sdp->no_write_same = 1; else if (max <= SD_MAX_WS16_BLOCKS) { sdp->no_write_same = 0; sdkp->max_ws_blocks = max; } sd_config_write_same(sdkp); return count; } static DEVICE_ATTR_RW(max_write_same_blocks); static struct attribute *sd_disk_attrs[] = { &dev_attr_cache_type.attr, &dev_attr_FUA.attr, &dev_attr_allow_restart.attr, &dev_attr_manage_start_stop.attr, &dev_attr_protection_type.attr, &dev_attr_protection_mode.attr, &dev_attr_app_tag_own.attr, &dev_attr_thin_provisioning.attr, &dev_attr_provisioning_mode.attr, &dev_attr_max_write_same_blocks.attr, &dev_attr_max_medium_access_timeouts.attr, NULL, }; ATTRIBUTE_GROUPS(sd_disk); static struct class sd_disk_class = { .name = "scsi_disk", .owner = THIS_MODULE, .dev_release = scsi_disk_release, .dev_groups = sd_disk_groups, }; static const struct dev_pm_ops sd_pm_ops = { .suspend = sd_suspend_system, .resume = sd_resume, .poweroff = sd_suspend_system, .restore = sd_resume, .runtime_suspend = sd_suspend_runtime, .runtime_resume = sd_resume, }; static struct scsi_driver sd_template = { .owner = THIS_MODULE, .gendrv = { .name = "sd", .probe = sd_probe, .remove = sd_remove, .shutdown = sd_shutdown, .pm = &sd_pm_ops, }, .rescan = sd_rescan, .init_command = sd_init_command, .uninit_command = sd_uninit_command, .done = sd_done, .eh_action = sd_eh_action, }; /* * Dummy kobj_map->probe function. * The default ->probe function will call modprobe, which is * pointless as this module is already loaded. */ static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) { return NULL; } /* * Device no to disk mapping: * * major disc2 disc p1 * |............|.............|....|....| <- dev_t * 31 20 19 8 7 4 3 0 * * Inside a major, we have 16k disks, however mapped non- * contiguously. The first 16 disks are for major0, the next * ones with major1, ... Disk 256 is for major0 again, disk 272 * for major1, ... * As we stay compatible with our numbering scheme, we can reuse * the well-know SCSI majors 8, 65--71, 136--143. */ static int sd_major(int major_idx) { switch (major_idx) { case 0: return SCSI_DISK0_MAJOR; case 1 ... 7: return SCSI_DISK1_MAJOR + major_idx - 1; case 8 ... 15: return SCSI_DISK8_MAJOR + major_idx - 8; default: BUG(); return 0; /* shut up gcc */ } } static struct scsi_disk *__scsi_disk_get(struct gendisk *disk) { struct scsi_disk *sdkp = NULL; if (disk->private_data) { sdkp = scsi_disk(disk); if (scsi_device_get(sdkp->device) == 0) get_device(&sdkp->dev); else sdkp = NULL; } return sdkp; } static struct scsi_disk *scsi_disk_get(struct gendisk *disk) { struct scsi_disk *sdkp; mutex_lock(&sd_ref_mutex); sdkp = __scsi_disk_get(disk); mutex_unlock(&sd_ref_mutex); return sdkp; } static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev) { struct scsi_disk *sdkp; mutex_lock(&sd_ref_mutex); sdkp = dev_get_drvdata(dev); if (sdkp) sdkp = __scsi_disk_get(sdkp->disk); mutex_unlock(&sd_ref_mutex); return sdkp; } static void scsi_disk_put(struct scsi_disk *sdkp) { struct scsi_device *sdev = sdkp->device; mutex_lock(&sd_ref_mutex); put_device(&sdkp->dev); scsi_device_put(sdev); mutex_unlock(&sd_ref_mutex); } static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, unsigned int dix, unsigned int dif) { struct bio *bio = scmd->request->bio; unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); unsigned int protect = 0; if (dix) { /* DIX Type 0, 1, 2, 3 */ if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; } if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) scmd->prot_flags |= SCSI_PROT_REF_CHECK; } if (dif) { /* DIX/DIF Type 1, 2, 3 */ scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) protect = 3 << 5; /* Disable target PI checking */ else protect = 1 << 5; /* Enable target PI checking */ } scsi_set_prot_op(scmd, prot_op); scsi_set_prot_type(scmd, dif); scmd->prot_flags &= sd_prot_flag_mask(prot_op); return protect; } static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) { struct request_queue *q = sdkp->disk->queue; unsigned int logical_block_size = sdkp->device->sector_size; unsigned int max_blocks = 0; q->limits.discard_zeroes_data = sdkp->lbprz; q->limits.discard_alignment = sdkp->unmap_alignment * logical_block_size; q->limits.discard_granularity = max(sdkp->physical_block_size, sdkp->unmap_granularity * logical_block_size); sdkp->provisioning_mode = mode; switch (mode) { case SD_LBP_DISABLE: q->limits.max_discard_sectors = 0; queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); return; case SD_LBP_UNMAP: max_blocks = min_not_zero(sdkp->max_unmap_blocks, (u32)SD_MAX_WS16_BLOCKS); break; case SD_LBP_WS16: max_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS16_BLOCKS); break; case SD_LBP_WS10: max_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS10_BLOCKS); break; case SD_LBP_ZERO: max_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS10_BLOCKS); q->limits.discard_zeroes_data = 1; break; } q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); } /** * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device * @sdp: scsi device to operate one * @rq: Request to prepare * * Will issue either UNMAP or WRITE SAME(16) depending on preference * indicated by target device. **/ static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) { struct request *rq = cmd->request; struct scsi_device *sdp = cmd->device; struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); sector_t sector = blk_rq_pos(rq); unsigned int nr_sectors = blk_rq_sectors(rq); unsigned int nr_bytes = blk_rq_bytes(rq); unsigned int len; int ret; char *buf; struct page *page; sector >>= ilog2(sdp->sector_size) - 9; nr_sectors >>= ilog2(sdp->sector_size) - 9; page = alloc_page(GFP_ATOMIC | __GFP_ZERO); if (!page) return BLKPREP_DEFER; switch (sdkp->provisioning_mode) { case SD_LBP_UNMAP: buf = page_address(page); cmd->cmd_len = 10; cmd->cmnd[0] = UNMAP; cmd->cmnd[8] = 24; put_unaligned_be16(6 + 16, &buf[0]); put_unaligned_be16(16, &buf[2]); put_unaligned_be64(sector, &buf[8]); put_unaligned_be32(nr_sectors, &buf[16]); len = 24; break; case SD_LBP_WS16: cmd->cmd_len = 16; cmd->cmnd[0] = WRITE_SAME_16; cmd->cmnd[1] = 0x8; /* UNMAP */ put_unaligned_be64(sector, &cmd->cmnd[2]); put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); len = sdkp->device->sector_size; break; case SD_LBP_WS10: case SD_LBP_ZERO: cmd->cmd_len = 10; cmd->cmnd[0] = WRITE_SAME; if (sdkp->provisioning_mode == SD_LBP_WS10) cmd->cmnd[1] = 0x8; /* UNMAP */ put_unaligned_be32(sector, &cmd->cmnd[2]); put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); len = sdkp->device->sector_size; break; default: ret = BLKPREP_KILL; goto out; } rq->completion_data = page; rq->timeout = SD_TIMEOUT; cmd->transfersize = len; cmd->allowed = SD_MAX_RETRIES; /* * Initially __data_len is set to the amount of data that needs to be * transferred to the target. This amount depends on whether WRITE SAME * or UNMAP is being used. After the scatterlist has been mapped by * scsi_init_io() we set __data_len to the size of the area to be * discarded on disk. This allows us to report completion on the full * amount of blocks described by the request. */ blk_add_request_payload(rq, page, len); ret = scsi_init_io(cmd, GFP_ATOMIC); rq->__data_len = nr_bytes; out: if (ret != BLKPREP_OK) __free_page(page); return ret; } static void sd_config_write_same(struct scsi_disk *sdkp) { struct request_queue *q = sdkp->disk->queue; unsigned int logical_block_size = sdkp->device->sector_size; if (sdkp->device->no_write_same) { sdkp->max_ws_blocks = 0; goto out; } /* Some devices can not handle block counts above 0xffff despite * supporting WRITE SAME(16). Consequently we default to 64k * blocks per I/O unless the device explicitly advertises a * bigger limit. */ if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS16_BLOCKS); else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS10_BLOCKS); else { sdkp->device->no_write_same = 1; sdkp->max_ws_blocks = 0; } out: blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * (logical_block_size >> 9)); } /** * sd_setup_write_same_cmnd - write the same data to multiple blocks * @cmd: command to prepare * * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on * preference indicated by target device. **/ static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) { struct request *rq = cmd->request; struct scsi_device *sdp = cmd->device; struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); struct bio *bio = rq->bio; sector_t sector = blk_rq_pos(rq); unsigned int nr_sectors = blk_rq_sectors(rq); unsigned int nr_bytes = blk_rq_bytes(rq); int ret; if (sdkp->device->no_write_same) return BLKPREP_KILL; BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); sector >>= ilog2(sdp->sector_size) - 9; nr_sectors >>= ilog2(sdp->sector_size) - 9; rq->timeout = SD_WRITE_SAME_TIMEOUT; if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { cmd->cmd_len = 16; cmd->cmnd[0] = WRITE_SAME_16; put_unaligned_be64(sector, &cmd->cmnd[2]); put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); } else { cmd->cmd_len = 10; cmd->cmnd[0] = WRITE_SAME; put_unaligned_be32(sector, &cmd->cmnd[2]); put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); } cmd->transfersize = sdp->sector_size; cmd->allowed = SD_MAX_RETRIES; /* * For WRITE_SAME the data transferred in the DATA IN buffer is * different from the amount of data actually written to the target. * * We set up __data_len to the amount of data transferred from the * DATA IN buffer so that blk_rq_map_sg set up the proper S/G list * to transfer a single sector of data first, but then reset it to * the amount of data to be written right after so that the I/O path * knows how much to actually write. */ rq->__data_len = sdp->sector_size; ret = scsi_init_io(cmd, GFP_ATOMIC); rq->__data_len = nr_bytes; return ret; } static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) { struct request *rq = cmd->request; /* flush requests don't perform I/O, zero the S/G table */ memset(&cmd->sdb, 0, sizeof(cmd->sdb)); cmd->cmnd[0] = SYNCHRONIZE_CACHE; cmd->cmd_len = 10; cmd->transfersize = 0; cmd->allowed = SD_MAX_RETRIES; rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; return BLKPREP_OK; } static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) { struct request *rq = SCpnt->request; struct scsi_device *sdp = SCpnt->device; struct gendisk *disk = rq->rq_disk; struct scsi_disk *sdkp; sector_t block = blk_rq_pos(rq); sector_t threshold; unsigned int this_count = blk_rq_sectors(rq); unsigned int dif, dix; int ret; unsigned char protect; ret = scsi_init_io(SCpnt, GFP_ATOMIC); if (ret != BLKPREP_OK) goto out; SCpnt = rq->special; sdkp = scsi_disk(disk); /* from here on until we're complete, any goto out * is used for a killable error condition */ ret = BLKPREP_KILL; SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt, "%s: block=%llu, count=%d\n", __func__, (unsigned long long)block, this_count)); if (!sdp || !scsi_device_online(sdp) || block + blk_rq_sectors(rq) > get_capacity(disk)) { SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "Finishing %u sectors\n", blk_rq_sectors(rq))); SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "Retry with 0x%p\n", SCpnt)); goto out; } if (sdp->changed) { /* * quietly refuse to do anything to a changed disc until * the changed bit has been reset */ /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ goto out; } /* * Some SD card readers can't handle multi-sector accesses which touch * the last one or two hardware sectors. Split accesses as needed. */ threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * (sdp->sector_size / 512); if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { if (block < threshold) { /* Access up to the threshold but not beyond */ this_count = threshold - block; } else { /* Access only a single hardware sector */ this_count = sdp->sector_size / 512; } } SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", (unsigned long long)block)); /* * If we have a 1K hardware sectorsize, prevent access to single * 512 byte sectors. In theory we could handle this - in fact * the scsi cdrom driver must be able to handle this because * we typically use 1K blocksizes, and cdroms typically have * 2K hardware sectorsizes. Of course, things are simpler * with the cdrom, since it is read-only. For performance * reasons, the filesystems should be able to handle this * and not force the scsi disk driver to use bounce buffers * for this. */ if (sdp->sector_size == 1024) { if ((block & 1) || (blk_rq_sectors(rq) & 1)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 1; this_count = this_count >> 1; } } if (sdp->sector_size == 2048) { if ((block & 3) || (blk_rq_sectors(rq) & 3)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 2; this_count = this_count >> 2; } } if (sdp->sector_size == 4096) { if ((block & 7) || (blk_rq_sectors(rq) & 7)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 3; this_count = this_count >> 3; } } if (rq_data_dir(rq) == WRITE) { SCpnt->cmnd[0] = WRITE_6; if (blk_integrity_rq(rq)) sd_dif_prepare(SCpnt); } else if (rq_data_dir(rq) == READ) { SCpnt->cmnd[0] = READ_6; } else { scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags); goto out; } SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "%s %d/%u 512 byte blocks.\n", (rq_data_dir(rq) == WRITE) ? "writing" : "reading", this_count, blk_rq_sectors(rq))); dix = scsi_prot_sg_count(SCpnt); dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); if (dif || dix) protect = sd_setup_protect_cmnd(SCpnt, dix, dif); else protect = 0; if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) { SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); if (unlikely(SCpnt->cmnd == NULL)) { ret = BLKPREP_DEFER; goto out; } SCpnt->cmd_len = SD_EXT_CDB_SIZE; memset(SCpnt->cmnd, 0, SCpnt->cmd_len); SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; SCpnt->cmnd[7] = 0x18; SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); /* LBA */ SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[19] = (unsigned char) block & 0xff; /* Expected Indirect LBA */ SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[23] = (unsigned char) block & 0xff; /* Transfer length */ SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { SCpnt->cmnd[0] += READ_16 - READ_6; SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[9] = (unsigned char) block & 0xff; SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; } else if ((this_count > 0xff) || (block > 0x1fffff) || scsi_device_protection(SCpnt->device) || SCpnt->device->use_10_for_rw) { SCpnt->cmnd[0] += READ_10 - READ_6; SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[5] = (unsigned char) block & 0xff; SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; } else { if (unlikely(rq->cmd_flags & REQ_FUA)) { /* * This happens only if this drive failed * 10byte rw command with ILLEGAL_REQUEST * during operation and thus turned off * use_10_for_rw. */ scmd_printk(KERN_ERR, SCpnt, "FUA write on READ/WRITE(6) drive\n"); goto out; } SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); SCpnt->cmnd[3] = (unsigned char) block & 0xff; SCpnt->cmnd[4] = (unsigned char) this_count; SCpnt->cmnd[5] = 0; } SCpnt->sdb.length = this_count * sdp->sector_size; /* * We shouldn't disconnect in the middle of a sector, so with a dumb * host adapter, it's safe to assume that we can at least transfer * this many bytes between each connect / disconnect. */ SCpnt->transfersize = sdp->sector_size; SCpnt->underflow = this_count << 9; SCpnt->allowed = SD_MAX_RETRIES; /* * This indicates that the command is ready from our end to be * queued. */ ret = BLKPREP_OK; out: return ret; } static int sd_init_command(struct scsi_cmnd *cmd) { struct request *rq = cmd->request; if (rq->cmd_flags & REQ_DISCARD) return sd_setup_discard_cmnd(cmd); else if (rq->cmd_flags & REQ_WRITE_SAME) return sd_setup_write_same_cmnd(cmd); else if (rq->cmd_flags & REQ_FLUSH) return sd_setup_flush_cmnd(cmd); else return sd_setup_read_write_cmnd(cmd); } static void sd_uninit_command(struct scsi_cmnd *SCpnt) { struct request *rq = SCpnt->request; if (rq->cmd_flags & REQ_DISCARD) __free_page(rq->completion_data); if (SCpnt->cmnd != rq->cmd) { mempool_free(SCpnt->cmnd, sd_cdb_pool); SCpnt->cmnd = NULL; SCpnt->cmd_len = 0; } } /** * sd_open - open a scsi disk device * @inode: only i_rdev member may be used * @filp: only f_mode and f_flags may be used * * Returns 0 if successful. Returns a negated errno value in case * of error. * * Note: This can be called from a user context (e.g. fsck(1) ) * or from within the kernel (e.g. as a result of a mount(1) ). * In the latter case @inode and @filp carry an abridged amount * of information as noted above. * * Locking: called with bdev->bd_mutex held. **/ static int sd_open(struct block_device *bdev, fmode_t mode) { struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); struct scsi_device *sdev; int retval; if (!sdkp) return -ENXIO; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); sdev = sdkp->device; /* * If the device is in error recovery, wait until it is done. * If the device is offline, then disallow any access to it. */ retval = -ENXIO; if (!scsi_block_when_processing_errors(sdev)) goto error_out; if (sdev->removable || sdkp->write_prot) check_disk_change(bdev); /* * If the drive is empty, just let the open fail. */ retval = -ENOMEDIUM; if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) goto error_out; /* * If the device has the write protect tab set, have the open fail * if the user expects to be able to write to the thing. */ retval = -EROFS; if (sdkp->write_prot && (mode & FMODE_WRITE)) goto error_out; /* * It is possible that the disk changing stuff resulted in * the device being taken offline. If this is the case, * report this to the user, and don't pretend that the * open actually succeeded. */ retval = -ENXIO; if (!scsi_device_online(sdev)) goto error_out; if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); } return 0; error_out: scsi_disk_put(sdkp); return retval; } /** * sd_release - invoked when the (last) close(2) is called on this * scsi disk. * @inode: only i_rdev member may be used * @filp: only f_mode and f_flags may be used * * Returns 0. * * Note: may block (uninterruptible) if error recovery is underway * on this disk. * * Locking: called with bdev->bd_mutex held. **/ static void sd_release(struct gendisk *disk, fmode_t mode) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdev = sdkp->device; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); } /* * XXX and what if there are packets in flight and this close() * XXX is followed by a "rmmod sd_mod"? */ scsi_disk_put(sdkp); } static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdp = sdkp->device; struct Scsi_Host *host = sdp->host; int diskinfo[4]; /* default to most commonly used values */ diskinfo[0] = 0x40; /* 1 << 6 */ diskinfo[1] = 0x20; /* 1 << 5 */ diskinfo[2] = sdkp->capacity >> 11; /* override with calculated, extended default, or driver values */ if (host->hostt->bios_param) host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); else scsicam_bios_param(bdev, sdkp->capacity, diskinfo); geo->heads = diskinfo[0]; geo->sectors = diskinfo[1]; geo->cylinders = diskinfo[2]; return 0; } /** * sd_ioctl - process an ioctl * @inode: only i_rdev/i_bdev members may be used * @filp: only f_mode and f_flags may be used * @cmd: ioctl command number * @arg: this is third argument given to ioctl(2) system call. * Often contains a pointer. * * Returns 0 if successful (some ioctls return positive numbers on * success as well). Returns a negated errno value in case of error. * * Note: most ioctls are forward onto the block subsystem or further * down in the scsi subsystem. **/ static int sd_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct gendisk *disk = bdev->bd_disk; struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; void __user *p = (void __user *)arg; int error; SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " "cmd=0x%x\n", disk->disk_name, cmd)); error = scsi_verify_blk_ioctl(bdev, cmd); if (error < 0) return error; /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ error = scsi_nonblockable_ioctl(sdp, cmd, p, (mode & FMODE_NDELAY) != 0); if (!scsi_block_when_processing_errors(sdp) || !error) goto out; /* * Send SCSI addressing ioctls directly to mid level, send other * ioctls to block level and then onto mid level if they can't be * resolved. */ switch (cmd) { case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: error = scsi_ioctl(sdp, cmd, p); break; default: error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); if (error != -ENOTTY) break; error = scsi_ioctl(sdp, cmd, p); break; } out: return error; } static void set_media_not_present(struct scsi_disk *sdkp) { if (sdkp->media_present) sdkp->device->changed = 1; if (sdkp->device->removable) { sdkp->media_present = 0; sdkp->capacity = 0; } } static int media_not_present(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { if (!scsi_sense_valid(sshdr)) return 0; /* not invoked for commands that could return deferred errors */ switch (sshdr->sense_key) { case UNIT_ATTENTION: case NOT_READY: /* medium not present */ if (sshdr->asc == 0x3A) { set_media_not_present(sdkp); return 1; } } return 0; } /** * sd_check_events - check media events * @disk: kernel device descriptor * @clearing: disk events currently being cleared * * Returns mask of DISK_EVENT_*. * * Note: this function is invoked from the block subsystem. **/ static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; struct scsi_sense_hdr *sshdr = NULL; int retval; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); /* * If the device is offline, don't send any commands - just pretend as * if the command failed. If the device ever comes back online, we * can deal with it then. It is only because of unrecoverable errors * that we would ever take a device offline in the first place. */ if (!scsi_device_online(sdp)) { set_media_not_present(sdkp); goto out; } /* * Using TEST_UNIT_READY enables differentiation between drive with * no cartridge loaded - NOT READY, drive with changed cartridge - * UNIT ATTENTION, or with same cartridge - GOOD STATUS. * * Drives that auto spin down. eg iomega jaz 1G, will be started * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever * sd_revalidate() is called. */ retval = -ENODEV; if (scsi_block_when_processing_errors(sdp)) { sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, sshdr); } /* failed to execute TUR, assume media not present */ if (host_byte(retval)) { set_media_not_present(sdkp); goto out; } if (media_not_present(sdkp, sshdr)) goto out; /* * For removable scsi disk we have to recognise the presence * of a disk in the drive. */ if (!sdkp->media_present) sdp->changed = 1; sdkp->media_present = 1; out: /* * sdp->changed is set under the following conditions: * * Medium present state has changed in either direction. * Device has indicated UNIT_ATTENTION. */ kfree(sshdr); retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; sdp->changed = 0; return retval; } static int sd_sync_cache(struct scsi_disk *sdkp) { int retries, res; struct scsi_device *sdp = sdkp->device; const int timeout = sdp->request_queue->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; struct scsi_sense_hdr sshdr; if (!scsi_device_online(sdp)) return -ENODEV; for (retries = 3; retries > 0; --retries) { unsigned char cmd[10] = { 0 }; cmd[0] = SYNCHRONIZE_CACHE; /* * Leave the rest of the command zero to indicate * flush everything. */ res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, timeout, SD_MAX_RETRIES, NULL, REQ_PM); if (res == 0) break; } if (res) { sd_print_result(sdkp, res); if (driver_byte(res) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, &sshdr); /* we need to evaluate the error return */ if (scsi_sense_valid(&sshdr) && (sshdr.asc == 0x3a || /* medium not present */ sshdr.asc == 0x20)) /* invalid command */ /* this is no error here */ return 0; switch (host_byte(res)) { /* ignore errors due to racing a disconnection */ case DID_BAD_TARGET: case DID_NO_CONNECT: return 0; /* signal the upper layer it might try again */ case DID_BUS_BUSY: case DID_IMM_RETRY: case DID_REQUEUE: case DID_SOFT_ERROR: return -EBUSY; default: return -EIO; } } return 0; } static void sd_rescan(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); if (sdkp) { revalidate_disk(sdkp->disk); scsi_disk_put(sdkp); } } #ifdef CONFIG_COMPAT /* * This gets directly called from VFS. When the ioctl * is not recognized we go back to the other translation paths. */ static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; int ret; ret = scsi_verify_blk_ioctl(bdev, cmd); if (ret < 0) return ret; /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ if (!scsi_block_when_processing_errors(sdev)) return -ENODEV; if (sdev->host->hostt->compat_ioctl) { ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); return ret; } /* * Let the static ioctl translation table take care of it. */ return -ENOIOCTLCMD; } #endif static const struct block_device_operations sd_fops = { .owner = THIS_MODULE, .open = sd_open, .release = sd_release, .ioctl = sd_ioctl, .getgeo = sd_getgeo, #ifdef CONFIG_COMPAT .compat_ioctl = sd_compat_ioctl, #endif .check_events = sd_check_events, .revalidate_disk = sd_revalidate_disk, .unlock_native_capacity = sd_unlock_native_capacity, }; /** * sd_eh_action - error handling callback * @scmd: sd-issued command that has failed * @eh_disp: The recovery disposition suggested by the midlayer * * This function is called by the SCSI midlayer upon completion of an * error test command (currently TEST UNIT READY). The result of sending * the eh command is passed in eh_disp. We're looking for devices that * fail medium access commands but are OK with non access commands like * test unit ready (so wrongly see the device as having a successful * recovery) **/ static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) { struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); if (!scsi_device_online(scmd->device) || !scsi_medium_access_command(scmd) || host_byte(scmd->result) != DID_TIME_OUT || eh_disp != SUCCESS) return eh_disp; /* * The device has timed out executing a medium access command. * However, the TEST UNIT READY command sent during error * handling completed successfully. Either the device is in the * process of recovering or has it suffered an internal failure * that prevents access to the storage medium. */ sdkp->medium_access_timed_out++; /* * If the device keeps failing read/write commands but TEST UNIT * READY always completes successfully we assume that medium * access is no longer possible and take the device offline. */ if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { scmd_printk(KERN_ERR, scmd, "Medium access timeout failure. Offlining disk!\n"); scsi_device_set_state(scmd->device, SDEV_OFFLINE); return FAILED; } return eh_disp; } static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) { u64 start_lba = blk_rq_pos(scmd->request); u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); u64 bad_lba; int info_valid; /* * resid is optional but mostly filled in. When it's unused, * its value is zero, so we assume the whole buffer transferred */ unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); unsigned int good_bytes; if (scmd->request->cmd_type != REQ_TYPE_FS) return 0; info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, &bad_lba); if (!info_valid) return 0; if (scsi_bufflen(scmd) <= scmd->device->sector_size) return 0; if (scmd->device->sector_size < 512) { /* only legitimate sector_size here is 256 */ start_lba <<= 1; end_lba <<= 1; } else { /* be careful ... don't want any overflows */ unsigned int factor = scmd->device->sector_size / 512; do_div(start_lba, factor); do_div(end_lba, factor); } /* The bad lba was reported incorrectly, we have no idea where * the error is. */ if (bad_lba < start_lba || bad_lba >= end_lba) return 0; /* This computation should always be done in terms of * the resolution of the device's medium. */ good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; return min(good_bytes, transferred); } /** * sd_done - bottom half handler: called when the lower level * driver has completed (successfully or otherwise) a scsi command. * @SCpnt: mid-level's per command structure. * * Note: potentially run from within an ISR. Must not block. **/ static int sd_done(struct scsi_cmnd *SCpnt) { int result = SCpnt->result; unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); struct scsi_sense_hdr sshdr; struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); struct request *req = SCpnt->request; int sense_valid = 0; int sense_deferred = 0; unsigned char op = SCpnt->cmnd[0]; unsigned char unmap = SCpnt->cmnd[1] & 8; if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { if (!result) { good_bytes = blk_rq_bytes(req); scsi_set_resid(SCpnt, 0); } else { good_bytes = 0; scsi_set_resid(SCpnt, blk_rq_bytes(req)); } } if (result) { sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); if (sense_valid) sense_deferred = scsi_sense_is_deferred(&sshdr); } #ifdef CONFIG_SCSI_LOGGING SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt)); if (sense_valid) { SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, "sd_done: sb[respc,sk,asc," "ascq]=%x,%x,%x,%x\n", sshdr.response_code, sshdr.sense_key, sshdr.asc, sshdr.ascq)); } #endif sdkp->medium_access_timed_out = 0; if (driver_byte(result) != DRIVER_SENSE && (!sense_valid || sense_deferred)) goto out; switch (sshdr.sense_key) { case HARDWARE_ERROR: case MEDIUM_ERROR: good_bytes = sd_completed_bytes(SCpnt); break; case RECOVERED_ERROR: good_bytes = scsi_bufflen(SCpnt); break; case NO_SENSE: /* This indicates a false check condition, so ignore it. An * unknown amount of data was transferred so treat it as an * error. */ scsi_print_sense("sd", SCpnt); SCpnt->result = 0; memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); break; case ABORTED_COMMAND: if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ good_bytes = sd_completed_bytes(SCpnt); break; case ILLEGAL_REQUEST: if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ good_bytes = sd_completed_bytes(SCpnt); /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { switch (op) { case UNMAP: sd_config_discard(sdkp, SD_LBP_DISABLE); break; case WRITE_SAME_16: case WRITE_SAME: if (unmap) sd_config_discard(sdkp, SD_LBP_DISABLE); else { sdkp->device->no_write_same = 1; sd_config_write_same(sdkp); good_bytes = 0; req->__data_len = blk_rq_bytes(req); req->cmd_flags |= REQ_QUIET; } } } break; default: break; } out: if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) sd_dif_complete(SCpnt, good_bytes); return good_bytes; } /* * spinup disk - called only in sd_revalidate_disk() */ static void sd_spinup_disk(struct scsi_disk *sdkp) { unsigned char cmd[10]; unsigned long spintime_expire = 0; int retries, spintime; unsigned int the_result; struct scsi_sense_hdr sshdr; int sense_valid = 0; spintime = 0; /* Spin up drives, as required. Only do this at boot time */ /* Spinup needs to be done for module loads too. */ do { retries = 0; do { cmd[0] = TEST_UNIT_READY; memset((void *) &cmd[1], 0, 9); the_result = scsi_execute_req(sdkp->device, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); /* * If the drive has indicated to us that it * doesn't have any media in it, don't bother * with any more polling. */ if (media_not_present(sdkp, &sshdr)) return; if (the_result) sense_valid = scsi_sense_valid(&sshdr); retries++; } while (retries < 3 && (!scsi_status_is_good(the_result) || ((driver_byte(the_result) & DRIVER_SENSE) && sense_valid && sshdr.sense_key == UNIT_ATTENTION))); if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { /* no sense, TUR either succeeded or failed * with a status error */ if(!spintime && !scsi_status_is_good(the_result)) { sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); sd_print_result(sdkp, the_result); } break; } /* * The device does not want the automatic start to be issued. */ if (sdkp->device->no_start_on_add) break; if (sense_valid && sshdr.sense_key == NOT_READY) { if (sshdr.asc == 4 && sshdr.ascq == 3) break; /* manual intervention required */ if (sshdr.asc == 4 && sshdr.ascq == 0xb) break; /* standby */ if (sshdr.asc == 4 && sshdr.ascq == 0xc) break; /* unavailable */ /* * Issue command to spin up drive when not ready */ if (!spintime) { sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); cmd[0] = START_STOP; cmd[1] = 1; /* Return immediately */ memset((void *) &cmd[2], 0, 8); cmd[4] = 1; /* Start spin cycle */ if (sdkp->device->start_stop_pwr_cond) cmd[4] |= 1 << 4; scsi_execute_req(sdkp->device, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); spintime_expire = jiffies + 100 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); printk("."); /* * Wait for USB flash devices with slow firmware. * Yes, this sense key/ASC combination shouldn't * occur here. It's characteristic of these devices. */ } else if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x28) { if (!spintime) { spintime_expire = jiffies + 5 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); } else { /* we don't understand the sense code, so it's * probably pointless to loop */ if(!spintime) { sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); sd_print_sense_hdr(sdkp, &sshdr); } break; } } while (spintime && time_before_eq(jiffies, spintime_expire)); if (spintime) { if (scsi_status_is_good(the_result)) printk("ready\n"); else printk("not responding...\n"); } } /* * Determine whether disk supports Data Integrity Field. */ static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) { struct scsi_device *sdp = sdkp->device; u8 type; int ret = 0; if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) return ret; type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ if (type > SD_DIF_TYPE3_PROTECTION) ret = -ENODEV; else if (scsi_host_dif_capable(sdp->host, type)) ret = 1; if (sdkp->first_scan || type != sdkp->protection_type) switch (ret) { case -ENODEV: sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ " protection type %u. Disabling disk!\n", type); break; case 1: sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", type); break; case 0: sd_printk(KERN_NOTICE, sdkp, "Disabling DIF Type %u protection\n", type); break; } sdkp->protection_type = type; return ret; } static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, struct scsi_sense_hdr *sshdr, int sense_valid, int the_result) { sd_print_result(sdkp, the_result); if (driver_byte(the_result) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, sshdr); else sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); /* * Set dirty bit for removable devices if not ready - * sometimes drives will not report this properly. */ if (sdp->removable && sense_valid && sshdr->sense_key == NOT_READY) set_media_not_present(sdkp); /* * We used to set media_present to 0 here to indicate no media * in the drive, but some drives fail read capacity even with * media present, so we can't do that. */ sdkp->capacity = 0; /* unknown mapped to zero - as usual */ } #define RC16_LEN 32 #if RC16_LEN > SD_BUF_SIZE #error RC16_LEN must not be more than SD_BUF_SIZE #endif #define READ_CAPACITY_RETRIES_ON_RESET 10 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, unsigned char *buffer) { unsigned char cmd[16]; struct scsi_sense_hdr sshdr; int sense_valid = 0; int the_result; int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; unsigned int alignment; unsigned long long lba; unsigned sector_size; if (sdp->no_read_capacity_16) return -EINVAL; do { memset(cmd, 0, 16); cmd[0] = SERVICE_ACTION_IN; cmd[1] = SAI_READ_CAPACITY_16; cmd[13] = RC16_LEN; memset(buffer, 0, RC16_LEN); the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, buffer, RC16_LEN, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); if (media_not_present(sdkp, &sshdr)) return -ENODEV; if (the_result) { sense_valid = scsi_sense_valid(&sshdr); if (sense_valid && sshdr.sense_key == ILLEGAL_REQUEST && (sshdr.asc == 0x20 || sshdr.asc == 0x24) && sshdr.ascq == 0x00) /* Invalid Command Operation Code or * Invalid Field in CDB, just retry * silently with RC10 */ return -EINVAL; if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x29 && sshdr.ascq == 0x00) /* Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) continue; } retries--; } while (the_result && retries); if (the_result) { sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n"); read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); return -EINVAL; } sector_size = get_unaligned_be32(&buffer[8]); lba = get_unaligned_be64(&buffer[0]); if (sd_read_protection_type(sdkp, buffer) < 0) { sdkp->capacity = 0; return -ENODEV; } if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " "kernel compiled with support for large block " "devices.\n"); sdkp->capacity = 0; return -EOVERFLOW; } /* Logical blocks per physical block exponent */ sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; /* Lowest aligned logical block */ alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; blk_queue_alignment_offset(sdp->request_queue, alignment); if (alignment && sdkp->first_scan) sd_printk(KERN_NOTICE, sdkp, "physical block alignment offset: %u\n", alignment); if (buffer[14] & 0x80) { /* LBPME */ sdkp->lbpme = 1; if (buffer[14] & 0x40) /* LBPRZ */ sdkp->lbprz = 1; sd_config_discard(sdkp, SD_LBP_WS16); } sdkp->capacity = lba + 1; return sector_size; } static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, unsigned char *buffer) { unsigned char cmd[16]; struct scsi_sense_hdr sshdr; int sense_valid = 0; int the_result; int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; sector_t lba; unsigned sector_size; do { cmd[0] = READ_CAPACITY; memset(&cmd[1], 0, 9); memset(buffer, 0, 8); the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, buffer, 8, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); if (media_not_present(sdkp, &sshdr)) return -ENODEV; if (the_result) { sense_valid = scsi_sense_valid(&sshdr); if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x29 && sshdr.ascq == 0x00) /* Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) continue; } retries--; } while (the_result && retries); if (the_result) { sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n"); read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); return -EINVAL; } sector_size = get_unaligned_be32(&buffer[4]); lba = get_unaligned_be32(&buffer[0]); if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { /* Some buggy (usb cardreader) devices return an lba of 0xffffffff when the want to report a size of 0 (with which they really mean no media is present) */ sdkp->capacity = 0; sdkp->physical_block_size = sector_size; return sector_size; } if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " "kernel compiled with support for large block " "devices.\n"); sdkp->capacity = 0; return -EOVERFLOW; } sdkp->capacity = lba + 1; sdkp->physical_block_size = sector_size; return sector_size; } static int sd_try_rc16_first(struct scsi_device *sdp) { if (sdp->host->max_cmd_len < 16) return 0; if (sdp->try_rc_10_first) return 0; if (sdp->scsi_level > SCSI_SPC_2) return 1; if (scsi_device_protection(sdp)) return 1; return 0; } /* * read disk capacity */ static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) { int sector_size; struct scsi_device *sdp = sdkp->device; sector_t old_capacity = sdkp->capacity; if (sd_try_rc16_first(sdp)) { sector_size = read_capacity_16(sdkp, sdp, buffer); if (sector_size == -EOVERFLOW) goto got_data; if (sector_size == -ENODEV) return; if (sector_size < 0) sector_size = read_capacity_10(sdkp, sdp, buffer); if (sector_size < 0) return; } else { sector_size = read_capacity_10(sdkp, sdp, buffer); if (sector_size == -EOVERFLOW) goto got_data; if (sector_size < 0) return; if ((sizeof(sdkp->capacity) > 4) && (sdkp->capacity > 0xffffffffULL)) { int old_sector_size = sector_size; sd_printk(KERN_NOTICE, sdkp, "Very big device. " "Trying to use READ CAPACITY(16).\n"); sector_size = read_capacity_16(sdkp, sdp, buffer); if (sector_size < 0) { sd_printk(KERN_NOTICE, sdkp, "Using 0xffffffff as device size\n"); sdkp->capacity = 1 + (sector_t) 0xffffffff; sector_size = old_sector_size; goto got_data; } } } /* Some devices are known to return the total number of blocks, * not the highest block number. Some devices have versions * which do this and others which do not. Some devices we might * suspect of doing this but we don't know for certain. * * If we know the reported capacity is wrong, decrement it. If * we can only guess, then assume the number of blocks is even * (usually true but not always) and err on the side of lowering * the capacity. */ if (sdp->fix_capacity || (sdp->guess_capacity && (sdkp->capacity & 0x01))) { sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " "from its reported value: %llu\n", (unsigned long long) sdkp->capacity); --sdkp->capacity; } got_data: if (sector_size == 0) { sector_size = 512; sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " "assuming 512.\n"); } if (sector_size != 512 && sector_size != 1024 && sector_size != 2048 && sector_size != 4096 && sector_size != 256) { sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", sector_size); /* * The user might want to re-format the drive with * a supported sectorsize. Once this happens, it * would be relatively trivial to set the thing up. * For this reason, we leave the thing in the table. */ sdkp->capacity = 0; /* * set a bogus sector size so the normal read/write * logic in the block layer will eventually refuse any * request on this device without tripping over power * of two sector size assumptions */ sector_size = 512; } blk_queue_logical_block_size(sdp->request_queue, sector_size); { char cap_str_2[10], cap_str_10[10]; u64 sz = (u64)sdkp->capacity << ilog2(sector_size); string_get_size(sz, STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); string_get_size(sz, STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); if (sdkp->first_scan || old_capacity != sdkp->capacity) { sd_printk(KERN_NOTICE, sdkp, "%llu %d-byte logical blocks: (%s/%s)\n", (unsigned long long)sdkp->capacity, sector_size, cap_str_10, cap_str_2); if (sdkp->physical_block_size != sector_size) sd_printk(KERN_NOTICE, sdkp, "%u-byte physical blocks\n", sdkp->physical_block_size); } } if (sdkp->capacity > 0xffffffff) { sdp->use_16_for_rw = 1; sdkp->max_xfer_blocks = SD_MAX_XFER_BLOCKS; } else sdkp->max_xfer_blocks = SD_DEF_XFER_BLOCKS; /* Rescale capacity to 512-byte units */ if (sector_size == 4096) sdkp->capacity <<= 3; else if (sector_size == 2048) sdkp->capacity <<= 2; else if (sector_size == 1024) sdkp->capacity <<= 1; else if (sector_size == 256) sdkp->capacity >>= 1; blk_queue_physical_block_size(sdp->request_queue, sdkp->physical_block_size); sdkp->device->sector_size = sector_size; } /* called with buffer of length 512 */ static inline int sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, unsigned char *buffer, int len, struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) { return scsi_mode_sense(sdp, dbd, modepage, buffer, len, SD_TIMEOUT, SD_MAX_RETRIES, data, sshdr); } /* * read write protect setting, if possible - called only in sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) { int res; struct scsi_device *sdp = sdkp->device; struct scsi_mode_data data; int old_wp = sdkp->write_prot; set_disk_ro(sdkp->disk, 0); if (sdp->skip_ms_page_3f) { sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); return; } if (sdp->use_192_bytes_for_3f) { res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); } else { /* * First attempt: ask for all pages (0x3F), but only 4 bytes. * We have to start carefully: some devices hang if we ask * for more than is available. */ res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); /* * Second attempt: ask for page 0 When only page 0 is * implemented, a request for page 3F may return Sense Key * 5: Illegal Request, Sense Code 24: Invalid field in * CDB. */ if (!scsi_status_is_good(res)) res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); /* * Third attempt: ask 255 bytes, as we did earlier. */ if (!scsi_status_is_good(res)) res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, &data, NULL); } if (!scsi_status_is_good(res)) { sd_first_printk(KERN_WARNING, sdkp, "Test WP failed, assume Write Enabled\n"); } else { sdkp->write_prot = ((data.device_specific & 0x80) != 0); set_disk_ro(sdkp->disk, sdkp->write_prot); if (sdkp->first_scan || old_wp != sdkp->write_prot) { sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", sdkp->write_prot ? "on" : "off"); sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %02x %02x %02x %02x\n", buffer[0], buffer[1], buffer[2], buffer[3]); } } } /* * sd_read_cache_type - called only from sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) { int len = 0, res; struct scsi_device *sdp = sdkp->device; int dbd; int modepage; int first_len; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; int old_wce = sdkp->WCE; int old_rcd = sdkp->RCD; int old_dpofua = sdkp->DPOFUA; if (sdkp->cache_override) return; first_len = 4; if (sdp->skip_ms_page_8) { if (sdp->type == TYPE_RBC) goto defaults; else { if (sdp->skip_ms_page_3f) goto defaults; modepage = 0x3F; if (sdp->use_192_bytes_for_3f) first_len = 192; dbd = 0; } } else if (sdp->type == TYPE_RBC) { modepage = 6; dbd = 8; } else { modepage = 8; dbd = 0; } /* cautiously ask */ res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, &data, &sshdr); if (!scsi_status_is_good(res)) goto bad_sense; if (!data.header_length) { modepage = 6; first_len = 0; sd_first_printk(KERN_ERR, sdkp, "Missing header in MODE_SENSE response\n"); } /* that went OK, now ask for the proper length */ len = data.length; /* * We're only interested in the first three bytes, actually. * But the data cache page is defined for the first 20. */ if (len < 3) goto bad_sense; else if (len > SD_BUF_SIZE) { sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " "data from %d to %d bytes\n", len, SD_BUF_SIZE); len = SD_BUF_SIZE; } if (modepage == 0x3F && sdp->use_192_bytes_for_3f) len = 192; /* Get the data */ if (len > first_len) res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, &data, &sshdr); if (scsi_status_is_good(res)) { int offset = data.header_length + data.block_descriptor_length; while (offset < len) { u8 page_code = buffer[offset] & 0x3F; u8 spf = buffer[offset] & 0x40; if (page_code == 8 || page_code == 6) { /* We're interested only in the first 3 bytes. */ if (len - offset <= 2) { sd_first_printk(KERN_ERR, sdkp, "Incomplete mode parameter " "data\n"); goto defaults; } else { modepage = page_code; goto Page_found; } } else { /* Go to the next page */ if (spf && len - offset > 3) offset += 4 + (buffer[offset+2] << 8) + buffer[offset+3]; else if (!spf && len - offset > 1) offset += 2 + buffer[offset+1]; else { sd_first_printk(KERN_ERR, sdkp, "Incomplete mode " "parameter data\n"); goto defaults; } } } sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); goto defaults; Page_found: if (modepage == 8) { sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); } else { sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); sdkp->RCD = 0; } sdkp->DPOFUA = (data.device_specific & 0x10) != 0; if (sdp->broken_fua) { sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); sdkp->DPOFUA = 0; } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { sd_first_printk(KERN_NOTICE, sdkp, "Uses READ/WRITE(6), disabling FUA\n"); sdkp->DPOFUA = 0; } if (sdkp->first_scan || old_wce != sdkp->WCE || old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) sd_printk(KERN_NOTICE, sdkp, "Write cache: %s, read cache: %s, %s\n", sdkp->WCE ? "enabled" : "disabled", sdkp->RCD ? "disabled" : "enabled", sdkp->DPOFUA ? "supports DPO and FUA" : "doesn't support DPO or FUA"); return; } bad_sense: if (scsi_sense_valid(&sshdr) && sshdr.sense_key == ILLEGAL_REQUEST && sshdr.asc == 0x24 && sshdr.ascq == 0x0) /* Invalid field in CDB */ sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); else sd_first_printk(KERN_ERR, sdkp, "Asking for cache data failed\n"); defaults: if (sdp->wce_default_on) { sd_first_printk(KERN_NOTICE, sdkp, "Assuming drive cache: write back\n"); sdkp->WCE = 1; } else { sd_first_printk(KERN_ERR, sdkp, "Assuming drive cache: write through\n"); sdkp->WCE = 0; } sdkp->RCD = 0; sdkp->DPOFUA = 0; } /* * The ATO bit indicates whether the DIF application tag is available * for use by the operating system. */ static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) { int res, offset; struct scsi_device *sdp = sdkp->device; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; if (sdp->type != TYPE_DISK) return; if (sdkp->protection_type == 0) return; res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, SD_MAX_RETRIES, &data, &sshdr); if (!scsi_status_is_good(res) || !data.header_length || data.length < 6) { sd_first_printk(KERN_WARNING, sdkp, "getting Control mode page failed, assume no ATO\n"); if (scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return; } offset = data.header_length + data.block_descriptor_length; if ((buffer[offset] & 0x3f) != 0x0a) { sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); return; } if ((buffer[offset + 5] & 0x80) == 0) return; sdkp->ATO = 1; return; } /** * sd_read_block_limits - Query disk device for preferred I/O sizes. * @disk: disk to query */ static void sd_read_block_limits(struct scsi_disk *sdkp) { unsigned int sector_sz = sdkp->device->sector_size; const int vpd_len = 64; u32 max_xfer_length; unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); if (!buffer || /* Block Limits VPD */ scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) goto out; max_xfer_length = get_unaligned_be32(&buffer[8]); if (max_xfer_length) sdkp->max_xfer_blocks = max_xfer_length; blk_queue_io_min(sdkp->disk->queue, get_unaligned_be16(&buffer[6]) * sector_sz); blk_queue_io_opt(sdkp->disk->queue, get_unaligned_be32(&buffer[12]) * sector_sz); if (buffer[3] == 0x3c) { unsigned int lba_count, desc_count; sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); if (!sdkp->lbpme) goto out; lba_count = get_unaligned_be32(&buffer[20]); desc_count = get_unaligned_be32(&buffer[24]); if (lba_count && desc_count) sdkp->max_unmap_blocks = lba_count; sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); if (buffer[32] & 0x80) sdkp->unmap_alignment = get_unaligned_be32(&buffer[32]) & ~(1 << 31); if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ if (sdkp->max_unmap_blocks) sd_config_discard(sdkp, SD_LBP_UNMAP); else sd_config_discard(sdkp, SD_LBP_WS16); } else { /* LBP VPD page tells us what to use */ if (sdkp->lbpu && sdkp->max_unmap_blocks) sd_config_discard(sdkp, SD_LBP_UNMAP); else if (sdkp->lbpws) sd_config_discard(sdkp, SD_LBP_WS16); else if (sdkp->lbpws10) sd_config_discard(sdkp, SD_LBP_WS10); else sd_config_discard(sdkp, SD_LBP_DISABLE); } } out: kfree(buffer); } /** * sd_read_block_characteristics - Query block dev. characteristics * @disk: disk to query */ static void sd_read_block_characteristics(struct scsi_disk *sdkp) { unsigned char *buffer; u16 rot; const int vpd_len = 64; buffer = kmalloc(vpd_len, GFP_KERNEL); if (!buffer || /* Block Device Characteristics VPD */ scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) goto out; rot = get_unaligned_be16(&buffer[4]); if (rot == 1) queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); out: kfree(buffer); } /** * sd_read_block_provisioning - Query provisioning VPD page * @disk: disk to query */ static void sd_read_block_provisioning(struct scsi_disk *sdkp) { unsigned char *buffer; const int vpd_len = 8; if (sdkp->lbpme == 0) return; buffer = kmalloc(vpd_len, GFP_KERNEL); if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) goto out; sdkp->lbpvpd = 1; sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ out: kfree(buffer); } static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) { struct scsi_device *sdev = sdkp->device; if (sdev->host->no_write_same) { sdev->no_write_same = 1; return; } if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { /* too large values might cause issues with arcmsr */ int vpd_buf_len = 64; sdev->no_report_opcodes = 1; /* Disable WRITE SAME if REPORT SUPPORTED OPERATION * CODES is unsupported and the device has an ATA * Information VPD page (SAT). */ if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) sdev->no_write_same = 1; } if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) sdkp->ws16 = 1; if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) sdkp->ws10 = 1; } static int sd_try_extended_inquiry(struct scsi_device *sdp) { /* Attempt VPD inquiry if the device blacklist explicitly calls * for it. */ if (sdp->try_vpd_pages) return 1; /* * Although VPD inquiries can go to SCSI-2 type devices, * some USB ones crash on receiving them, and the pages * we currently ask for are for SPC-3 and beyond */ if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages) return 1; return 0; } /** * sd_revalidate_disk - called the first time a new disk is seen, * performs disk spin up, read_capacity, etc. * @disk: struct gendisk we care about **/ static int sd_revalidate_disk(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; unsigned char *buffer; unsigned int max_xfer; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_revalidate_disk\n")); /* * If the device is offline, don't try and read capacity or any * of the other niceties. */ if (!scsi_device_online(sdp)) goto out; buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); if (!buffer) { sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " "allocation failure.\n"); goto out; } sd_spinup_disk(sdkp); /* * Without media there is no reason to ask; moreover, some devices * react badly if we do. */ if (sdkp->media_present) { sd_read_capacity(sdkp, buffer); if (sd_try_extended_inquiry(sdp)) { sd_read_block_provisioning(sdkp); sd_read_block_limits(sdkp); sd_read_block_characteristics(sdkp); } sd_read_write_protect_flag(sdkp, buffer); sd_read_cache_type(sdkp, buffer); sd_read_app_tag_own(sdkp, buffer); sd_read_write_same(sdkp, buffer); } sdkp->first_scan = 0; /* * We now have all cache related info, determine how we deal * with flush requests. */ sd_set_flush_flag(sdkp); max_xfer = min_not_zero(queue_max_hw_sectors(sdkp->disk->queue), sdkp->max_xfer_blocks); max_xfer <<= ilog2(sdp->sector_size) - 9; blk_queue_max_hw_sectors(sdkp->disk->queue, max_xfer); set_capacity(disk, sdkp->capacity); sd_config_write_same(sdkp); kfree(buffer); out: return 0; } /** * sd_unlock_native_capacity - unlock native capacity * @disk: struct gendisk to set capacity for * * Block layer calls this function if it detects that partitions * on @disk reach beyond the end of the device. If the SCSI host * implements ->unlock_native_capacity() method, it's invoked to * give it a chance to adjust the device capacity. * * CONTEXT: * Defined by block layer. Might sleep. */ static void sd_unlock_native_capacity(struct gendisk *disk) { struct scsi_device *sdev = scsi_disk(disk)->device; if (sdev->host->hostt->unlock_native_capacity) sdev->host->hostt->unlock_native_capacity(sdev); } /** * sd_format_disk_name - format disk name * @prefix: name prefix - ie. "sd" for SCSI disks * @index: index of the disk to format name for * @buf: output buffer * @buflen: length of the output buffer * * SCSI disk names starts at sda. The 26th device is sdz and the * 27th is sdaa. The last one for two lettered suffix is sdzz * which is followed by sdaaa. * * This is basically 26 base counting with one extra 'nil' entry * at the beginning from the second digit on and can be * determined using similar method as 26 base conversion with the * index shifted -1 after each digit is computed. * * CONTEXT: * Don't care. * * RETURNS: * 0 on success, -errno on failure. */ static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) { const int base = 'z' - 'a' + 1; char *begin = buf + strlen(prefix); char *end = buf + buflen; char *p; int unit; p = end - 1; *p = '\0'; unit = base; do { if (p == begin) return -EINVAL; *--p = 'a' + (index % unit); index = (index / unit) - 1; } while (index >= 0); memmove(begin, p, end - p); memcpy(buf, prefix, strlen(prefix)); return 0; } /* * The asynchronous part of sd_probe */ static void sd_probe_async(void *data, async_cookie_t cookie) { struct scsi_disk *sdkp = data; struct scsi_device *sdp; struct gendisk *gd; u32 index; struct device *dev; sdp = sdkp->device; gd = sdkp->disk; index = sdkp->index; dev = &sdp->sdev_gendev; gd->major = sd_major((index & 0xf0) >> 4); gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); gd->minors = SD_MINORS; gd->fops = &sd_fops; gd->private_data = &sdkp->driver; gd->queue = sdkp->device->request_queue; /* defaults, until the device tells us otherwise */ sdp->sector_size = 512; sdkp->capacity = 0; sdkp->media_present = 1; sdkp->write_prot = 0; sdkp->cache_override = 0; sdkp->WCE = 0; sdkp->RCD = 0; sdkp->ATO = 0; sdkp->first_scan = 1; sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; sd_revalidate_disk(gd); gd->driverfs_dev = &sdp->sdev_gendev; gd->flags = GENHD_FL_EXT_DEVT; if (sdp->removable) { gd->flags |= GENHD_FL_REMOVABLE; gd->events |= DISK_EVENT_MEDIA_CHANGE; } blk_pm_runtime_init(sdp->request_queue, dev); add_disk(gd); if (sdkp->capacity) sd_dif_config_host(sdkp); sd_revalidate_disk(gd); sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", sdp->removable ? "removable " : ""); scsi_autopm_put_device(sdp); put_device(&sdkp->dev); } /** * sd_probe - called during driver initialization and whenever a * new scsi device is attached to the system. It is called once * for each scsi device (not just disks) present. * @dev: pointer to device object * * Returns 0 if successful (or not interested in this scsi device * (e.g. scanner)); 1 when there is an error. * * Note: this function is invoked from the scsi mid-level. * This function sets up the mapping between a given * (found in sdp) and new device name * (e.g. /dev/sda). More precisely it is the block device major * and minor number that is chosen here. * * Assume sd_probe is not re-entrant (for time being) * Also think about sd_probe() and sd_remove() running coincidentally. **/ static int sd_probe(struct device *dev) { struct scsi_device *sdp = to_scsi_device(dev); struct scsi_disk *sdkp; struct gendisk *gd; int index; int error; error = -ENODEV; if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) goto out; SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, "sd_probe\n")); error = -ENOMEM; sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); if (!sdkp) goto out; gd = alloc_disk(SD_MINORS); if (!gd) goto out_free; do { if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) goto out_put; spin_lock(&sd_index_lock); error = ida_get_new(&sd_index_ida, &index); spin_unlock(&sd_index_lock); } while (error == -EAGAIN); if (error) { sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); goto out_put; } error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); if (error) { sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); goto out_free_index; } sdkp->device = sdp; sdkp->driver = &sd_template; sdkp->disk = gd; sdkp->index = index; atomic_set(&sdkp->openers, 0); atomic_set(&sdkp->device->ioerr_cnt, 0); if (!sdp->request_queue->rq_timeout) { if (sdp->type != TYPE_MOD) blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); else blk_queue_rq_timeout(sdp->request_queue, SD_MOD_TIMEOUT); } device_initialize(&sdkp->dev); sdkp->dev.parent = dev; sdkp->dev.class = &sd_disk_class; dev_set_name(&sdkp->dev, "%s", dev_name(dev)); if (device_add(&sdkp->dev)) goto out_free_index; get_device(dev); dev_set_drvdata(dev, sdkp); get_device(&sdkp->dev); /* prevent release before async_schedule */ async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); return 0; out_free_index: spin_lock(&sd_index_lock); ida_remove(&sd_index_ida, index); spin_unlock(&sd_index_lock); out_put: put_disk(gd); out_free: kfree(sdkp); out: return error; } /** * sd_remove - called whenever a scsi disk (previously recognized by * sd_probe) is detached from the system. It is called (potentially * multiple times) during sd module unload. * @sdp: pointer to mid level scsi device object * * Note: this function is invoked from the scsi mid-level. * This function potentially frees up a device name (e.g. /dev/sdc) * that could be re-used by a subsequent sd_probe(). * This function is not called when the built-in sd driver is "exit-ed". **/ static int sd_remove(struct device *dev) { struct scsi_disk *sdkp; dev_t devt; sdkp = dev_get_drvdata(dev); devt = disk_devt(sdkp->disk); scsi_autopm_get_device(sdkp->device); async_synchronize_full_domain(&scsi_sd_pm_domain); async_synchronize_full_domain(&scsi_sd_probe_domain); device_del(&sdkp->dev); del_gendisk(sdkp->disk); sd_shutdown(dev); blk_register_region(devt, SD_MINORS, NULL, sd_default_probe, NULL, NULL); mutex_lock(&sd_ref_mutex); dev_set_drvdata(dev, NULL); put_device(&sdkp->dev); mutex_unlock(&sd_ref_mutex); return 0; } /** * scsi_disk_release - Called to free the scsi_disk structure * @dev: pointer to embedded class device * * sd_ref_mutex must be held entering this routine. Because it is * called on last put, you should always use the scsi_disk_get() * scsi_disk_put() helpers which manipulate the semaphore directly * and never do a direct put_device. **/ static void scsi_disk_release(struct device *dev) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct gendisk *disk = sdkp->disk; spin_lock(&sd_index_lock); ida_remove(&sd_index_ida, sdkp->index); spin_unlock(&sd_index_lock); disk->private_data = NULL; put_disk(disk); put_device(&sdkp->device->sdev_gendev); kfree(sdkp); } static int sd_start_stop_device(struct scsi_disk *sdkp, int start) { unsigned char cmd[6] = { START_STOP }; /* START_VALID */ struct scsi_sense_hdr sshdr; struct scsi_device *sdp = sdkp->device; int res; if (start) cmd[4] |= 1; /* START */ if (sdp->start_stop_pwr_cond) cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ if (!scsi_device_online(sdp)) return -ENODEV; res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); if (res) { sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n"); sd_print_result(sdkp, res); if (driver_byte(res) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, &sshdr); if (scsi_sense_valid(&sshdr) && /* 0x3a is medium not present */ sshdr.asc == 0x3a) res = 0; } /* SCSI error codes must not go to the generic layer */ if (res) return -EIO; return 0; } /* * Send a SYNCHRONIZE CACHE instruction down to the device through * the normal SCSI command structure. Wait for the command to * complete. */ static void sd_shutdown(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); if (!sdkp) return; /* this can happen */ if (pm_runtime_suspended(dev)) goto exit; if (sdkp->WCE && sdkp->media_present) { sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); sd_sync_cache(sdkp); } if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); sd_start_stop_device(sdkp, 0); } exit: scsi_disk_put(sdkp); } static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); int ret = 0; if (!sdkp) return 0; /* this can happen */ if (sdkp->WCE && sdkp->media_present) { sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); ret = sd_sync_cache(sdkp); if (ret) { /* ignore OFFLINE device */ if (ret == -ENODEV) ret = 0; goto done; } } if (sdkp->device->manage_start_stop) { sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); /* an error is not worth aborting a system sleep */ ret = sd_start_stop_device(sdkp, 0); if (ignore_stop_errors) ret = 0; } done: scsi_disk_put(sdkp); return ret; } static int sd_suspend_system(struct device *dev) { return sd_suspend_common(dev, true); } static int sd_suspend_runtime(struct device *dev) { return sd_suspend_common(dev, false); } static int sd_resume(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); int ret = 0; if (!sdkp->device->manage_start_stop) goto done; sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); ret = sd_start_stop_device(sdkp, 1); done: scsi_disk_put(sdkp); return ret; } /** * init_sd - entry point for this driver (both when built in or when * a module). * * Note: this function registers this driver with the scsi mid-level. **/ static int __init init_sd(void) { int majors = 0, i, err; SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); for (i = 0; i < SD_MAJORS; i++) { if (register_blkdev(sd_major(i), "sd") != 0) continue; majors++; blk_register_region(sd_major(i), SD_MINORS, NULL, sd_default_probe, NULL, NULL); } if (!majors) return -ENODEV; err = class_register(&sd_disk_class); if (err) goto err_out; sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 0, 0, NULL); if (!sd_cdb_cache) { printk(KERN_ERR "sd: can't init extended cdb cache\n"); err = -ENOMEM; goto err_out_class; } sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); if (!sd_cdb_pool) { printk(KERN_ERR "sd: can't init extended cdb pool\n"); err = -ENOMEM; goto err_out_cache; } err = scsi_register_driver(&sd_template.gendrv); if (err) goto err_out_driver; return 0; err_out_driver: mempool_destroy(sd_cdb_pool); err_out_cache: kmem_cache_destroy(sd_cdb_cache); err_out_class: class_unregister(&sd_disk_class); err_out: for (i = 0; i < SD_MAJORS; i++) unregister_blkdev(sd_major(i), "sd"); return err; } /** * exit_sd - exit point for this driver (when it is a module). * * Note: this function unregisters this driver from the scsi mid-level. **/ static void __exit exit_sd(void) { int i; SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); scsi_unregister_driver(&sd_template.gendrv); mempool_destroy(sd_cdb_pool); kmem_cache_destroy(sd_cdb_cache); class_unregister(&sd_disk_class); for (i = 0; i < SD_MAJORS; i++) { blk_unregister_region(sd_major(i), SD_MINORS); unregister_blkdev(sd_major(i), "sd"); } } module_init(init_sd); module_exit(exit_sd); static void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { sd_printk(KERN_INFO, sdkp, " "); scsi_show_sense_hdr(sshdr); sd_printk(KERN_INFO, sdkp, " "); scsi_show_extd_sense(sshdr->asc, sshdr->ascq); } static void sd_print_result(struct scsi_disk *sdkp, int result) { sd_printk(KERN_INFO, sdkp, " "); scsi_show_result(result); }