/* * PMC-Sierra SPCv/ve 8088/8089 SAS/SATA based host adapters driver * * Copyright (c) 2008-2009 PMC-Sierra, Inc., * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * */ #include #include "pm8001_sas.h" #include "pm80xx_hwi.h" #include "pm8001_chips.h" #include "pm8001_ctl.h" #include "pm80xx_tracepoints.h" #define SMP_DIRECT 1 #define SMP_INDIRECT 2 int pm80xx_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shift_value) { u32 reg_val; unsigned long start; pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER, shift_value); /* confirm the setting is written */ start = jiffies + HZ; /* 1 sec */ do { reg_val = pm8001_cr32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER); } while ((reg_val != shift_value) && time_before(jiffies, start)); if (reg_val != shift_value) { pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MEMBASE_II_SHIFT_REGISTER = 0x%x\n", reg_val); return -1; } return 0; } static void pm80xx_pci_mem_copy(struct pm8001_hba_info *pm8001_ha, u32 soffset, const void *destination, u32 dw_count, u32 bus_base_number) { u32 index, value, offset; u32 *destination1; destination1 = (u32 *)destination; for (index = 0; index < dw_count; index += 4, destination1++) { offset = (soffset + index); if (offset < (64 * 1024)) { value = pm8001_cr32(pm8001_ha, bus_base_number, offset); *destination1 = cpu_to_le32(value); } } return; } ssize_t pm80xx_get_fatal_dump(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; void __iomem *fatal_table_address = pm8001_ha->fatal_tbl_addr; u32 accum_len, reg_val, index, *temp; u32 status = 1; unsigned long start; u8 *direct_data; char *fatal_error_data = buf; u32 length_to_read; u32 offset; pm8001_ha->forensic_info.data_buf.direct_data = buf; if (pm8001_ha->chip_id == chip_8001) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha->forensic_info.data_buf.direct_data, "Not supported for SPC controller"); return (char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf; } /* initialize variables for very first call from host application */ if (pm8001_ha->forensic_info.data_buf.direct_offset == 0) { pm8001_dbg(pm8001_ha, IO, "forensic_info TYPE_NON_FATAL..............\n"); direct_data = (u8 *)fatal_error_data; pm8001_ha->forensic_info.data_type = TYPE_NON_FATAL; pm8001_ha->forensic_info.data_buf.direct_len = SYSFS_OFFSET; pm8001_ha->forensic_info.data_buf.direct_offset = 0; pm8001_ha->forensic_info.data_buf.read_len = 0; pm8001_ha->forensic_preserved_accumulated_transfer = 0; /* Write signature to fatal dump table */ pm8001_mw32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_SIGNATURE, 0x1234abcd); pm8001_ha->forensic_info.data_buf.direct_data = direct_data; pm8001_dbg(pm8001_ha, IO, "ossaHwCB: status1 %d\n", status); pm8001_dbg(pm8001_ha, IO, "ossaHwCB: read_len 0x%x\n", pm8001_ha->forensic_info.data_buf.read_len); pm8001_dbg(pm8001_ha, IO, "ossaHwCB: direct_len 0x%x\n", pm8001_ha->forensic_info.data_buf.direct_len); pm8001_dbg(pm8001_ha, IO, "ossaHwCB: direct_offset 0x%x\n", pm8001_ha->forensic_info.data_buf.direct_offset); } if (pm8001_ha->forensic_info.data_buf.direct_offset == 0) { /* start to get data */ /* Program the MEMBASE II Shifting Register with 0x00.*/ pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER, pm8001_ha->fatal_forensic_shift_offset); pm8001_ha->forensic_last_offset = 0; pm8001_ha->forensic_fatal_step = 0; pm8001_ha->fatal_bar_loc = 0; } /* Read until accum_len is retrieved */ accum_len = pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_ACCUM_LEN); /* Determine length of data between previously stored transfer length * and current accumulated transfer length */ length_to_read = accum_len - pm8001_ha->forensic_preserved_accumulated_transfer; pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: accum_len 0x%x\n", accum_len); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: length_to_read 0x%x\n", length_to_read); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: last_offset 0x%x\n", pm8001_ha->forensic_last_offset); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: read_len 0x%x\n", pm8001_ha->forensic_info.data_buf.read_len); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:: direct_len 0x%x\n", pm8001_ha->forensic_info.data_buf.direct_len); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:: direct_offset 0x%x\n", pm8001_ha->forensic_info.data_buf.direct_offset); /* If accumulated length failed to read correctly fail the attempt.*/ if (accum_len == 0xFFFFFFFF) { pm8001_dbg(pm8001_ha, IO, "Possible PCI issue 0x%x not expected\n", accum_len); return status; } /* If accumulated length is zero fail the attempt */ if (accum_len == 0) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 0xFFFFFFFF); return (char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf; } /* Accumulated length is good so start capturing the first data */ temp = (u32 *)pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr; if (pm8001_ha->forensic_fatal_step == 0) { moreData: /* If data to read is less than SYSFS_OFFSET then reduce the * length of dataLen */ if (pm8001_ha->forensic_last_offset + SYSFS_OFFSET > length_to_read) { pm8001_ha->forensic_info.data_buf.direct_len = length_to_read - pm8001_ha->forensic_last_offset; } else { pm8001_ha->forensic_info.data_buf.direct_len = SYSFS_OFFSET; } if (pm8001_ha->forensic_info.data_buf.direct_data) { /* Data is in bar, copy to host memory */ pm80xx_pci_mem_copy(pm8001_ha, pm8001_ha->fatal_bar_loc, pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr, pm8001_ha->forensic_info.data_buf.direct_len, 1); } pm8001_ha->fatal_bar_loc += pm8001_ha->forensic_info.data_buf.direct_len; pm8001_ha->forensic_info.data_buf.direct_offset += pm8001_ha->forensic_info.data_buf.direct_len; pm8001_ha->forensic_last_offset += pm8001_ha->forensic_info.data_buf.direct_len; pm8001_ha->forensic_info.data_buf.read_len = pm8001_ha->forensic_info.data_buf.direct_len; if (pm8001_ha->forensic_last_offset >= length_to_read) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 3); for (index = 0; index < (pm8001_ha->forensic_info.data_buf.direct_len / 4); index++) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf( pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", *(temp + index)); } pm8001_ha->fatal_bar_loc = 0; pm8001_ha->forensic_fatal_step = 1; pm8001_ha->fatal_forensic_shift_offset = 0; pm8001_ha->forensic_last_offset = 0; status = 0; offset = (int) ((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:return1 0x%x\n", offset); return (char *)pm8001_ha-> forensic_info.data_buf.direct_data - (char *)buf; } if (pm8001_ha->fatal_bar_loc < (64 * 1024)) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha-> forensic_info.data_buf.direct_data, "%08x ", 2); for (index = 0; index < (pm8001_ha->forensic_info.data_buf.direct_len / 4); index++) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha-> forensic_info.data_buf.direct_data, "%08x ", *(temp + index)); } status = 0; offset = (int) ((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv:return2 0x%x\n", offset); return (char *)pm8001_ha-> forensic_info.data_buf.direct_data - (char *)buf; } /* Increment the MEMBASE II Shifting Register value by 0x100.*/ pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 2); for (index = 0; index < (pm8001_ha->forensic_info.data_buf.direct_len / 4) ; index++) { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha-> forensic_info.data_buf.direct_data, "%08x ", *(temp + index)); } pm8001_ha->fatal_forensic_shift_offset += 0x100; pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER, pm8001_ha->fatal_forensic_shift_offset); pm8001_ha->fatal_bar_loc = 0; status = 0; offset = (int) ((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: return3 0x%x\n", offset); return (char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf; } if (pm8001_ha->forensic_fatal_step == 1) { /* store previous accumulated length before triggering next * accumulated length update */ pm8001_ha->forensic_preserved_accumulated_transfer = pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_ACCUM_LEN); /* continue capturing the fatal log until Dump status is 0x3 */ if (pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS) < MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE) { /* reset fddstat bit by writing to zero*/ pm8001_mw32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS, 0x0); /* set dump control value to '1' so that new data will * be transferred to shared memory */ pm8001_mw32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_HANDSHAKE, MPI_FATAL_EDUMP_HANDSHAKE_RDY); /*Poll FDDHSHK until clear */ start = jiffies + (2 * HZ); /* 2 sec */ do { reg_val = pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_HANDSHAKE); } while ((reg_val) && time_before(jiffies, start)); if (reg_val != 0) { pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MPI_FATAL_EDUMP_TABLE_HDSHAKE 0x%x\n", reg_val); /* Fail the dump if a timeout occurs */ pm8001_ha->forensic_info.data_buf.direct_data += sprintf( pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 0xFFFFFFFF); return((char *) pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); } /* Poll status register until set to 2 or * 3 for up to 2 seconds */ start = jiffies + (2 * HZ); /* 2 sec */ do { reg_val = pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS); } while (((reg_val != 2) && (reg_val != 3)) && time_before(jiffies, start)); if (reg_val < 2) { pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MPI_FATAL_EDUMP_TABLE_STATUS = 0x%x\n", reg_val); /* Fail the dump if a timeout occurs */ pm8001_ha->forensic_info.data_buf.direct_data += sprintf( pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 0xFFFFFFFF); return((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); } /* reset fatal_forensic_shift_offset back to zero and reset MEMBASE 2 register to zero */ pm8001_ha->fatal_forensic_shift_offset = 0; /* location in 64k region */ pm8001_cw32(pm8001_ha, 0, MEMBASE_II_SHIFT_REGISTER, pm8001_ha->fatal_forensic_shift_offset); } /* Read the next block of the debug data.*/ length_to_read = pm8001_mr32(fatal_table_address, MPI_FATAL_EDUMP_TABLE_ACCUM_LEN) - pm8001_ha->forensic_preserved_accumulated_transfer; if (length_to_read != 0x0) { pm8001_ha->forensic_fatal_step = 0; goto moreData; } else { pm8001_ha->forensic_info.data_buf.direct_data += sprintf(pm8001_ha->forensic_info.data_buf.direct_data, "%08x ", 4); pm8001_ha->forensic_info.data_buf.read_len = 0xFFFFFFFF; pm8001_ha->forensic_info.data_buf.direct_len = 0; pm8001_ha->forensic_info.data_buf.direct_offset = 0; pm8001_ha->forensic_info.data_buf.read_len = 0; } } offset = (int)((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); pm8001_dbg(pm8001_ha, IO, "get_fatal_spcv: return4 0x%x\n", offset); return ((char *)pm8001_ha->forensic_info.data_buf.direct_data - (char *)buf); } /* pm80xx_get_non_fatal_dump - dump the nonfatal data from the dma * location by the firmware. */ ssize_t pm80xx_get_non_fatal_dump(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; void __iomem *nonfatal_table_address = pm8001_ha->fatal_tbl_addr; u32 accum_len = 0; u32 total_len = 0; u32 reg_val = 0; u32 *temp = NULL; u32 index = 0; u32 output_length; unsigned long start = 0; char *buf_copy = buf; temp = (u32 *)pm8001_ha->memoryMap.region[FORENSIC_MEM].virt_ptr; if (++pm8001_ha->non_fatal_count == 1) { if (pm8001_ha->chip_id == chip_8001) { snprintf(pm8001_ha->forensic_info.data_buf.direct_data, PAGE_SIZE, "Not supported for SPC controller"); return 0; } pm8001_dbg(pm8001_ha, IO, "forensic_info TYPE_NON_FATAL...\n"); /* * Step 1: Write the host buffer parameters in the MPI Fatal and * Non-Fatal Error Dump Capture Table.This is the buffer * where debug data will be DMAed to. */ pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_LO_OFFSET, pm8001_ha->memoryMap.region[FORENSIC_MEM].phys_addr_lo); pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_HI_OFFSET, pm8001_ha->memoryMap.region[FORENSIC_MEM].phys_addr_hi); pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_LENGTH, SYSFS_OFFSET); /* Optionally, set the DUMPCTRL bit to 1 if the host * keeps sending active I/Os while capturing the non-fatal * debug data. Otherwise, leave this bit set to zero */ pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_HANDSHAKE, MPI_FATAL_EDUMP_HANDSHAKE_RDY); /* * Step 2: Clear Accumulative Length of Debug Data Transferred * [ACCDDLEN] field in the MPI Fatal and Non-Fatal Error Dump * Capture Table to zero. */ pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_ACCUM_LEN, 0); /* initiallize previous accumulated length to 0 */ pm8001_ha->forensic_preserved_accumulated_transfer = 0; pm8001_ha->non_fatal_read_length = 0; } total_len = pm8001_mr32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_TOTAL_LEN); /* * Step 3:Clear Fatal/Non-Fatal Debug Data Transfer Status [FDDTSTAT] * field and then request that the SPCv controller transfer the debug * data by setting bit 7 of the Inbound Doorbell Set Register. */ pm8001_mw32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS, 0); pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_NONFATAL_DUMP); /* * Step 4.1: Read back the Inbound Doorbell Set Register (by polling for * 2 seconds) until register bit 7 is cleared. * This step only indicates the request is accepted by the controller. */ start = jiffies + (2 * HZ); /* 2 sec */ do { reg_val = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET) & SPCv_MSGU_CFG_TABLE_NONFATAL_DUMP; } while ((reg_val != 0) && time_before(jiffies, start)); /* Step 4.2: To check the completion of the transfer, poll the Fatal/Non * Fatal Debug Data Transfer Status [FDDTSTAT] field for 2 seconds in * the MPI Fatal and Non-Fatal Error Dump Capture Table. */ start = jiffies + (2 * HZ); /* 2 sec */ do { reg_val = pm8001_mr32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_STATUS); } while ((!reg_val) && time_before(jiffies, start)); if ((reg_val == 0x00) || (reg_val == MPI_FATAL_EDUMP_TABLE_STAT_DMA_FAILED) || (reg_val > MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE)) { pm8001_ha->non_fatal_read_length = 0; buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 0xFFFFFFFF); pm8001_ha->non_fatal_count = 0; return (buf_copy - buf); } else if (reg_val == MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_MORE_DATA) { buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 2); } else if ((reg_val == MPI_FATAL_EDUMP_TABLE_STAT_NF_SUCCESS_DONE) || (pm8001_ha->non_fatal_read_length >= total_len)) { pm8001_ha->non_fatal_read_length = 0; buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", 4); pm8001_ha->non_fatal_count = 0; } accum_len = pm8001_mr32(nonfatal_table_address, MPI_FATAL_EDUMP_TABLE_ACCUM_LEN); output_length = accum_len - pm8001_ha->forensic_preserved_accumulated_transfer; for (index = 0; index < output_length/4; index++) buf_copy += snprintf(buf_copy, PAGE_SIZE, "%08x ", *(temp+index)); pm8001_ha->non_fatal_read_length += output_length; /* store current accumulated length to use in next iteration as * the previous accumulated length */ pm8001_ha->forensic_preserved_accumulated_transfer = accum_len; return (buf_copy - buf); } /** * read_main_config_table - read the configure table and save it. * @pm8001_ha: our hba card information */ static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->main_cfg_tbl_addr; pm8001_ha->main_cfg_tbl.pm80xx_tbl.signature = pm8001_mr32(address, MAIN_SIGNATURE_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.interface_rev = pm8001_mr32(address, MAIN_INTERFACE_REVISION); pm8001_ha->main_cfg_tbl.pm80xx_tbl.firmware_rev = pm8001_mr32(address, MAIN_FW_REVISION); pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_out_io = pm8001_mr32(address, MAIN_MAX_OUTSTANDING_IO_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_sgl = pm8001_mr32(address, MAIN_MAX_SGL_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.ctrl_cap_flag = pm8001_mr32(address, MAIN_CNTRL_CAP_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.gst_offset = pm8001_mr32(address, MAIN_GST_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_queue_offset = pm8001_mr32(address, MAIN_IBQ_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.outbound_queue_offset = pm8001_mr32(address, MAIN_OBQ_OFFSET); /* read Error Dump Offset and Length */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset0 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length0 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset1 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length1 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); /* read GPIO LED settings from the configuration table */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping = pm8001_mr32(address, MAIN_GPIO_LED_FLAGS_OFFSET); /* read analog Setting offset from the configuration table */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.analog_setup_table_offset = pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.int_vec_table_offset = pm8001_mr32(address, MAIN_INT_VECTOR_TABLE_OFFSET); pm8001_ha->main_cfg_tbl.pm80xx_tbl.phy_attr_table_offset = pm8001_mr32(address, MAIN_SAS_PHY_ATTR_TABLE_OFFSET); /* read port recover and reset timeout */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer = pm8001_mr32(address, MAIN_PORT_RECOVERY_TIMER); /* read ILA and inactive firmware version */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.ila_version = pm8001_mr32(address, MAIN_MPI_ILA_RELEASE_TYPE); pm8001_ha->main_cfg_tbl.pm80xx_tbl.inc_fw_version = pm8001_mr32(address, MAIN_MPI_INACTIVE_FW_VERSION); pm8001_dbg(pm8001_ha, DEV, "Main cfg table: sign:%x interface rev:%x fw_rev:%x\n", pm8001_ha->main_cfg_tbl.pm80xx_tbl.signature, pm8001_ha->main_cfg_tbl.pm80xx_tbl.interface_rev, pm8001_ha->main_cfg_tbl.pm80xx_tbl.firmware_rev); pm8001_dbg(pm8001_ha, DEV, "table offset: gst:%x iq:%x oq:%x int vec:%x phy attr:%x\n", pm8001_ha->main_cfg_tbl.pm80xx_tbl.gst_offset, pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_queue_offset, pm8001_ha->main_cfg_tbl.pm80xx_tbl.outbound_queue_offset, pm8001_ha->main_cfg_tbl.pm80xx_tbl.int_vec_table_offset, pm8001_ha->main_cfg_tbl.pm80xx_tbl.phy_attr_table_offset); pm8001_dbg(pm8001_ha, DEV, "Main cfg table; ila rev:%x Inactive fw rev:%x\n", pm8001_ha->main_cfg_tbl.pm80xx_tbl.ila_version, pm8001_ha->main_cfg_tbl.pm80xx_tbl.inc_fw_version); } /** * read_general_status_table - read the general status table and save it. * @pm8001_ha: our hba card information */ static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->general_stat_tbl_addr; pm8001_ha->gs_tbl.pm80xx_tbl.gst_len_mpistate = pm8001_mr32(address, GST_GSTLEN_MPIS_OFFSET); pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state0 = pm8001_mr32(address, GST_IQ_FREEZE_STATE0_OFFSET); pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state1 = pm8001_mr32(address, GST_IQ_FREEZE_STATE1_OFFSET); pm8001_ha->gs_tbl.pm80xx_tbl.msgu_tcnt = pm8001_mr32(address, GST_MSGUTCNT_OFFSET); pm8001_ha->gs_tbl.pm80xx_tbl.iop_tcnt = pm8001_mr32(address, GST_IOPTCNT_OFFSET); pm8001_ha->gs_tbl.pm80xx_tbl.gpio_input_val = pm8001_mr32(address, GST_GPIO_INPUT_VAL); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[0] = pm8001_mr32(address, GST_RERRINFO_OFFSET0); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[1] = pm8001_mr32(address, GST_RERRINFO_OFFSET1); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[2] = pm8001_mr32(address, GST_RERRINFO_OFFSET2); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[3] = pm8001_mr32(address, GST_RERRINFO_OFFSET3); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[4] = pm8001_mr32(address, GST_RERRINFO_OFFSET4); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[5] = pm8001_mr32(address, GST_RERRINFO_OFFSET5); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[6] = pm8001_mr32(address, GST_RERRINFO_OFFSET6); pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[7] = pm8001_mr32(address, GST_RERRINFO_OFFSET7); } /** * read_phy_attr_table - read the phy attribute table and save it. * @pm8001_ha: our hba card information */ static void read_phy_attr_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->pspa_q_tbl_addr; pm8001_ha->phy_attr_table.phystart1_16[0] = pm8001_mr32(address, PSPA_PHYSTATE0_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[1] = pm8001_mr32(address, PSPA_PHYSTATE1_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[2] = pm8001_mr32(address, PSPA_PHYSTATE2_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[3] = pm8001_mr32(address, PSPA_PHYSTATE3_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[4] = pm8001_mr32(address, PSPA_PHYSTATE4_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[5] = pm8001_mr32(address, PSPA_PHYSTATE5_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[6] = pm8001_mr32(address, PSPA_PHYSTATE6_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[7] = pm8001_mr32(address, PSPA_PHYSTATE7_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[8] = pm8001_mr32(address, PSPA_PHYSTATE8_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[9] = pm8001_mr32(address, PSPA_PHYSTATE9_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[10] = pm8001_mr32(address, PSPA_PHYSTATE10_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[11] = pm8001_mr32(address, PSPA_PHYSTATE11_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[12] = pm8001_mr32(address, PSPA_PHYSTATE12_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[13] = pm8001_mr32(address, PSPA_PHYSTATE13_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[14] = pm8001_mr32(address, PSPA_PHYSTATE14_OFFSET); pm8001_ha->phy_attr_table.phystart1_16[15] = pm8001_mr32(address, PSPA_PHYSTATE15_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[0] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID0_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[1] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID1_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[2] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID2_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[3] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID3_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[4] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID4_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[5] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID5_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[6] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID6_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[7] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID7_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[8] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID8_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[9] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID9_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[10] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID10_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[11] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID11_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[12] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID12_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[13] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID13_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[14] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID14_OFFSET); pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[15] = pm8001_mr32(address, PSPA_OB_HW_EVENT_PID15_OFFSET); } /** * read_inbnd_queue_table - read the inbound queue table and save it. * @pm8001_ha: our hba card information */ static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) { int i; void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; for (i = 0; i < PM8001_MAX_INB_NUM; i++) { u32 offset = i * 0x20; pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = get_pci_bar_index(pm8001_mr32(address, (offset + IB_PIPCI_BAR))); pm8001_ha->inbnd_q_tbl[i].pi_offset = pm8001_mr32(address, (offset + IB_PIPCI_BAR_OFFSET)); } } /** * read_outbnd_queue_table - read the outbound queue table and save it. * @pm8001_ha: our hba card information */ static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) { int i; void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { u32 offset = i * 0x24; pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = get_pci_bar_index(pm8001_mr32(address, (offset + OB_CIPCI_BAR))); pm8001_ha->outbnd_q_tbl[i].ci_offset = pm8001_mr32(address, (offset + OB_CIPCI_BAR_OFFSET)); } } /** * init_default_table_values - init the default table. * @pm8001_ha: our hba card information */ static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) { int i; u32 offsetib, offsetob; void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; u32 ib_offset = pm8001_ha->ib_offset; u32 ob_offset = pm8001_ha->ob_offset; u32 ci_offset = pm8001_ha->ci_offset; u32 pi_offset = pm8001_ha->pi_offset; pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr = pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr = pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity = 0x01; pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr = pm8001_ha->memoryMap.region[IOP].phys_addr_hi; pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr = pm8001_ha->memoryMap.region[IOP].phys_addr_lo; pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity = 0x01; pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt = 0x01; /* Disable end to end CRC checking */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump = (0x1 << 16); for (i = 0; i < pm8001_ha->max_q_num; i++) { pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); pm8001_ha->inbnd_q_tbl[i].upper_base_addr = pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi; pm8001_ha->inbnd_q_tbl[i].lower_base_addr = pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo; pm8001_ha->inbnd_q_tbl[i].base_virt = (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr; pm8001_ha->inbnd_q_tbl[i].total_length = pm8001_ha->memoryMap.region[ib_offset + i].total_len; pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi; pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo; pm8001_ha->inbnd_q_tbl[i].ci_virt = pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr; pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0); offsetib = i * 0x20; pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = get_pci_bar_index(pm8001_mr32(addressib, (offsetib + 0x14))); pm8001_ha->inbnd_q_tbl[i].pi_offset = pm8001_mr32(addressib, (offsetib + 0x18)); pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; pm8001_dbg(pm8001_ha, DEV, "IQ %d pi_bar 0x%x pi_offset 0x%x\n", i, pm8001_ha->inbnd_q_tbl[i].pi_pci_bar, pm8001_ha->inbnd_q_tbl[i].pi_offset); } for (i = 0; i < pm8001_ha->max_q_num; i++) { pm8001_ha->outbnd_q_tbl[i].element_size_cnt = PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); pm8001_ha->outbnd_q_tbl[i].upper_base_addr = pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi; pm8001_ha->outbnd_q_tbl[i].lower_base_addr = pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo; pm8001_ha->outbnd_q_tbl[i].base_virt = (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr; pm8001_ha->outbnd_q_tbl[i].total_length = pm8001_ha->memoryMap.region[ob_offset + i].total_len; pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi; pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo; /* interrupt vector based on oq */ pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = (i << 24); pm8001_ha->outbnd_q_tbl[i].pi_virt = pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr; pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0); offsetob = i * 0x24; pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = get_pci_bar_index(pm8001_mr32(addressob, offsetob + 0x14)); pm8001_ha->outbnd_q_tbl[i].ci_offset = pm8001_mr32(addressob, (offsetob + 0x18)); pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; pm8001_ha->outbnd_q_tbl[i].producer_index = 0; pm8001_dbg(pm8001_ha, DEV, "OQ %d ci_bar 0x%x ci_offset 0x%x\n", i, pm8001_ha->outbnd_q_tbl[i].ci_pci_bar, pm8001_ha->outbnd_q_tbl[i].ci_offset); } } /** * update_main_config_table - update the main default table to the HBA. * @pm8001_ha: our hba card information */ static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->main_cfg_tbl_addr; pm8001_mw32(address, MAIN_IQNPPD_HPPD_OFFSET, pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_q_nppd_hppd); pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_HI, pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr); pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_LO, pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr); pm8001_mw32(address, MAIN_EVENT_LOG_BUFF_SIZE, pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size); pm8001_mw32(address, MAIN_EVENT_LOG_OPTION, pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity); pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_HI, pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr); pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_LO, pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr); pm8001_mw32(address, MAIN_PCS_EVENT_LOG_BUFF_SIZE, pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size); pm8001_mw32(address, MAIN_PCS_EVENT_LOG_OPTION, pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity); /* Update Fatal error interrupt vector */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt |= ((pm8001_ha->max_q_num - 1) << 8); pm8001_mw32(address, MAIN_FATAL_ERROR_INTERRUPT, pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt); pm8001_dbg(pm8001_ha, DEV, "Updated Fatal error interrupt vector 0x%x\n", pm8001_mr32(address, MAIN_FATAL_ERROR_INTERRUPT)); pm8001_mw32(address, MAIN_EVENT_CRC_CHECK, pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump); /* SPCv specific */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping &= 0xCFFFFFFF; /* Set GPIOLED to 0x2 for LED indicator */ pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping |= 0x20000000; pm8001_mw32(address, MAIN_GPIO_LED_FLAGS_OFFSET, pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping); pm8001_dbg(pm8001_ha, DEV, "Programming DW 0x21 in main cfg table with 0x%x\n", pm8001_mr32(address, MAIN_GPIO_LED_FLAGS_OFFSET)); pm8001_mw32(address, MAIN_PORT_RECOVERY_TIMER, pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer); pm8001_mw32(address, MAIN_INT_REASSERTION_DELAY, pm8001_ha->main_cfg_tbl.pm80xx_tbl.interrupt_reassertion_delay); pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer &= 0xffff0000; pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer |= PORT_RECOVERY_TIMEOUT; if (pm8001_ha->chip_id == chip_8006) { pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer &= 0x0000ffff; pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer |= CHIP_8006_PORT_RECOVERY_TIMEOUT; } pm8001_mw32(address, MAIN_PORT_RECOVERY_TIMER, pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer); } /** * update_inbnd_queue_table - update the inbound queue table to the HBA. * @pm8001_ha: our hba card information * @number: entry in the queue */ static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) { void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; u16 offset = number * 0x20; pm8001_mw32(address, offset + IB_PROPERITY_OFFSET, pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); pm8001_mw32(address, offset + IB_BASE_ADDR_HI_OFFSET, pm8001_ha->inbnd_q_tbl[number].upper_base_addr); pm8001_mw32(address, offset + IB_BASE_ADDR_LO_OFFSET, pm8001_ha->inbnd_q_tbl[number].lower_base_addr); pm8001_mw32(address, offset + IB_CI_BASE_ADDR_HI_OFFSET, pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); pm8001_mw32(address, offset + IB_CI_BASE_ADDR_LO_OFFSET, pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); pm8001_dbg(pm8001_ha, DEV, "IQ %d: Element pri size 0x%x\n", number, pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); pm8001_dbg(pm8001_ha, DEV, "IQ upr base addr 0x%x IQ lwr base addr 0x%x\n", pm8001_ha->inbnd_q_tbl[number].upper_base_addr, pm8001_ha->inbnd_q_tbl[number].lower_base_addr); pm8001_dbg(pm8001_ha, DEV, "CI upper base addr 0x%x CI lower base addr 0x%x\n", pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr, pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); } /** * update_outbnd_queue_table - update the outbound queue table to the HBA. * @pm8001_ha: our hba card information * @number: entry in the queue */ static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) { void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; u16 offset = number * 0x24; pm8001_mw32(address, offset + OB_PROPERITY_OFFSET, pm8001_ha->outbnd_q_tbl[number].element_size_cnt); pm8001_mw32(address, offset + OB_BASE_ADDR_HI_OFFSET, pm8001_ha->outbnd_q_tbl[number].upper_base_addr); pm8001_mw32(address, offset + OB_BASE_ADDR_LO_OFFSET, pm8001_ha->outbnd_q_tbl[number].lower_base_addr); pm8001_mw32(address, offset + OB_PI_BASE_ADDR_HI_OFFSET, pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); pm8001_mw32(address, offset + OB_PI_BASE_ADDR_LO_OFFSET, pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); pm8001_mw32(address, offset + OB_INTERRUPT_COALES_OFFSET, pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); pm8001_dbg(pm8001_ha, DEV, "OQ %d: Element pri size 0x%x\n", number, pm8001_ha->outbnd_q_tbl[number].element_size_cnt); pm8001_dbg(pm8001_ha, DEV, "OQ upr base addr 0x%x OQ lwr base addr 0x%x\n", pm8001_ha->outbnd_q_tbl[number].upper_base_addr, pm8001_ha->outbnd_q_tbl[number].lower_base_addr); pm8001_dbg(pm8001_ha, DEV, "PI upper base addr 0x%x PI lower base addr 0x%x\n", pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr, pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); } /** * mpi_init_check - check firmware initialization status. * @pm8001_ha: our hba card information */ static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) { u32 max_wait_count; u32 value; u32 gst_len_mpistate; /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the table is updated */ pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_UPDATE); /* wait until Inbound DoorBell Clear Register toggled */ if (IS_SPCV_12G(pm8001_ha->pdev)) { max_wait_count = SPCV_DOORBELL_CLEAR_TIMEOUT; } else { max_wait_count = SPC_DOORBELL_CLEAR_TIMEOUT; } do { msleep(FW_READY_INTERVAL); value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); value &= SPCv_MSGU_CFG_TABLE_UPDATE; } while ((value != 0) && (--max_wait_count)); if (!max_wait_count) { /* additional check */ pm8001_dbg(pm8001_ha, FAIL, "Inb doorbell clear not toggled[value:%x]\n", value); return -EBUSY; } /* check the MPI-State for initialization up to 100ms*/ max_wait_count = 5;/* 100 msec */ do { msleep(FW_READY_INTERVAL); gst_len_mpistate = pm8001_mr32(pm8001_ha->general_stat_tbl_addr, GST_GSTLEN_MPIS_OFFSET); } while ((GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) && (--max_wait_count)); if (!max_wait_count) return -EBUSY; /* check MPI Initialization error */ gst_len_mpistate = gst_len_mpistate >> 16; if (0x0000 != gst_len_mpistate) return -EBUSY; return 0; } /** * check_fw_ready - The LLDD check if the FW is ready, if not, return error. * This function sleeps hence it must not be used in atomic context. * @pm8001_ha: our hba card information */ static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) { u32 value; u32 max_wait_count; u32 max_wait_time; u32 expected_mask; int ret = 0; /* reset / PCIe ready */ max_wait_time = max_wait_count = 5; /* 100 milli sec */ do { msleep(FW_READY_INTERVAL); value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); } while ((value == 0xFFFFFFFF) && (--max_wait_count)); /* check ila, RAAE and iops status */ if ((pm8001_ha->chip_id != chip_8008) && (pm8001_ha->chip_id != chip_8009)) { max_wait_time = max_wait_count = 180; /* 3600 milli sec */ expected_mask = SCRATCH_PAD_ILA_READY | SCRATCH_PAD_RAAE_READY | SCRATCH_PAD_IOP0_READY | SCRATCH_PAD_IOP1_READY; } else { max_wait_time = max_wait_count = 170; /* 3400 milli sec */ expected_mask = SCRATCH_PAD_ILA_READY | SCRATCH_PAD_RAAE_READY | SCRATCH_PAD_IOP0_READY; } do { msleep(FW_READY_INTERVAL); value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); } while (((value & expected_mask) != expected_mask) && (--max_wait_count)); if (!max_wait_count) { pm8001_dbg(pm8001_ha, INIT, "At least one FW component failed to load within %d millisec: Scratchpad1: 0x%x\n", max_wait_time * FW_READY_INTERVAL, value); ret = -1; } else { pm8001_dbg(pm8001_ha, MSG, "All FW components ready by %d ms\n", (max_wait_time - max_wait_count) * FW_READY_INTERVAL); } return ret; } static int init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) { void __iomem *base_addr; u32 value; u32 offset; u32 pcibar; u32 pcilogic; value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); /* * lower 26 bits of SCRATCHPAD0 register describes offset within the * PCIe BAR where the MPI configuration table is present */ offset = value & 0x03FFFFFF; /* scratch pad 0 TBL address */ pm8001_dbg(pm8001_ha, DEV, "Scratchpad 0 Offset: 0x%x value 0x%x\n", offset, value); /* * Upper 6 bits describe the offset within PCI config space where BAR * is located. */ pcilogic = (value & 0xFC000000) >> 26; pcibar = get_pci_bar_index(pcilogic); pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar); /* * Make sure the offset falls inside the ioremapped PCI BAR */ if (offset > pm8001_ha->io_mem[pcibar].memsize) { pm8001_dbg(pm8001_ha, FAIL, "Main cfg tbl offset outside %u > %u\n", offset, pm8001_ha->io_mem[pcibar].memsize); return -EBUSY; } pm8001_ha->main_cfg_tbl_addr = base_addr = pm8001_ha->io_mem[pcibar].memvirtaddr + offset; /* * Validate main configuration table address: first DWord should read * "PMCS" */ value = pm8001_mr32(pm8001_ha->main_cfg_tbl_addr, 0); if (memcmp(&value, "PMCS", 4) != 0) { pm8001_dbg(pm8001_ha, FAIL, "BAD main config signature 0x%x\n", value); return -EBUSY; } pm8001_dbg(pm8001_ha, INIT, "VALID main config signature 0x%x\n", value); pm8001_ha->general_stat_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x18) & 0xFFFFFF); pm8001_ha->inbnd_q_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C) & 0xFFFFFF); pm8001_ha->outbnd_q_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x20) & 0xFFFFFF); pm8001_ha->ivt_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C) & 0xFFFFFF); pm8001_ha->pspa_q_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x90) & 0xFFFFFF); pm8001_ha->fatal_tbl_addr = base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0xA0) & 0xFFFFFF); pm8001_dbg(pm8001_ha, INIT, "GST OFFSET 0x%x\n", pm8001_cr32(pm8001_ha, pcibar, offset + 0x18)); pm8001_dbg(pm8001_ha, INIT, "INBND OFFSET 0x%x\n", pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C)); pm8001_dbg(pm8001_ha, INIT, "OBND OFFSET 0x%x\n", pm8001_cr32(pm8001_ha, pcibar, offset + 0x20)); pm8001_dbg(pm8001_ha, INIT, "IVT OFFSET 0x%x\n", pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C)); pm8001_dbg(pm8001_ha, INIT, "PSPA OFFSET 0x%x\n", pm8001_cr32(pm8001_ha, pcibar, offset + 0x90)); pm8001_dbg(pm8001_ha, INIT, "addr - main cfg %p general status %p\n", pm8001_ha->main_cfg_tbl_addr, pm8001_ha->general_stat_tbl_addr); pm8001_dbg(pm8001_ha, INIT, "addr - inbnd %p obnd %p\n", pm8001_ha->inbnd_q_tbl_addr, pm8001_ha->outbnd_q_tbl_addr); pm8001_dbg(pm8001_ha, INIT, "addr - pspa %p ivt %p\n", pm8001_ha->pspa_q_tbl_addr, pm8001_ha->ivt_tbl_addr); return 0; } /** * pm80xx_set_thermal_config - support the thermal configuration * @pm8001_ha: our hba card information. */ int pm80xx_set_thermal_config(struct pm8001_hba_info *pm8001_ha) { struct set_ctrl_cfg_req payload; struct inbound_queue_table *circularQ; int rc; u32 tag; u32 opc = OPC_INB_SET_CONTROLLER_CONFIG; u32 page_code; memset(&payload, 0, sizeof(struct set_ctrl_cfg_req)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return -1; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); if (IS_SPCV_12G(pm8001_ha->pdev)) page_code = THERMAL_PAGE_CODE_7H; else page_code = THERMAL_PAGE_CODE_8H; payload.cfg_pg[0] = (THERMAL_LOG_ENABLE << 9) | (THERMAL_ENABLE << 8) | page_code; payload.cfg_pg[1] = (LTEMPHIL << 24) | (RTEMPHIL << 8); pm8001_dbg(pm8001_ha, DEV, "Setting up thermal config. cfg_pg 0 0x%x cfg_pg 1 0x%x\n", payload.cfg_pg[0], payload.cfg_pg[1]); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } /** * pm80xx_set_sas_protocol_timer_config - support the SAS Protocol * Timer configuration page * @pm8001_ha: our hba card information. */ static int pm80xx_set_sas_protocol_timer_config(struct pm8001_hba_info *pm8001_ha) { struct set_ctrl_cfg_req payload; struct inbound_queue_table *circularQ; SASProtocolTimerConfig_t SASConfigPage; int rc; u32 tag; u32 opc = OPC_INB_SET_CONTROLLER_CONFIG; memset(&payload, 0, sizeof(struct set_ctrl_cfg_req)); memset(&SASConfigPage, 0, sizeof(SASProtocolTimerConfig_t)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return -1; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); SASConfigPage.pageCode = SAS_PROTOCOL_TIMER_CONFIG_PAGE; SASConfigPage.MST_MSI = 3 << 15; SASConfigPage.STP_SSP_MCT_TMO = (STP_MCT_TMO << 16) | SSP_MCT_TMO; SASConfigPage.STP_FRM_TMO = (SAS_MAX_OPEN_TIME << 24) | (SMP_MAX_CONN_TIMER << 16) | STP_FRM_TIMER; SASConfigPage.STP_IDLE_TMO = STP_IDLE_TIME; if (SASConfigPage.STP_IDLE_TMO > 0x3FFFFFF) SASConfigPage.STP_IDLE_TMO = 0x3FFFFFF; SASConfigPage.OPNRJT_RTRY_INTVL = (SAS_MFD << 16) | SAS_OPNRJT_RTRY_INTVL; SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO = (SAS_DOPNRJT_RTRY_TMO << 16) | SAS_COPNRJT_RTRY_TMO; SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR = (SAS_DOPNRJT_RTRY_THR << 16) | SAS_COPNRJT_RTRY_THR; SASConfigPage.MAX_AIP = SAS_MAX_AIP; pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.pageCode 0x%08x\n", SASConfigPage.pageCode); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.MST_MSI 0x%08x\n", SASConfigPage.MST_MSI); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_SSP_MCT_TMO 0x%08x\n", SASConfigPage.STP_SSP_MCT_TMO); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_FRM_TMO 0x%08x\n", SASConfigPage.STP_FRM_TMO); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.STP_IDLE_TMO 0x%08x\n", SASConfigPage.STP_IDLE_TMO); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.OPNRJT_RTRY_INTVL 0x%08x\n", SASConfigPage.OPNRJT_RTRY_INTVL); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO 0x%08x\n", SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR 0x%08x\n", SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR); pm8001_dbg(pm8001_ha, INIT, "SASConfigPage.MAX_AIP 0x%08x\n", SASConfigPage.MAX_AIP); memcpy(&payload.cfg_pg, &SASConfigPage, sizeof(SASProtocolTimerConfig_t)); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } /** * pm80xx_get_encrypt_info - Check for encryption * @pm8001_ha: our hba card information. */ static int pm80xx_get_encrypt_info(struct pm8001_hba_info *pm8001_ha) { u32 scratch3_value; int ret = -1; /* Read encryption status from SCRATCH PAD 3 */ scratch3_value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == SCRATCH_PAD3_ENC_READY) { if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMF_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMA_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMB_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; pm8001_ha->encrypt_info.status = 0; pm8001_dbg(pm8001_ha, INIT, "Encryption: SCRATCH_PAD3_ENC_READY 0x%08X.Cipher mode 0x%x Sec mode 0x%x status 0x%x\n", scratch3_value, pm8001_ha->encrypt_info.cipher_mode, pm8001_ha->encrypt_info.sec_mode, pm8001_ha->encrypt_info.status); ret = 0; } else if ((scratch3_value & SCRATCH_PAD3_ENC_READY) == SCRATCH_PAD3_ENC_DISABLED) { pm8001_dbg(pm8001_ha, INIT, "Encryption: SCRATCH_PAD3_ENC_DISABLED 0x%08X\n", scratch3_value); pm8001_ha->encrypt_info.status = 0xFFFFFFFF; pm8001_ha->encrypt_info.cipher_mode = 0; pm8001_ha->encrypt_info.sec_mode = 0; ret = 0; } else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == SCRATCH_PAD3_ENC_DIS_ERR) { pm8001_ha->encrypt_info.status = (scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16; if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMF_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMA_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMB_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; pm8001_dbg(pm8001_ha, INIT, "Encryption: SCRATCH_PAD3_DIS_ERR 0x%08X.Cipher mode 0x%x sec mode 0x%x status 0x%x\n", scratch3_value, pm8001_ha->encrypt_info.cipher_mode, pm8001_ha->encrypt_info.sec_mode, pm8001_ha->encrypt_info.status); } else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == SCRATCH_PAD3_ENC_ENA_ERR) { pm8001_ha->encrypt_info.status = (scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16; if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMF_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMA_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == SCRATCH_PAD3_SMB_ENABLED) pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; pm8001_dbg(pm8001_ha, INIT, "Encryption: SCRATCH_PAD3_ENA_ERR 0x%08X.Cipher mode 0x%x sec mode 0x%x status 0x%x\n", scratch3_value, pm8001_ha->encrypt_info.cipher_mode, pm8001_ha->encrypt_info.sec_mode, pm8001_ha->encrypt_info.status); } return ret; } /** * pm80xx_encrypt_update - update flash with encryption information * @pm8001_ha: our hba card information. */ static int pm80xx_encrypt_update(struct pm8001_hba_info *pm8001_ha) { struct kek_mgmt_req payload; struct inbound_queue_table *circularQ; int rc; u32 tag; u32 opc = OPC_INB_KEK_MANAGEMENT; memset(&payload, 0, sizeof(struct kek_mgmt_req)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return -1; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); /* Currently only one key is used. New KEK index is 1. * Current KEK index is 1. Store KEK to NVRAM is 1. */ payload.new_curidx_ksop = ((1 << 24) | (1 << 16) | (1 << 8) | KEK_MGMT_SUBOP_KEYCARDUPDATE); pm8001_dbg(pm8001_ha, DEV, "Saving Encryption info to flash. payload 0x%x\n", payload.new_curidx_ksop); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } /** * pm80xx_chip_init - the main init function that initializes whole PM8001 chip. * @pm8001_ha: our hba card information */ static int pm80xx_chip_init(struct pm8001_hba_info *pm8001_ha) { int ret; u8 i = 0; /* check the firmware status */ if (-1 == check_fw_ready(pm8001_ha)) { pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); return -EBUSY; } /* Initialize the controller fatal error flag */ pm8001_ha->controller_fatal_error = false; /* Initialize pci space address eg: mpi offset */ ret = init_pci_device_addresses(pm8001_ha); if (ret) { pm8001_dbg(pm8001_ha, FAIL, "Failed to init pci addresses"); return ret; } init_default_table_values(pm8001_ha); read_main_config_table(pm8001_ha); read_general_status_table(pm8001_ha); read_inbnd_queue_table(pm8001_ha); read_outbnd_queue_table(pm8001_ha); read_phy_attr_table(pm8001_ha); /* update main config table ,inbound table and outbound table */ update_main_config_table(pm8001_ha); for (i = 0; i < pm8001_ha->max_q_num; i++) { update_inbnd_queue_table(pm8001_ha, i); update_outbnd_queue_table(pm8001_ha, i); } /* notify firmware update finished and check initialization status */ if (0 == mpi_init_check(pm8001_ha)) { pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n"); } else return -EBUSY; /* send SAS protocol timer configuration page to FW */ ret = pm80xx_set_sas_protocol_timer_config(pm8001_ha); /* Check for encryption */ if (pm8001_ha->chip->encrypt) { pm8001_dbg(pm8001_ha, INIT, "Checking for encryption\n"); ret = pm80xx_get_encrypt_info(pm8001_ha); if (ret == -1) { pm8001_dbg(pm8001_ha, INIT, "Encryption error !!\n"); if (pm8001_ha->encrypt_info.status == 0x81) { pm8001_dbg(pm8001_ha, INIT, "Encryption enabled with error.Saving encryption key to flash\n"); pm80xx_encrypt_update(pm8001_ha); } } } return 0; } static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) { u32 max_wait_count; u32 value; u32 gst_len_mpistate; int ret; ret = init_pci_device_addresses(pm8001_ha); if (ret) { pm8001_dbg(pm8001_ha, FAIL, "Failed to init pci addresses"); return ret; } /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the table is stop */ pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_RESET); /* wait until Inbound DoorBell Clear Register toggled */ if (IS_SPCV_12G(pm8001_ha->pdev)) { max_wait_count = SPCV_DOORBELL_CLEAR_TIMEOUT; } else { max_wait_count = SPC_DOORBELL_CLEAR_TIMEOUT; } do { msleep(FW_READY_INTERVAL); value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); value &= SPCv_MSGU_CFG_TABLE_RESET; } while ((value != 0) && (--max_wait_count)); if (!max_wait_count) { pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=%x\n", value); return -1; } /* check the MPI-State for termination in progress */ /* wait until Inbound DoorBell Clear Register toggled */ max_wait_count = 100; /* 2 sec for spcv/ve */ do { msleep(FW_READY_INTERVAL); gst_len_mpistate = pm8001_mr32(pm8001_ha->general_stat_tbl_addr, GST_GSTLEN_MPIS_OFFSET); if (GST_MPI_STATE_UNINIT == (gst_len_mpistate & GST_MPI_STATE_MASK)) break; } while (--max_wait_count); if (!max_wait_count) { pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n", gst_len_mpistate & GST_MPI_STATE_MASK); return -1; } return 0; } /** * pm80xx_fatal_errors - returns non-zero *ONLY* when fatal errors * @pm8001_ha: our hba card information * * Fatal errors are recoverable only after a host reboot. */ int pm80xx_fatal_errors(struct pm8001_hba_info *pm8001_ha) { int ret = 0; u32 scratch_pad_rsvd0 = pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_6); u32 scratch_pad_rsvd1 = pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_7); u32 scratch_pad1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); u32 scratch_pad2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); u32 scratch_pad3 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); if (pm8001_ha->chip_id != chip_8006 && pm8001_ha->chip_id != chip_8074 && pm8001_ha->chip_id != chip_8076) { return 0; } if (MSGU_SCRATCHPAD1_STATE_FATAL_ERROR(scratch_pad1)) { pm8001_dbg(pm8001_ha, FAIL, "Fatal error SCRATCHPAD1 = 0x%x SCRATCHPAD2 = 0x%x SCRATCHPAD3 = 0x%x SCRATCHPAD_RSVD0 = 0x%x SCRATCHPAD_RSVD1 = 0x%x\n", scratch_pad1, scratch_pad2, scratch_pad3, scratch_pad_rsvd0, scratch_pad_rsvd1); ret = 1; } return ret; } /** * pm80xx_chip_soft_rst - soft reset the PM8001 chip, so that all * FW register status are reset to the originated status. * @pm8001_ha: our hba card information */ static int pm80xx_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) { u32 regval; u32 bootloader_state; u32 ibutton0, ibutton1; /* Process MPI table uninitialization only if FW is ready */ if (!pm8001_ha->controller_fatal_error) { /* Check if MPI is in ready state to reset */ if (mpi_uninit_check(pm8001_ha) != 0) { u32 r0 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); u32 r1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); u32 r2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); u32 r3 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready scratch: %x:%x:%x:%x\n", r0, r1, r2, r3); /* if things aren't ready but the bootloader is ok then * try the reset anyway. */ if (r1 & SCRATCH_PAD1_BOOTSTATE_MASK) return -1; } } /* checked for reset register normal state; 0x0 */ regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET); pm8001_dbg(pm8001_ha, INIT, "reset register before write : 0x%x\n", regval); pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, SPCv_NORMAL_RESET_VALUE); msleep(500); regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET); pm8001_dbg(pm8001_ha, INIT, "reset register after write 0x%x\n", regval); if ((regval & SPCv_SOFT_RESET_READ_MASK) == SPCv_SOFT_RESET_NORMAL_RESET_OCCURED) { pm8001_dbg(pm8001_ha, MSG, " soft reset successful [regval: 0x%x]\n", regval); } else { pm8001_dbg(pm8001_ha, MSG, " soft reset failed [regval: 0x%x]\n", regval); /* check bootloader is successfully executed or in HDA mode */ bootloader_state = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & SCRATCH_PAD1_BOOTSTATE_MASK; if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_HDA_SEEPROM) { pm8001_dbg(pm8001_ha, MSG, "Bootloader state - HDA mode SEEPROM\n"); } else if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_HDA_BOOTSTRAP) { pm8001_dbg(pm8001_ha, MSG, "Bootloader state - HDA mode Bootstrap Pin\n"); } else if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_HDA_SOFTRESET) { pm8001_dbg(pm8001_ha, MSG, "Bootloader state - HDA mode soft reset\n"); } else if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_CRIT_ERROR) { pm8001_dbg(pm8001_ha, MSG, "Bootloader state-HDA mode critical error\n"); } return -EBUSY; } /* check the firmware status after reset */ if (-1 == check_fw_ready(pm8001_ha)) { pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); /* check iButton feature support for motherboard controller */ if (pm8001_ha->pdev->subsystem_vendor != PCI_VENDOR_ID_ADAPTEC2 && pm8001_ha->pdev->subsystem_vendor != PCI_VENDOR_ID_ATTO && pm8001_ha->pdev->subsystem_vendor != 0) { ibutton0 = pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_6); ibutton1 = pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_7); if (!ibutton0 && !ibutton1) { pm8001_dbg(pm8001_ha, FAIL, "iButton Feature is not Available!!!\n"); return -EBUSY; } if (ibutton0 == 0xdeadbeef && ibutton1 == 0xdeadbeef) { pm8001_dbg(pm8001_ha, FAIL, "CRC Check for iButton Feature Failed!!!\n"); return -EBUSY; } } } pm8001_dbg(pm8001_ha, INIT, "SPCv soft reset Complete\n"); return 0; } static void pm80xx_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) { u32 i; pm8001_dbg(pm8001_ha, INIT, "chip reset start\n"); /* do SPCv chip reset. */ pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, 0x11); pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n"); /* Check this ..whether delay is required or no */ /* delay 10 usec */ udelay(10); /* wait for 20 msec until the firmware gets reloaded */ i = 20; do { mdelay(1); } while ((--i) != 0); pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n"); } /** * pm80xx_chip_intx_interrupt_enable - enable PM8001 chip interrupt * @pm8001_ha: our hba card information */ static void pm80xx_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) { pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); } /** * pm80xx_chip_intx_interrupt_disable - disable PM8001 chip interrupt * @pm8001_ha: our hba card information */ static void pm80xx_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) { pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, ODMR_MASK_ALL); } /** * pm80xx_chip_interrupt_enable - enable PM8001 chip interrupt * @pm8001_ha: our hba card information * @vec: interrupt number to enable */ static void pm80xx_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) { #ifdef PM8001_USE_MSIX u32 mask; mask = (u32)(1 << vec); pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, (u32)(mask & 0xFFFFFFFF)); return; #endif pm80xx_chip_intx_interrupt_enable(pm8001_ha); } /** * pm80xx_chip_interrupt_disable - disable PM8001 chip interrupt * @pm8001_ha: our hba card information * @vec: interrupt number to disable */ static void pm80xx_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) { #ifdef PM8001_USE_MSIX u32 mask; if (vec == 0xFF) mask = 0xFFFFFFFF; else mask = (u32)(1 << vec); pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, (u32)(mask & 0xFFFFFFFF)); return; #endif pm80xx_chip_intx_interrupt_disable(pm8001_ha); } static void pm80xx_send_abort_all(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_ha_dev) { int res; u32 ccb_tag; struct pm8001_ccb_info *ccb; struct sas_task *task = NULL; struct task_abort_req task_abort; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SATA_ABORT; int ret; if (!pm8001_ha_dev) { pm8001_dbg(pm8001_ha, FAIL, "dev is null\n"); return; } task = sas_alloc_slow_task(GFP_ATOMIC); if (!task) { pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n"); return; } task->task_done = pm8001_task_done; res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); if (res) { sas_free_task(task); return; } ccb = &pm8001_ha->ccb_info[ccb_tag]; ccb->device = pm8001_ha_dev; ccb->ccb_tag = ccb_tag; ccb->task = task; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&task_abort, 0, sizeof(task_abort)); task_abort.abort_all = cpu_to_le32(1); task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); task_abort.tag = cpu_to_le32(ccb_tag); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, sizeof(task_abort), 0); pm8001_dbg(pm8001_ha, FAIL, "Executing abort task end\n"); if (ret) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); } } static void pm80xx_send_read_log(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_ha_dev) { struct sata_start_req sata_cmd; int res; u32 ccb_tag; struct pm8001_ccb_info *ccb; struct sas_task *task = NULL; struct host_to_dev_fis fis; struct domain_device *dev; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SATA_HOST_OPSTART; task = sas_alloc_slow_task(GFP_ATOMIC); if (!task) { pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n"); return; } task->task_done = pm8001_task_done; res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); if (res) { sas_free_task(task); pm8001_dbg(pm8001_ha, FAIL, "cannot allocate tag !!!\n"); return; } /* allocate domain device by ourselves as libsas * is not going to provide any */ dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); if (!dev) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); pm8001_dbg(pm8001_ha, FAIL, "Domain device cannot be allocated\n"); return; } task->dev = dev; task->dev->lldd_dev = pm8001_ha_dev; ccb = &pm8001_ha->ccb_info[ccb_tag]; ccb->device = pm8001_ha_dev; ccb->ccb_tag = ccb_tag; ccb->task = task; ccb->n_elem = 0; pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; memset(&sata_cmd, 0, sizeof(sata_cmd)); circularQ = &pm8001_ha->inbnd_q_tbl[0]; /* construct read log FIS */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.fis_type = 0x27; fis.flags = 0x80; fis.command = ATA_CMD_READ_LOG_EXT; fis.lbal = 0x10; fis.sector_count = 0x1; sata_cmd.tag = cpu_to_le32(ccb_tag); sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); sata_cmd.ncqtag_atap_dir_m_dad |= ((0x1 << 7) | (0x5 << 9)); memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, sizeof(sata_cmd), 0); pm8001_dbg(pm8001_ha, FAIL, "Executing read log end\n"); if (res) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); kfree(dev); } } /** * mpi_ssp_completion - process the event that FW response to the SSP request. * @pm8001_ha: our hba card information * @piomb: the message contents of this outbound message. * * When FW has completed a ssp request for example a IO request, after it has * filled the SG data with the data, it will trigger this event representing * that he has finished the job; please check the corresponding buffer. * So we will tell the caller who maybe waiting the result to tell upper layer * that the task has been finished. */ static void mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; unsigned long flags; u32 status; u32 param; u32 tag; struct ssp_completion_resp *psspPayload; struct task_status_struct *ts; struct ssp_response_iu *iu; struct pm8001_device *pm8001_dev; psspPayload = (struct ssp_completion_resp *)(piomb + 4); status = le32_to_cpu(psspPayload->status); tag = le32_to_cpu(psspPayload->tag); ccb = &pm8001_ha->ccb_info[tag]; if ((status == IO_ABORTED) && ccb->open_retry) { /* Being completed by another */ ccb->open_retry = 0; return; } pm8001_dev = ccb->device; param = le32_to_cpu(psspPayload->param); t = ccb->task; if (status && status != IO_UNDERFLOW) pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status); if (unlikely(!t || !t->lldd_task || !t->dev)) return; ts = &t->task_status; pm8001_dbg(pm8001_ha, DEV, "tag::0x%x, status::0x%x task::0x%p\n", tag, status, t); /* Print sas address of IO failed device */ if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && (status != IO_UNDERFLOW)) pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", SAS_ADDR(t->dev->sas_addr)); switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS ,param = 0x%x\n", param); if (param == 0) { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; } else { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PROTO_RESPONSE; ts->residual = param; iu = &psspPayload->ssp_resp_iu; sas_ssp_task_response(pm8001_ha->dev, t, iu); } if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_UNDERFLOW: /* SSP Completion with error */ pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW ,param = 0x%x\n", param); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; ts->residual = param; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; /* Force the midlayer to retry */ ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_INVALID_SSP_RSP_FRAME: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_INVALID_SSP_RSP_FRAME\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_DMA: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_NON_OPERATIONAL); break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_TM_TAG_NOT_FOUND: pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_SSP_EXT_IU_ZERO_LEN_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; } pm8001_dbg(pm8001_ha, IO, "scsi_status = 0x%x\n ", psspPayload->ssp_resp_iu.status); spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); if (t->slow_task) complete(&t->slow_task->completion); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } /*See the comments for mpi_ssp_completion */ static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; unsigned long flags; struct task_status_struct *ts; struct pm8001_ccb_info *ccb; struct pm8001_device *pm8001_dev; struct ssp_event_resp *psspPayload = (struct ssp_event_resp *)(piomb + 4); u32 event = le32_to_cpu(psspPayload->event); u32 tag = le32_to_cpu(psspPayload->tag); u32 port_id = le32_to_cpu(psspPayload->port_id); ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; if (event) pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event); if (unlikely(!t || !t->lldd_task || !t->dev)) return; ts = &t->task_status; pm8001_dbg(pm8001_ha, IOERR, "port_id:0x%x, tag:0x%x, event:0x%x\n", port_id, tag, event); switch (event) { case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); return; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); return; case IO_XFER_ERROR_UNEXPECTED_PHASE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_RDY_OVERRUN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_INTERNAL_CRC_ERROR: pm8001_dbg(pm8001_ha, IOERR, "IO_XFR_ERROR_INTERNAL_CRC_ERROR\n"); /* TBC: used default set values */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_CMD_FRAME_ISSUED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); return; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, event, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } /*See the comments for mpi_ssp_completion */ static void mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, struct outbound_queue_table *circularQ, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; u32 param; u32 status; u32 tag; int i, j; u8 sata_addr_low[4]; u32 temp_sata_addr_low, temp_sata_addr_hi; u8 sata_addr_hi[4]; struct sata_completion_resp *psataPayload; struct task_status_struct *ts; struct ata_task_resp *resp ; u32 *sata_resp; struct pm8001_device *pm8001_dev; unsigned long flags; psataPayload = (struct sata_completion_resp *)(piomb + 4); status = le32_to_cpu(psataPayload->status); param = le32_to_cpu(psataPayload->param); tag = le32_to_cpu(psataPayload->tag); if (!tag) { pm8001_dbg(pm8001_ha, FAIL, "tag null\n"); return; } ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; if (t) { if (t->dev && (t->dev->lldd_dev)) pm8001_dev = t->dev->lldd_dev; } else { pm8001_dbg(pm8001_ha, FAIL, "task null\n"); return; } if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) && unlikely(!t || !t->lldd_task || !t->dev)) { pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); return; } ts = &t->task_status; if (status != IO_SUCCESS) { pm8001_dbg(pm8001_ha, FAIL, "IO failed device_id %u status 0x%x tag %d\n", pm8001_dev->device_id, status, tag); } /* Print sas address of IO failed device */ if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && (status != IO_UNDERFLOW)) { if (!((t->dev->parent) && (dev_is_expander(t->dev->parent->dev_type)))) { for (i = 0, j = 4; i <= 3 && j <= 7; i++, j++) sata_addr_low[i] = pm8001_ha->sas_addr[j]; for (i = 0, j = 0; i <= 3 && j <= 3; i++, j++) sata_addr_hi[i] = pm8001_ha->sas_addr[j]; memcpy(&temp_sata_addr_low, sata_addr_low, sizeof(sata_addr_low)); memcpy(&temp_sata_addr_hi, sata_addr_hi, sizeof(sata_addr_hi)); temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) |((temp_sata_addr_hi << 8) & 0xff0000) | ((temp_sata_addr_hi >> 8) & 0xff00) | ((temp_sata_addr_hi << 24) & 0xff000000)); temp_sata_addr_low = ((((temp_sata_addr_low >> 24) & 0xff) | ((temp_sata_addr_low << 8) & 0xff0000) | ((temp_sata_addr_low >> 8) & 0xff00) | ((temp_sata_addr_low << 24) & 0xff000000)) + pm8001_dev->attached_phy + 0x10); pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%08x%08x\n", temp_sata_addr_hi, temp_sata_addr_low); } else { pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", SAS_ADDR(t->dev->sas_addr)); } } switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); if (param == 0) { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; /* check if response is for SEND READ LOG */ if (pm8001_dev && (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { /* set new bit for abort_all */ pm8001_dev->id |= NCQ_ABORT_ALL_FLAG; /* clear bit for read log */ pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF; pm80xx_send_abort_all(pm8001_ha, pm8001_dev); /* Free the tag */ pm8001_tag_free(pm8001_ha, tag); sas_free_task(t); return; } } else { u8 len; ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PROTO_RESPONSE; ts->residual = param; pm8001_dbg(pm8001_ha, IO, "SAS_PROTO_RESPONSE len = %d\n", param); sata_resp = &psataPayload->sata_resp[0]; resp = (struct ata_task_resp *)ts->buf; if (t->ata_task.dma_xfer == 0 && t->data_dir == DMA_FROM_DEVICE) { len = sizeof(struct pio_setup_fis); pm8001_dbg(pm8001_ha, IO, "PIO read len = %d\n", len); } else if (t->ata_task.use_ncq) { len = sizeof(struct set_dev_bits_fis); pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n", len); } else { len = sizeof(struct dev_to_host_fis); pm8001_dbg(pm8001_ha, IO, "other len = %d\n", len); } if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { resp->frame_len = len; memcpy(&resp->ending_fis[0], sata_resp, len); ts->buf_valid_size = sizeof(*resp); } else pm8001_dbg(pm8001_ha, IO, "response too large\n"); } if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; /* following cases are to do cases */ case IO_UNDERFLOW: /* SATA Completion with error */ pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; ts->residual = param; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_INTERRUPTED; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); return; } break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); return; } break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); return; } break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_DMA: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_SATA_LINK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_REJECTED_NCQ_MODE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_NON_OPERATIONAL); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); return; } break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_DS_IN_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_IN_ERROR); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); return; } break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status device_id %u status 0x%x tag %d\n", pm8001_dev->device_id, status, tag); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); if (t->slow_task) complete(&t->slow_task->completion); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); } } /*See the comments for mpi_ssp_completion */ static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, struct outbound_queue_table *circularQ, void *piomb) { struct sas_task *t; struct task_status_struct *ts; struct pm8001_ccb_info *ccb; struct pm8001_device *pm8001_dev; struct sata_event_resp *psataPayload = (struct sata_event_resp *)(piomb + 4); u32 event = le32_to_cpu(psataPayload->event); u32 tag = le32_to_cpu(psataPayload->tag); u32 port_id = le32_to_cpu(psataPayload->port_id); u32 dev_id = le32_to_cpu(psataPayload->device_id); if (event) pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event); /* Check if this is NCQ error */ if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { /* find device using device id */ pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); /* send read log extension */ if (pm8001_dev) pm80xx_send_read_log(pm8001_ha, pm8001_dev); return; } ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; if (unlikely(!t || !t->lldd_task || !t->dev)) { pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); return; } ts = &t->task_status; pm8001_dbg(pm8001_ha, IOERR, "port_id:0x%x, tag:0x%x, event:0x%x\n", port_id, tag, event); switch (event) { case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_INTERRUPTED; break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: pm8001_dbg(pm8001_ha, FAIL, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_QUEUE_FULL; return; } break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_ERROR_PEER_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_ERROR_REJECTED_NCQ_MODE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_UNEXPECTED_PHASE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_RDY_OVERRUN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_CMD_FRAME_ISSUED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); break; case IO_XFER_PIO_SETUP_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_INTERNAL_CRC_ERROR: pm8001_dbg(pm8001_ha, FAIL, "IO_XFR_ERROR_INTERNAL_CRC_ERROR\n"); /* TBC: used default set values */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_DMA_ACTIVATE_TIMEOUT: pm8001_dbg(pm8001_ha, FAIL, "IO_XFR_DMA_ACTIVATE_TIMEOUT\n"); /* TBC: used default set values */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; default: pm8001_dbg(pm8001_ha, IO, "Unknown status 0x%x\n", event); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; } } /*See the comments for mpi_ssp_completion */ static void mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 param, i; struct sas_task *t; struct pm8001_ccb_info *ccb; unsigned long flags; u32 status; u32 tag; struct smp_completion_resp *psmpPayload; struct task_status_struct *ts; struct pm8001_device *pm8001_dev; psmpPayload = (struct smp_completion_resp *)(piomb + 4); status = le32_to_cpu(psmpPayload->status); tag = le32_to_cpu(psmpPayload->tag); ccb = &pm8001_ha->ccb_info[tag]; param = le32_to_cpu(psmpPayload->param); t = ccb->task; ts = &t->task_status; pm8001_dev = ccb->device; if (status) pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status); if (unlikely(!t || !t->lldd_task || !t->dev)) return; pm8001_dbg(pm8001_ha, DEV, "tag::0x%x status::0x%x\n", tag, status); switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); if (pm8001_ha->smp_exp_mode == SMP_DIRECT) { struct scatterlist *sg_resp = &t->smp_task.smp_resp; u8 *payload; void *to; pm8001_dbg(pm8001_ha, IO, "DIRECT RESPONSE Length:%d\n", param); to = kmap_atomic(sg_page(sg_resp)); payload = to + sg_resp->offset; for (i = 0; i < param; i++) { *(payload + i) = psmpPayload->_r_a[i]; pm8001_dbg(pm8001_ha, IO, "SMP Byte%d DMA data 0x%x psmp 0x%x\n", i, *(payload + i), psmpPayload->_r_a[i]); } kunmap_atomic(to); } break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PHY_DOWN; break; case IO_ERROR_HW_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_RX_FRAME: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_ERROR_INTERNAL_SMP_RESOURCE: pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_QUEUE_FULL; break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; /* not allowed case. Therefore, return failed status */ break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%xstat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } /** * pm80xx_hw_event_ack_req- For PM8001, some events need to acknowledge to FW. * @pm8001_ha: our hba card information * @Qnum: the outbound queue message number. * @SEA: source of event to ack * @port_id: port id. * @phyId: phy id. * @param0: parameter 0. * @param1: parameter 1. */ static void pm80xx_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) { struct hw_event_ack_req payload; u32 opc = OPC_INB_SAS_HW_EVENT_ACK; struct inbound_queue_table *circularQ; memset((u8 *)&payload, 0, sizeof(payload)); circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; payload.tag = cpu_to_le32(1); payload.phyid_sea_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | ((phyId & 0xFF) << 24) | (port_id & 0xFF)); payload.param0 = cpu_to_le32(param0); payload.param1 = cpu_to_le32(param1); pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); } static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, u32 phyId, u32 phy_op); static void hw_event_port_recover(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16); u32 lr_status_evt_portid = le32_to_cpu(pPayload->lr_status_evt_portid); u8 deviceType = pPayload->sas_identify.dev_type; u8 link_rate = (u8)((lr_status_evt_portid & 0xF0000000) >> 28); struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); struct pm8001_port *port = &pm8001_ha->port[port_id]; if (deviceType == SAS_END_DEVICE) { pm80xx_chip_phy_ctl_req(pm8001_ha, phy_id, PHY_NOTIFY_ENABLE_SPINUP); } port->wide_port_phymap |= (1U << phy_id); pm8001_get_lrate_mode(phy, link_rate); phy->sas_phy.oob_mode = SAS_OOB_MODE; phy->phy_state = PHY_STATE_LINK_UP_SPCV; phy->phy_attached = 1; } /** * hw_event_sas_phy_up - FW tells me a SAS phy up event. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_status_evt_portid = le32_to_cpu(pPayload->lr_status_evt_portid); u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); u8 link_rate = (u8)((lr_status_evt_portid & 0xF0000000) >> 28); u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16); u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; unsigned long flags; u8 deviceType = pPayload->sas_identify.dev_type; phy->port = port; port->port_id = port_id; port->port_state = portstate; port->wide_port_phymap |= (1U << phy_id); phy->phy_state = PHY_STATE_LINK_UP_SPCV; pm8001_dbg(pm8001_ha, MSG, "portid:%d; phyid:%d; linkrate:%d; portstate:%x; devicetype:%x\n", port_id, phy_id, link_rate, portstate, deviceType); switch (deviceType) { case SAS_PHY_UNUSED: pm8001_dbg(pm8001_ha, MSG, "device type no device.\n"); break; case SAS_END_DEVICE: pm8001_dbg(pm8001_ha, MSG, "end device.\n"); pm80xx_chip_phy_ctl_req(pm8001_ha, phy_id, PHY_NOTIFY_ENABLE_SPINUP); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; case SAS_EDGE_EXPANDER_DEVICE: pm8001_dbg(pm8001_ha, MSG, "expander device.\n"); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; case SAS_FANOUT_EXPANDER_DEVICE: pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n"); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; default: pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n", deviceType); break; } phy->phy_type |= PORT_TYPE_SAS; phy->identify.device_type = deviceType; phy->phy_attached = 1; if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; phy->sas_phy.oob_mode = SAS_OOB_MODE; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); memcpy(phy->frame_rcvd, &pPayload->sas_identify, sizeof(struct sas_identify_frame)-4); phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); if (pm8001_ha->flags == PM8001F_RUN_TIME) mdelay(200); /* delay a moment to wait for disk to spin up */ pm8001_bytes_dmaed(pm8001_ha, phy_id); } /** * hw_event_sata_phy_up - FW tells me a SATA phy up event. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); u32 lr_status_evt_portid = le32_to_cpu(pPayload->lr_status_evt_portid); u8 link_rate = (u8)((lr_status_evt_portid & 0xF0000000) >> 28); u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16); u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; unsigned long flags; pm8001_dbg(pm8001_ha, DEVIO, "port id %d, phy id %d link_rate %d portstate 0x%x\n", port_id, phy_id, link_rate, portstate); phy->port = port; port->port_id = port_id; port->port_state = portstate; phy->phy_state = PHY_STATE_LINK_UP_SPCV; port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); phy->phy_type |= PORT_TYPE_SATA; phy->phy_attached = 1; phy->sas_phy.oob_mode = SATA_OOB_MODE; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), sizeof(struct dev_to_host_fis)); phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; phy->identify.device_type = SAS_SATA_DEV; pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); pm8001_bytes_dmaed(pm8001_ha, phy_id); } /** * hw_event_phy_down - we should notify the libsas the phy is down. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_status_evt_portid = le32_to_cpu(pPayload->lr_status_evt_portid); u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16); u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; u32 port_sata = (phy->phy_type & PORT_TYPE_SATA); port->port_state = portstate; phy->identify.device_type = 0; phy->phy_attached = 0; switch (portstate) { case PORT_VALID: break; case PORT_INVALID: pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n", port_id); pm8001_dbg(pm8001_ha, MSG, " Last phy Down and port invalid\n"); if (port_sata) { phy->phy_type = 0; port->port_attached = 0; pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, port_id, phy_id, 0, 0); } sas_phy_disconnected(&phy->sas_phy); break; case PORT_IN_RESET: pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n", port_id); break; case PORT_NOT_ESTABLISHED: pm8001_dbg(pm8001_ha, MSG, " Phy Down and PORT_NOT_ESTABLISHED\n"); port->port_attached = 0; break; case PORT_LOSTCOMM: pm8001_dbg(pm8001_ha, MSG, " Phy Down and PORT_LOSTCOMM\n"); pm8001_dbg(pm8001_ha, MSG, " Last phy Down and port invalid\n"); if (port_sata) { port->port_attached = 0; phy->phy_type = 0; pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, port_id, phy_id, 0, 0); } sas_phy_disconnected(&phy->sas_phy); break; default: port->port_attached = 0; pm8001_dbg(pm8001_ha, DEVIO, " Phy Down and(default) = 0x%x\n", portstate); break; } if (port_sata && (portstate != PORT_IN_RESET)) sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, GFP_ATOMIC); } static int mpi_phy_start_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct phy_start_resp *pPayload = (struct phy_start_resp *)(piomb + 4); u32 status = le32_to_cpu(pPayload->status); u32 phy_id = le32_to_cpu(pPayload->phyid) & 0xFF; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; pm8001_dbg(pm8001_ha, INIT, "phy start resp status:0x%x, phyid:0x%x\n", status, phy_id); if (status == 0) phy->phy_state = PHY_LINK_DOWN; if (pm8001_ha->flags == PM8001F_RUN_TIME && phy->enable_completion != NULL) { complete(phy->enable_completion); phy->enable_completion = NULL; } return 0; } /** * mpi_thermal_hw_event - a thermal hw event has come. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_thermal_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct thermal_hw_event *pPayload = (struct thermal_hw_event *)(piomb + 4); u32 thermal_event = le32_to_cpu(pPayload->thermal_event); u32 rht_lht = le32_to_cpu(pPayload->rht_lht); if (thermal_event & 0x40) { pm8001_dbg(pm8001_ha, IO, "Thermal Event: Local high temperature violated!\n"); pm8001_dbg(pm8001_ha, IO, "Thermal Event: Measured local high temperature %d\n", ((rht_lht & 0xFF00) >> 8)); } if (thermal_event & 0x10) { pm8001_dbg(pm8001_ha, IO, "Thermal Event: Remote high temperature violated!\n"); pm8001_dbg(pm8001_ha, IO, "Thermal Event: Measured remote high temperature %d\n", ((rht_lht & 0xFF000000) >> 24)); } return 0; } /** * mpi_hw_event - The hw event has come. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { unsigned long flags, i; struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_status_evt_portid = le32_to_cpu(pPayload->lr_status_evt_portid); u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); u8 phy_id = (u8)((phyid_npip_portstate & 0xFF0000) >> 16); u16 eventType = (u16)((lr_status_evt_portid & 0x00FFFF00) >> 8); u8 status = (u8)((lr_status_evt_portid & 0x0F000000) >> 24); struct sas_ha_struct *sas_ha = pm8001_ha->sas; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; struct pm8001_port *port = &pm8001_ha->port[port_id]; struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; pm8001_dbg(pm8001_ha, DEV, "portid:%d phyid:%d event:0x%x status:0x%x\n", port_id, phy_id, eventType, status); switch (eventType) { case HW_EVENT_SAS_PHY_UP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n"); hw_event_sas_phy_up(pm8001_ha, piomb); break; case HW_EVENT_SATA_PHY_UP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n"); hw_event_sata_phy_up(pm8001_ha, piomb); break; case HW_EVENT_SATA_SPINUP_HOLD: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n"); sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, GFP_ATOMIC); break; case HW_EVENT_PHY_DOWN: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n"); hw_event_phy_down(pm8001_ha, piomb); if (pm8001_ha->reset_in_progress) { pm8001_dbg(pm8001_ha, MSG, "Reset in progress\n"); return 0; } phy->phy_attached = 0; phy->phy_state = PHY_LINK_DISABLE; break; case HW_EVENT_PORT_INVALID: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; /* the broadcast change primitive received, tell the LIBSAS this event to revalidate the sas domain*/ case HW_EVENT_BROADCAST_CHANGE: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, port_id, phy_id, 1, 0); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_PHY_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n"); sas_phy_disconnected(&phy->sas_phy); phy->phy_attached = 0; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); break; case HW_EVENT_BROADCAST_EXP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n"); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_INVALID_DWORD: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_INVALID_DWORD\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); break; case HW_EVENT_LINK_ERR_DISPARITY_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_DISPARITY_ERROR, port_id, phy_id, 0, 0); break; case HW_EVENT_LINK_ERR_CODE_VIOLATION: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_CODE_VIOLATION\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_CODE_VIOLATION, port_id, phy_id, 0, 0); break; case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, port_id, phy_id, 0, 0); break; case HW_EVENT_MALFUNCTION: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n"); break; case HW_EVENT_BROADCAST_SES: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n"); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_INBOUND_CRC_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_INBOUND_CRC_ERROR, port_id, phy_id, 0, 0); break; case HW_EVENT_HARD_RESET_RECEIVED: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n"); sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC); break; case HW_EVENT_ID_FRAME_TIMEOUT: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_PHY_RESET_FAILED, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_PORT_RESET_TIMER_TMO: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n"); if (!pm8001_ha->phy[phy_id].reset_completion) { pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, port_id, phy_id, 0, 0); } sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); if (pm8001_ha->phy[phy_id].reset_completion) { pm8001_ha->phy[phy_id].port_reset_status = PORT_RESET_TMO; complete(pm8001_ha->phy[phy_id].reset_completion); pm8001_ha->phy[phy_id].reset_completion = NULL; } break; case HW_EVENT_PORT_RECOVERY_TIMER_TMO: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n"); pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PORT_RECOVERY_TIMER_TMO, port_id, phy_id, 0, 0); for (i = 0; i < pm8001_ha->chip->n_phy; i++) { if (port->wide_port_phymap & (1 << i)) { phy = &pm8001_ha->phy[i]; sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, GFP_ATOMIC); port->wide_port_phymap &= ~(1 << i); } } break; case HW_EVENT_PORT_RECOVER: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n"); hw_event_port_recover(pm8001_ha, piomb); break; case HW_EVENT_PORT_RESET_COMPLETE: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n"); if (pm8001_ha->phy[phy_id].reset_completion) { pm8001_ha->phy[phy_id].port_reset_status = PORT_RESET_SUCCESS; complete(pm8001_ha->phy[phy_id].reset_completion); pm8001_ha->phy[phy_id].reset_completion = NULL; } break; case EVENT_BROADCAST_ASYNCH_EVENT: pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n"); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type 0x%x\n", eventType); break; } return 0; } /** * mpi_phy_stop_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_phy_stop_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct phy_stop_resp *pPayload = (struct phy_stop_resp *)(piomb + 4); u32 status = le32_to_cpu(pPayload->status); u32 phyid = le32_to_cpu(pPayload->phyid) & 0xFF; struct pm8001_phy *phy = &pm8001_ha->phy[phyid]; pm8001_dbg(pm8001_ha, MSG, "phy:0x%x status:0x%x\n", phyid, status); if (status == PHY_STOP_SUCCESS || status == PHY_STOP_ERR_DEVICE_ATTACHED) phy->phy_state = PHY_LINK_DISABLE; return 0; } /** * mpi_set_controller_config_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_set_controller_config_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct set_ctrl_cfg_resp *pPayload = (struct set_ctrl_cfg_resp *)(piomb + 4); u32 status = le32_to_cpu(pPayload->status); u32 err_qlfr_pgcd = le32_to_cpu(pPayload->err_qlfr_pgcd); pm8001_dbg(pm8001_ha, MSG, "SET CONTROLLER RESP: status 0x%x qlfr_pgcd 0x%x\n", status, err_qlfr_pgcd); return 0; } /** * mpi_get_controller_config_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_get_controller_config_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n"); return 0; } /** * mpi_get_phy_profile_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_get_phy_profile_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n"); return 0; } /** * mpi_flash_op_ext_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_flash_op_ext_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n"); return 0; } /** * mpi_set_phy_profile_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_set_phy_profile_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 tag; u8 page_code; int rc = 0; struct set_phy_profile_resp *pPayload = (struct set_phy_profile_resp *)(piomb + 4); u32 ppc_phyid = le32_to_cpu(pPayload->ppc_phyid); u32 status = le32_to_cpu(pPayload->status); tag = le32_to_cpu(pPayload->tag); page_code = (u8)((ppc_phyid & 0xFF00) >> 8); if (status) { /* status is FAILED */ pm8001_dbg(pm8001_ha, FAIL, "PhyProfile command failed with status 0x%08X\n", status); rc = -1; } else { if (page_code != SAS_PHY_ANALOG_SETTINGS_PAGE) { pm8001_dbg(pm8001_ha, FAIL, "Invalid page code 0x%X\n", page_code); rc = -1; } } pm8001_tag_free(pm8001_ha, tag); return rc; } /** * mpi_kek_management_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_kek_management_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct kek_mgmt_resp *pPayload = (struct kek_mgmt_resp *)(piomb + 4); u32 status = le32_to_cpu(pPayload->status); u32 kidx_new_curr_ksop = le32_to_cpu(pPayload->kidx_new_curr_ksop); u32 err_qlfr = le32_to_cpu(pPayload->err_qlfr); pm8001_dbg(pm8001_ha, MSG, "KEK MGMT RESP. Status 0x%x idx_ksop 0x%x err_qlfr 0x%x\n", status, kidx_new_curr_ksop, err_qlfr); return 0; } /** * mpi_dek_management_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_dek_management_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n"); return 0; } /** * ssp_coalesced_comp_resp - SPCv specific * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int ssp_coalesced_comp_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { pm8001_dbg(pm8001_ha, MSG, " pm80xx_addition_functionality\n"); return 0; } /** * process_one_iomb - process one outbound Queue memory block * @pm8001_ha: our hba card information * @circularQ: outbound circular queue * @piomb: IO message buffer */ static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, struct outbound_queue_table *circularQ, void *piomb) { __le32 pHeader = *(__le32 *)piomb; u32 opc = (u32)((le32_to_cpu(pHeader)) & 0xFFF); switch (opc) { case OPC_OUB_ECHO: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n"); break; case OPC_OUB_HW_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n"); mpi_hw_event(pm8001_ha, piomb); break; case OPC_OUB_THERM_HW_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_THERMAL_EVENT\n"); mpi_thermal_hw_event(pm8001_ha, piomb); break; case OPC_OUB_SSP_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n"); mpi_ssp_completion(pm8001_ha, piomb); break; case OPC_OUB_SMP_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n"); mpi_smp_completion(pm8001_ha, piomb); break; case OPC_OUB_LOCAL_PHY_CNTRL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n"); pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); break; case OPC_OUB_DEV_REGIST: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n"); pm8001_mpi_reg_resp(pm8001_ha, piomb); break; case OPC_OUB_DEREG_DEV: pm8001_dbg(pm8001_ha, MSG, "unregister the device\n"); pm8001_mpi_dereg_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_DEV_HANDLE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n"); break; case OPC_OUB_SATA_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n"); mpi_sata_completion(pm8001_ha, circularQ, piomb); break; case OPC_OUB_SATA_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n"); mpi_sata_event(pm8001_ha, circularQ, piomb); break; case OPC_OUB_SSP_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n"); mpi_ssp_event(pm8001_ha, piomb); break; case OPC_OUB_DEV_HANDLE_ARRIV: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n"); /*This is for target*/ break; case OPC_OUB_SSP_RECV_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n"); /*This is for target*/ break; case OPC_OUB_FW_FLASH_UPDATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n"); pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); break; case OPC_OUB_GPIO_RESPONSE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n"); break; case OPC_OUB_GPIO_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n"); break; case OPC_OUB_GENERAL_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n"); pm8001_mpi_general_event(pm8001_ha, piomb); break; case OPC_OUB_SSP_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_SATA_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_SAS_DIAG_MODE_START_END: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_MODE_START_END\n"); break; case OPC_OUB_SAS_DIAG_EXECUTE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n"); break; case OPC_OUB_GET_TIME_STAMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n"); break; case OPC_OUB_SAS_HW_EVENT_ACK: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n"); break; case OPC_OUB_PORT_CONTROL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n"); break; case OPC_OUB_SMP_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_NVMD_DATA: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n"); pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); break; case OPC_OUB_SET_NVMD_DATA: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n"); pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); break; case OPC_OUB_DEVICE_HANDLE_REMOVAL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n"); break; case OPC_OUB_SET_DEVICE_STATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n"); pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_DEVICE_STATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n"); break; case OPC_OUB_SET_DEV_INFO: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n"); break; /* spcv specific commands */ case OPC_OUB_PHY_START_RESP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PHY_START_RESP opcode:%x\n", opc); mpi_phy_start_resp(pm8001_ha, piomb); break; case OPC_OUB_PHY_STOP_RESP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PHY_STOP_RESP opcode:%x\n", opc); mpi_phy_stop_resp(pm8001_ha, piomb); break; case OPC_OUB_SET_CONTROLLER_CONFIG: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_CONTROLLER_CONFIG opcode:%x\n", opc); mpi_set_controller_config_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_CONTROLLER_CONFIG: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_CONTROLLER_CONFIG opcode:%x\n", opc); mpi_get_controller_config_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_PHY_PROFILE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_PHY_PROFILE opcode:%x\n", opc); mpi_get_phy_profile_resp(pm8001_ha, piomb); break; case OPC_OUB_FLASH_OP_EXT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FLASH_OP_EXT opcode:%x\n", opc); mpi_flash_op_ext_resp(pm8001_ha, piomb); break; case OPC_OUB_SET_PHY_PROFILE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_PHY_PROFILE opcode:%x\n", opc); mpi_set_phy_profile_resp(pm8001_ha, piomb); break; case OPC_OUB_KEK_MANAGEMENT_RESP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_KEK_MANAGEMENT_RESP opcode:%x\n", opc); mpi_kek_management_resp(pm8001_ha, piomb); break; case OPC_OUB_DEK_MANAGEMENT_RESP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEK_MANAGEMENT_RESP opcode:%x\n", opc); mpi_dek_management_resp(pm8001_ha, piomb); break; case OPC_OUB_SSP_COALESCED_COMP_RESP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COALESCED_COMP_RESP opcode:%x\n", opc); ssp_coalesced_comp_resp(pm8001_ha, piomb); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown outbound Queue IOMB OPC = 0x%x\n", opc); break; } } static void print_scratchpad_registers(struct pm8001_hba_info *pm8001_ha) { pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_0: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_1:0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_2: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_SCRATCH_PAD_3: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_0: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_1: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_1)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_2: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_2)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_3: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_3)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_4: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_4)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_HOST_SCRATCH_PAD_5: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_5)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_RSVD_SCRATCH_PAD_0: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_6)); pm8001_dbg(pm8001_ha, FAIL, "MSGU_RSVD_SCRATCH_PAD_1: 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_7)); } static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) { struct outbound_queue_table *circularQ; void *pMsg1 = NULL; u8 bc; u32 ret = MPI_IO_STATUS_FAIL; u32 regval; /* * Fatal errors are programmed to be signalled in irq vector * pm8001_ha->max_q_num - 1 through pm8001_ha->main_cfg_tbl.pm80xx_tbl. * fatal_err_interrupt */ if (vec == (pm8001_ha->max_q_num - 1)) { u32 mipsall_ready; if (pm8001_ha->chip_id == chip_8008 || pm8001_ha->chip_id == chip_8009) mipsall_ready = SCRATCH_PAD_MIPSALL_READY_8PORT; else mipsall_ready = SCRATCH_PAD_MIPSALL_READY_16PORT; regval = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); if ((regval & mipsall_ready) != mipsall_ready) { pm8001_ha->controller_fatal_error = true; pm8001_dbg(pm8001_ha, FAIL, "Firmware Fatal error! Regval:0x%x\n", regval); pm8001_handle_event(pm8001_ha, NULL, IO_FATAL_ERROR); print_scratchpad_registers(pm8001_ha); return ret; } } circularQ = &pm8001_ha->outbnd_q_tbl[vec]; spin_lock_irqsave(&circularQ->oq_lock, circularQ->lock_flags); do { /* spurious interrupt during setup if kexec-ing and * driver doing a doorbell access w/ the pre-kexec oq * interrupt setup. */ if (!circularQ->pi_virt) break; ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); if (MPI_IO_STATUS_SUCCESS == ret) { /* process the outbound message */ process_one_iomb(pm8001_ha, circularQ, (void *)(pMsg1 - 4)); /* free the message from the outbound circular buffer */ pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, circularQ, bc); } if (MPI_IO_STATUS_BUSY == ret) { /* Update the producer index from SPC */ circularQ->producer_index = cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); if (le32_to_cpu(circularQ->producer_index) == circularQ->consumer_idx) /* OQ is empty */ break; } } while (1); spin_unlock_irqrestore(&circularQ->oq_lock, circularQ->lock_flags); return ret; } /* DMA_... to our direction translation. */ static const u8 data_dir_flags[] = { [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ }; static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd, int mode, int length) { psmp_cmd->tag = hTag; psmp_cmd->device_id = cpu_to_le32(deviceID); if (mode == SMP_DIRECT) { length = length - 4; /* subtract crc */ psmp_cmd->len_ip_ir = cpu_to_le32(length << 16); } else { psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); } } /** * pm80xx_chip_smp_req - send an SMP task to FW * @pm8001_ha: our hba card information. * @ccb: the ccb information this request used. */ static int pm80xx_chip_smp_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { int elem, rc; struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct scatterlist *sg_req, *sg_resp, *smp_req; u32 req_len, resp_len; struct smp_req smp_cmd; u32 opc; struct inbound_queue_table *circularQ; u32 i, length; u8 *payload; u8 *to; memset(&smp_cmd, 0, sizeof(smp_cmd)); /* * DMA-map SMP request, response buffers */ sg_req = &task->smp_task.smp_req; elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); sg_resp = &task->smp_task.smp_resp; elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); if (!elem) { rc = -ENOMEM; goto err_out; } resp_len = sg_dma_len(sg_resp); /* must be in dwords */ if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_2; } opc = OPC_INB_SMP_REQUEST; circularQ = &pm8001_ha->inbnd_q_tbl[0]; smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); length = sg_req->length; pm8001_dbg(pm8001_ha, IO, "SMP Frame Length %d\n", sg_req->length); if (!(length - 8)) pm8001_ha->smp_exp_mode = SMP_DIRECT; else pm8001_ha->smp_exp_mode = SMP_INDIRECT; smp_req = &task->smp_task.smp_req; to = kmap_atomic(sg_page(smp_req)); payload = to + smp_req->offset; /* INDIRECT MODE command settings. Use DMA */ if (pm8001_ha->smp_exp_mode == SMP_INDIRECT) { pm8001_dbg(pm8001_ha, IO, "SMP REQUEST INDIRECT MODE\n"); /* for SPCv indirect mode. Place the top 4 bytes of * SMP Request header here. */ for (i = 0; i < 4; i++) smp_cmd.smp_req16[i] = *(payload + i); /* exclude top 4 bytes for SMP req header */ smp_cmd.long_smp_req.long_req_addr = cpu_to_le64((u64)sg_dma_address (&task->smp_task.smp_req) + 4); /* exclude 4 bytes for SMP req header and CRC */ smp_cmd.long_smp_req.long_req_size = cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-8); smp_cmd.long_smp_req.long_resp_addr = cpu_to_le64((u64)sg_dma_address (&task->smp_task.smp_resp)); smp_cmd.long_smp_req.long_resp_size = cpu_to_le32((u32)sg_dma_len (&task->smp_task.smp_resp)-4); } else { /* DIRECT MODE */ smp_cmd.long_smp_req.long_req_addr = cpu_to_le64((u64)sg_dma_address (&task->smp_task.smp_req)); smp_cmd.long_smp_req.long_req_size = cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); smp_cmd.long_smp_req.long_resp_addr = cpu_to_le64((u64)sg_dma_address (&task->smp_task.smp_resp)); smp_cmd.long_smp_req.long_resp_size = cpu_to_le32 ((u32)sg_dma_len(&task->smp_task.smp_resp)-4); } if (pm8001_ha->smp_exp_mode == SMP_DIRECT) { pm8001_dbg(pm8001_ha, IO, "SMP REQUEST DIRECT MODE\n"); for (i = 0; i < length; i++) if (i < 16) { smp_cmd.smp_req16[i] = *(payload + i); pm8001_dbg(pm8001_ha, IO, "Byte[%d]:%x (DMA data:%x)\n", i, smp_cmd.smp_req16[i], *(payload)); } else { smp_cmd.smp_req[i] = *(payload + i); pm8001_dbg(pm8001_ha, IO, "Byte[%d]:%x (DMA data:%x)\n", i, smp_cmd.smp_req[i], *(payload)); } } kunmap_atomic(to); build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd, pm8001_ha->smp_exp_mode, length); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &smp_cmd, sizeof(smp_cmd), 0); if (rc) goto err_out_2; return 0; err_out_2: dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); err_out: dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, DMA_TO_DEVICE); return rc; } static int check_enc_sas_cmd(struct sas_task *task) { u8 cmd = task->ssp_task.cmd->cmnd[0]; if (cmd == READ_10 || cmd == WRITE_10 || cmd == WRITE_VERIFY) return 1; else return 0; } static int check_enc_sat_cmd(struct sas_task *task) { int ret = 0; switch (task->ata_task.fis.command) { case ATA_CMD_FPDMA_READ: case ATA_CMD_READ_EXT: case ATA_CMD_READ: case ATA_CMD_FPDMA_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE: case ATA_CMD_PIO_READ: case ATA_CMD_PIO_READ_EXT: case ATA_CMD_PIO_WRITE: case ATA_CMD_PIO_WRITE_EXT: ret = 1; break; default: ret = 0; break; } return ret; } /** * pm80xx_chip_ssp_io_req - send an SSP task to FW * @pm8001_ha: our hba card information. * @ccb: the ccb information this request used. */ static int pm80xx_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct ssp_ini_io_start_req ssp_cmd; u32 tag = ccb->ccb_tag; int ret; u64 phys_addr, start_addr, end_addr; u32 end_addr_high, end_addr_low; struct inbound_queue_table *circularQ; u32 q_index, cpu_id; u32 opc = OPC_INB_SSPINIIOSTART; memset(&ssp_cmd, 0, sizeof(ssp_cmd)); memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); /* data address domain added for spcv; set to 0 by host, * used internally by controller * 0 for SAS 1.1 and SAS 2.0 compatible TLR */ ssp_cmd.dad_dir_m_tlr = cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0); ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); ssp_cmd.tag = cpu_to_le32(tag); if (task->ssp_task.enable_first_burst) ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, task->ssp_task.cmd->cmd_len); cpu_id = smp_processor_id(); q_index = (u32) (cpu_id) % (pm8001_ha->max_q_num); circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; /* Check if encryption is set */ if (pm8001_ha->chip->encrypt && !(pm8001_ha->encrypt_info.status) && check_enc_sas_cmd(task)) { pm8001_dbg(pm8001_ha, IO, "Encryption enabled.Sending Encrypt SAS command 0x%x\n", task->ssp_task.cmd->cmnd[0]); opc = OPC_INB_SSP_INI_DIF_ENC_IO; /* enable encryption. 0 for SAS 1.1 and SAS 2.0 compatible TLR*/ ssp_cmd.dad_dir_m_tlr = cpu_to_le32 ((data_dir_flags[task->data_dir] << 8) | 0x20 | 0x0); /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; ssp_cmd.enc_addr_low = cpu_to_le32(lower_32_bits(phys_addr)); ssp_cmd.enc_addr_high = cpu_to_le32(upper_32_bits(phys_addr)); ssp_cmd.enc_esgl = cpu_to_le32(1<<31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); ssp_cmd.enc_addr_low = cpu_to_le32(lower_32_bits(dma_addr)); ssp_cmd.enc_addr_high = cpu_to_le32(upper_32_bits(dma_addr)); ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len); ssp_cmd.enc_esgl = 0; /* Check 4G Boundary */ start_addr = cpu_to_le64(dma_addr); end_addr = (start_addr + ssp_cmd.enc_len) - 1; end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); if (end_addr_high != ssp_cmd.enc_addr_high) { pm8001_dbg(pm8001_ha, FAIL, "The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n", start_addr, ssp_cmd.enc_len, end_addr_high, end_addr_low); pm8001_chip_make_sg(task->scatter, 1, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; ssp_cmd.enc_addr_low = cpu_to_le32(lower_32_bits(phys_addr)); ssp_cmd.enc_addr_high = cpu_to_le32(upper_32_bits(phys_addr)); ssp_cmd.enc_esgl = cpu_to_le32(1<<31); } } else if (task->num_scatter == 0) { ssp_cmd.enc_addr_low = 0; ssp_cmd.enc_addr_high = 0; ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len); ssp_cmd.enc_esgl = 0; } /* XTS mode. All other fields are 0 */ ssp_cmd.key_cmode = 0x6 << 4; /* set tweak values. Should be the start lba */ ssp_cmd.twk_val0 = cpu_to_le32((task->ssp_task.cmd->cmnd[2] << 24) | (task->ssp_task.cmd->cmnd[3] << 16) | (task->ssp_task.cmd->cmnd[4] << 8) | (task->ssp_task.cmd->cmnd[5])); } else { pm8001_dbg(pm8001_ha, IO, "Sending Normal SAS command 0x%x inb q %x\n", task->ssp_task.cmd->cmnd[0], q_index); /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); ssp_cmd.esgl = cpu_to_le32(1<<31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); ssp_cmd.len = cpu_to_le32(task->total_xfer_len); ssp_cmd.esgl = 0; /* Check 4G Boundary */ start_addr = cpu_to_le64(dma_addr); end_addr = (start_addr + ssp_cmd.len) - 1; end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); if (end_addr_high != ssp_cmd.addr_high) { pm8001_dbg(pm8001_ha, FAIL, "The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n", start_addr, ssp_cmd.len, end_addr_high, end_addr_low); pm8001_chip_make_sg(task->scatter, 1, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); ssp_cmd.esgl = cpu_to_le32(1<<31); } } else if (task->num_scatter == 0) { ssp_cmd.addr_low = 0; ssp_cmd.addr_high = 0; ssp_cmd.len = cpu_to_le32(task->total_xfer_len); ssp_cmd.esgl = 0; } } ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd, sizeof(ssp_cmd), q_index); return ret; } static int pm80xx_chip_sata_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; struct ata_queued_cmd *qc = task->uldd_task; u32 tag = ccb->ccb_tag; int ret; u32 q_index, cpu_id; struct sata_start_req sata_cmd; u32 hdr_tag, ncg_tag = 0; u64 phys_addr, start_addr, end_addr; u32 end_addr_high, end_addr_low; u32 ATAP = 0x0; u32 dir; struct inbound_queue_table *circularQ; unsigned long flags; u32 opc = OPC_INB_SATA_HOST_OPSTART; memset(&sata_cmd, 0, sizeof(sata_cmd)); cpu_id = smp_processor_id(); q_index = (u32) (cpu_id) % (pm8001_ha->max_q_num); circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; if (task->data_dir == DMA_NONE) { ATAP = 0x04; /* no data*/ pm8001_dbg(pm8001_ha, IO, "no data\n"); } else if (likely(!task->ata_task.device_control_reg_update)) { if (task->ata_task.dma_xfer) { ATAP = 0x06; /* DMA */ pm8001_dbg(pm8001_ha, IO, "DMA\n"); } else { ATAP = 0x05; /* PIO*/ pm8001_dbg(pm8001_ha, IO, "PIO\n"); } if (task->ata_task.use_ncq && dev->sata_dev.class != ATA_DEV_ATAPI) { ATAP = 0x07; /* FPDMA */ pm8001_dbg(pm8001_ha, IO, "FPDMA\n"); } } if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); ncg_tag = hdr_tag; } dir = data_dir_flags[task->data_dir] << 8; sata_cmd.tag = cpu_to_le32(tag); sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); sata_cmd.sata_fis = task->ata_task.fis; if (likely(!task->ata_task.device_control_reg_update)) sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ /* Check if encryption is set */ if (pm8001_ha->chip->encrypt && !(pm8001_ha->encrypt_info.status) && check_enc_sat_cmd(task)) { pm8001_dbg(pm8001_ha, IO, "Encryption enabled.Sending Encrypt SATA cmd 0x%x\n", sata_cmd.sata_fis.command); opc = OPC_INB_SATA_DIF_ENC_IO; /* set encryption bit */ sata_cmd.ncqtag_atap_dir_m_dad = cpu_to_le32(((ncg_tag & 0xff)<<16)| ((ATAP & 0x3f) << 10) | 0x20 | dir); /* dad (bit 0-1) is 0 */ /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; sata_cmd.enc_addr_low = lower_32_bits(phys_addr); sata_cmd.enc_addr_high = upper_32_bits(phys_addr); sata_cmd.enc_esgl = cpu_to_le32(1 << 31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); sata_cmd.enc_addr_low = lower_32_bits(dma_addr); sata_cmd.enc_addr_high = upper_32_bits(dma_addr); sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len); sata_cmd.enc_esgl = 0; /* Check 4G Boundary */ start_addr = cpu_to_le64(dma_addr); end_addr = (start_addr + sata_cmd.enc_len) - 1; end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); if (end_addr_high != sata_cmd.enc_addr_high) { pm8001_dbg(pm8001_ha, FAIL, "The sg list address start_addr=0x%016llx data_len=0x%x end_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n", start_addr, sata_cmd.enc_len, end_addr_high, end_addr_low); pm8001_chip_make_sg(task->scatter, 1, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; sata_cmd.enc_addr_low = lower_32_bits(phys_addr); sata_cmd.enc_addr_high = upper_32_bits(phys_addr); sata_cmd.enc_esgl = cpu_to_le32(1 << 31); } } else if (task->num_scatter == 0) { sata_cmd.enc_addr_low = 0; sata_cmd.enc_addr_high = 0; sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len); sata_cmd.enc_esgl = 0; } /* XTS mode. All other fields are 0 */ sata_cmd.key_index_mode = 0x6 << 4; /* set tweak values. Should be the start lba */ sata_cmd.twk_val0 = cpu_to_le32((sata_cmd.sata_fis.lbal_exp << 24) | (sata_cmd.sata_fis.lbah << 16) | (sata_cmd.sata_fis.lbam << 8) | (sata_cmd.sata_fis.lbal)); sata_cmd.twk_val1 = cpu_to_le32((sata_cmd.sata_fis.lbah_exp << 8) | (sata_cmd.sata_fis.lbam_exp)); } else { pm8001_dbg(pm8001_ha, IO, "Sending Normal SATA command 0x%x inb %x\n", sata_cmd.sata_fis.command, q_index); /* dad (bit 0-1) is 0 */ sata_cmd.ncqtag_atap_dir_m_dad = cpu_to_le32(((ncg_tag & 0xff)<<16) | ((ATAP & 0x3f) << 10) | dir); /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; sata_cmd.addr_low = lower_32_bits(phys_addr); sata_cmd.addr_high = upper_32_bits(phys_addr); sata_cmd.esgl = cpu_to_le32(1 << 31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); sata_cmd.addr_low = lower_32_bits(dma_addr); sata_cmd.addr_high = upper_32_bits(dma_addr); sata_cmd.len = cpu_to_le32(task->total_xfer_len); sata_cmd.esgl = 0; /* Check 4G Boundary */ start_addr = cpu_to_le64(dma_addr); end_addr = (start_addr + sata_cmd.len) - 1; end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); if (end_addr_high != sata_cmd.addr_high) { pm8001_dbg(pm8001_ha, FAIL, "The sg list address start_addr=0x%016llx data_len=0x%xend_addr_high=0x%08x end_addr_low=0x%08x has crossed 4G boundary\n", start_addr, sata_cmd.len, end_addr_high, end_addr_low); pm8001_chip_make_sg(task->scatter, 1, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; sata_cmd.addr_low = lower_32_bits(phys_addr); sata_cmd.addr_high = upper_32_bits(phys_addr); sata_cmd.esgl = cpu_to_le32(1 << 31); } } else if (task->num_scatter == 0) { sata_cmd.addr_low = 0; sata_cmd.addr_high = 0; sata_cmd.len = cpu_to_le32(task->total_xfer_len); sata_cmd.esgl = 0; } /* scsi cdb */ sata_cmd.atapi_scsi_cdb[0] = cpu_to_le32(((task->ata_task.atapi_packet[0]) | (task->ata_task.atapi_packet[1] << 8) | (task->ata_task.atapi_packet[2] << 16) | (task->ata_task.atapi_packet[3] << 24))); sata_cmd.atapi_scsi_cdb[1] = cpu_to_le32(((task->ata_task.atapi_packet[4]) | (task->ata_task.atapi_packet[5] << 8) | (task->ata_task.atapi_packet[6] << 16) | (task->ata_task.atapi_packet[7] << 24))); sata_cmd.atapi_scsi_cdb[2] = cpu_to_le32(((task->ata_task.atapi_packet[8]) | (task->ata_task.atapi_packet[9] << 8) | (task->ata_task.atapi_packet[10] << 16) | (task->ata_task.atapi_packet[11] << 24))); sata_cmd.atapi_scsi_cdb[3] = cpu_to_le32(((task->ata_task.atapi_packet[12]) | (task->ata_task.atapi_packet[13] << 8) | (task->ata_task.atapi_packet[14] << 16) | (task->ata_task.atapi_packet[15] << 24))); } /* Check for read log for failed drive and return */ if (sata_cmd.sata_fis.command == 0x2f) { if (pm8001_ha_dev && ((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { struct task_status_struct *ts; pm8001_ha_dev->id &= 0xDFFFFFFF; ts = &task->task_status; spin_lock_irqsave(&task->task_state_lock, flags); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; task->task_state_flags &= ~SAS_TASK_STATE_PENDING; task->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&task->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n", task, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); return 0; } else { spin_unlock_irqrestore(&task->task_state_lock, flags); pm8001_ccb_task_free_done(pm8001_ha, task, ccb, tag); atomic_dec(&pm8001_ha_dev->running_req); return 0; } } } trace_pm80xx_request_issue(pm8001_ha->id, ccb->device ? ccb->device->attached_phy : PM8001_MAX_PHYS, ccb->ccb_tag, opc, qc ? qc->tf.command : 0, // ata opcode ccb->device ? atomic_read(&ccb->device->running_req) : 0); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, sizeof(sata_cmd), q_index); return ret; } /** * pm80xx_chip_phy_start_req - start phy via PHY_START COMMAND * @pm8001_ha: our hba card information. * @phy_id: the phy id which we wanted to start up. */ static int pm80xx_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) { struct phy_start_req payload; struct inbound_queue_table *circularQ; int ret; u32 tag = 0x01; u32 opcode = OPC_INB_PHYSTART; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); payload.tag = cpu_to_le32(tag); pm8001_dbg(pm8001_ha, INIT, "PHY START REQ for phy_id %d\n", phy_id); payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | LINKMODE_AUTO | pm8001_ha->link_rate | phy_id); /* SSC Disable and SAS Analog ST configuration */ /* payload.ase_sh_lm_slr_phyid = cpu_to_le32(SSC_DISABLE_30 | SAS_ASE | SPINHOLD_DISABLE | LINKMODE_AUTO | LINKRATE_15 | LINKRATE_30 | LINKRATE_60 | phy_id); Have to add "SAS PHY Analog Setup SPASTI 1 Byte" Based on need */ payload.sas_identify.dev_type = SAS_END_DEVICE; payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; memcpy(payload.sas_identify.sas_addr, &pm8001_ha->sas_addr, SAS_ADDR_SIZE); payload.sas_identify.phy_id = phy_id; ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, sizeof(payload), 0); return ret; } /** * pm80xx_chip_phy_stop_req - start phy via PHY_STOP COMMAND * @pm8001_ha: our hba card information. * @phy_id: the phy id which we wanted to start up. */ static int pm80xx_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) { struct phy_stop_req payload; struct inbound_queue_table *circularQ; int ret; u32 tag = 0x01; u32 opcode = OPC_INB_PHYSTOP; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); payload.tag = cpu_to_le32(tag); payload.phy_id = cpu_to_le32(phy_id); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, sizeof(payload), 0); return ret; } /* * see comments on pm8001_mpi_reg_resp. */ static int pm80xx_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_dev, u32 flag) { struct reg_dev_req payload; u32 opc; u32 stp_sspsmp_sata = 0x4; struct inbound_queue_table *circularQ; u32 linkrate, phy_id; int rc, tag = 0xdeadbeef; struct pm8001_ccb_info *ccb; u8 retryFlag = 0x1; u16 firstBurstSize = 0; u16 ITNT = 2000; struct domain_device *dev = pm8001_dev->sas_device; struct domain_device *parent_dev = dev->parent; struct pm8001_port *port = dev->port->lldd_port; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return rc; ccb = &pm8001_ha->ccb_info[tag]; ccb->device = pm8001_dev; ccb->ccb_tag = tag; payload.tag = cpu_to_le32(tag); if (flag == 1) { stp_sspsmp_sata = 0x02; /*direct attached sata */ } else { if (pm8001_dev->dev_type == SAS_SATA_DEV) stp_sspsmp_sata = 0x00; /* stp*/ else if (pm8001_dev->dev_type == SAS_END_DEVICE || dev_is_expander(pm8001_dev->dev_type)) stp_sspsmp_sata = 0x01; /*ssp or smp*/ } if (parent_dev && dev_is_expander(parent_dev->dev_type)) phy_id = parent_dev->ex_dev.ex_phy->phy_id; else phy_id = pm8001_dev->attached_phy; opc = OPC_INB_REG_DEV; linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? pm8001_dev->sas_device->linkrate : dev->port->linkrate; payload.phyid_portid = cpu_to_le32(((port->port_id) & 0xFF) | ((phy_id & 0xFF) << 8)); payload.dtype_dlr_mcn_ir_retry = cpu_to_le32((retryFlag & 0x01) | ((linkrate & 0x0F) << 24) | ((stp_sspsmp_sata & 0x03) << 28)); payload.firstburstsize_ITNexustimeout = cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, SAS_ADDR_SIZE); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } /** * pm80xx_chip_phy_ctl_req - support the local phy operation * @pm8001_ha: our hba card information. * @phyId: the phy id which we wanted to operate * @phy_op: phy operation to request */ static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, u32 phyId, u32 phy_op) { u32 tag; int rc; struct local_phy_ctl_req payload; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_LOCAL_PHY_CONTROL; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return rc; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); payload.phyop_phyid = cpu_to_le32(((phy_op & 0xFF) << 8) | (phyId & 0xFF)); return pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); } static u32 pm80xx_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) { #ifdef PM8001_USE_MSIX return 1; #else u32 value; value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); if (value) return 1; return 0; #endif } /** * pm80xx_chip_isr - PM8001 isr handler. * @pm8001_ha: our hba card information. * @vec: irq number. */ static irqreturn_t pm80xx_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) { pm80xx_chip_interrupt_disable(pm8001_ha, vec); pm8001_dbg(pm8001_ha, DEVIO, "irq vec %d, ODMR:0x%x\n", vec, pm8001_cr32(pm8001_ha, 0, 0x30)); process_oq(pm8001_ha, vec); pm80xx_chip_interrupt_enable(pm8001_ha, vec); return IRQ_HANDLED; } static void mpi_set_phy_profile_req(struct pm8001_hba_info *pm8001_ha, u32 operation, u32 phyid, u32 length, u32 *buf) { u32 tag, i, j = 0; int rc; struct set_phy_profile_req payload; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SET_PHY_PROFILE; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) pm8001_dbg(pm8001_ha, FAIL, "Invalid tag\n"); circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); payload.ppc_phyid = (((operation & 0xF) << 8) | (phyid & 0xFF)); pm8001_dbg(pm8001_ha, INIT, " phy profile command for phy %x ,length is %d\n", payload.ppc_phyid, length); for (i = length; i < (length + PHY_DWORD_LENGTH - 1); i++) { payload.reserved[j] = cpu_to_le32(*((u32 *)buf + i)); j++; } rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); } void pm8001_set_phy_profile(struct pm8001_hba_info *pm8001_ha, u32 length, u8 *buf) { u32 i; for (i = 0; i < pm8001_ha->chip->n_phy; i++) { mpi_set_phy_profile_req(pm8001_ha, SAS_PHY_ANALOG_SETTINGS_PAGE, i, length, (u32 *)buf); length = length + PHY_DWORD_LENGTH; } pm8001_dbg(pm8001_ha, INIT, "phy settings completed\n"); } void pm8001_set_phy_profile_single(struct pm8001_hba_info *pm8001_ha, u32 phy, u32 length, u32 *buf) { u32 tag, opc; int rc, i; struct set_phy_profile_req payload; struct inbound_queue_table *circularQ; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) pm8001_dbg(pm8001_ha, INIT, "Invalid tag\n"); circularQ = &pm8001_ha->inbnd_q_tbl[0]; opc = OPC_INB_SET_PHY_PROFILE; payload.tag = cpu_to_le32(tag); payload.ppc_phyid = (((SAS_PHY_ANALOG_SETTINGS_PAGE & 0xF) << 8) | (phy & 0xFF)); for (i = 0; i < length; i++) payload.reserved[i] = cpu_to_le32(*(buf + i)); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); pm8001_dbg(pm8001_ha, INIT, "PHY %d settings applied\n", phy); } const struct pm8001_dispatch pm8001_80xx_dispatch = { .name = "pmc80xx", .chip_init = pm80xx_chip_init, .chip_soft_rst = pm80xx_chip_soft_rst, .chip_rst = pm80xx_hw_chip_rst, .chip_iounmap = pm8001_chip_iounmap, .isr = pm80xx_chip_isr, .is_our_interrupt = pm80xx_chip_is_our_interrupt, .isr_process_oq = process_oq, .interrupt_enable = pm80xx_chip_interrupt_enable, .interrupt_disable = pm80xx_chip_interrupt_disable, .make_prd = pm8001_chip_make_sg, .smp_req = pm80xx_chip_smp_req, .ssp_io_req = pm80xx_chip_ssp_io_req, .sata_req = pm80xx_chip_sata_req, .phy_start_req = pm80xx_chip_phy_start_req, .phy_stop_req = pm80xx_chip_phy_stop_req, .reg_dev_req = pm80xx_chip_reg_dev_req, .dereg_dev_req = pm8001_chip_dereg_dev_req, .phy_ctl_req = pm80xx_chip_phy_ctl_req, .task_abort = pm8001_chip_abort_task, .ssp_tm_req = pm8001_chip_ssp_tm_req, .get_nvmd_req = pm8001_chip_get_nvmd_req, .set_nvmd_req = pm8001_chip_set_nvmd_req, .fw_flash_update_req = pm8001_chip_fw_flash_update_req, .set_dev_state_req = pm8001_chip_set_dev_state_req, .fatal_errors = pm80xx_fatal_errors, .hw_event_ack_req = pm80xx_hw_event_ack_req, };