/* * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd * http://www.samsung.com * * Copyright (C) 2013 Google, Inc * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/bcd.h> #include <linux/regmap.h> #include <linux/rtc.h> #include <linux/platform_device.h> #include <linux/mfd/samsung/core.h> #include <linux/mfd/samsung/irq.h> #include <linux/mfd/samsung/rtc.h> #include <linux/mfd/samsung/s2mps14.h> /* * Maximum number of retries for checking changes in UDR field * of S5M_RTC_UDR_CON register (to limit possible endless loop). * * After writing to RTC registers (setting time or alarm) read the UDR field * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have * been transferred. */ #define UDR_READ_RETRY_CNT 5 /* Registers used by the driver which are different between chipsets. */ struct s5m_rtc_reg_config { /* Number of registers used for setting time/alarm0/alarm1 */ unsigned int regs_count; /* First register for time, seconds */ unsigned int time; /* RTC control register */ unsigned int ctrl; /* First register for alarm 0, seconds */ unsigned int alarm0; /* First register for alarm 1, seconds */ unsigned int alarm1; /* SMPL/WTSR register */ unsigned int smpl_wtsr; /* * Register for update flag (UDR). Typically setting UDR field to 1 * will enable update of time or alarm register. Then it will be * auto-cleared after successful update. */ unsigned int rtc_udr_update; /* Mask for UDR field in 'rtc_udr_update' register */ unsigned int rtc_udr_mask; }; /* Register map for S5M8763 and S5M8767 */ static const struct s5m_rtc_reg_config s5m_rtc_regs = { .regs_count = 8, .time = S5M_RTC_SEC, .ctrl = S5M_ALARM1_CONF, .alarm0 = S5M_ALARM0_SEC, .alarm1 = S5M_ALARM1_SEC, .smpl_wtsr = S5M_WTSR_SMPL_CNTL, .rtc_udr_update = S5M_RTC_UDR_CON, .rtc_udr_mask = S5M_RTC_UDR_MASK, }; /* * Register map for S2MPS14. * It may be also suitable for S2MPS11 but this was not tested. */ static const struct s5m_rtc_reg_config s2mps_rtc_regs = { .regs_count = 7, .time = S2MPS_RTC_SEC, .ctrl = S2MPS_RTC_CTRL, .alarm0 = S2MPS_ALARM0_SEC, .alarm1 = S2MPS_ALARM1_SEC, .smpl_wtsr = S2MPS_WTSR_SMPL_CNTL, .rtc_udr_update = S2MPS_RTC_UDR_CON, .rtc_udr_mask = S2MPS_RTC_WUDR_MASK, }; struct s5m_rtc_info { struct device *dev; struct i2c_client *i2c; struct sec_pmic_dev *s5m87xx; struct regmap *regmap; struct rtc_device *rtc_dev; int irq; int device_type; int rtc_24hr_mode; bool wtsr_smpl; const struct s5m_rtc_reg_config *regs; }; static const struct regmap_config s5m_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S5M_RTC_REG_MAX, }; static const struct regmap_config s2mps14_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = S2MPS_RTC_REG_MAX, }; static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm, int rtc_24hr_mode) { tm->tm_sec = data[RTC_SEC] & 0x7f; tm->tm_min = data[RTC_MIN] & 0x7f; if (rtc_24hr_mode) { tm->tm_hour = data[RTC_HOUR] & 0x1f; } else { tm->tm_hour = data[RTC_HOUR] & 0x0f; if (data[RTC_HOUR] & HOUR_PM_MASK) tm->tm_hour += 12; } tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f); tm->tm_mday = data[RTC_DATE] & 0x1f; tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100; tm->tm_yday = 0; tm->tm_isdst = 0; } static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = tm->tm_sec; data[RTC_MIN] = tm->tm_min; if (tm->tm_hour >= 12) data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK; else data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK; data[RTC_WEEKDAY] = 1 << tm->tm_wday; data[RTC_DATE] = tm->tm_mday; data[RTC_MONTH] = tm->tm_mon + 1; data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0; if (tm->tm_year < 100) { pr_err("s5m8767 RTC cannot handle the year %d.\n", 1900 + tm->tm_year); return -EINVAL; } else { return 0; } } /* * Read RTC_UDR_CON register and wait till UDR field is cleared. * This indicates that time/alarm update ended. */ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info) { int ret, retry = UDR_READ_RETRY_CNT; unsigned int data; do { ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data); } while (--retry && (data & info->regs->rtc_udr_mask) && !ret); if (!retry) dev_err(info->dev, "waiting for UDR update, reached max number of retries\n"); return ret; } static inline int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info, struct rtc_wkalrm *alarm) { int ret; unsigned int val; switch (info->device_type) { case S5M8767X: case S5M8763X: ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val); val &= S5M_ALARM0_STATUS; break; case S2MPS14X: ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2, &val); val &= S2MPS_ALARM0_STATUS; break; default: return -EINVAL; } if (ret < 0) return ret; if (val) alarm->pending = 1; else alarm->pending = 0; return 0; } static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info) { int ret; unsigned int data; ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data); if (ret < 0) { dev_err(info->dev, "failed to read update reg(%d)\n", ret); return ret; } data |= info->regs->rtc_udr_mask; if (info->device_type == S5M8763X || info->device_type == S5M8767X) data |= S5M_RTC_TIME_EN_MASK; ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data); if (ret < 0) { dev_err(info->dev, "failed to write update reg(%d)\n", ret); return ret; } ret = s5m8767_wait_for_udr_update(info); return ret; } static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) { int ret; unsigned int data; ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data); if (ret < 0) { dev_err(info->dev, "%s: fail to read update reg(%d)\n", __func__, ret); return ret; } data |= info->regs->rtc_udr_mask; switch (info->device_type) { case S5M8763X: case S5M8767X: data &= ~S5M_RTC_TIME_EN_MASK; break; case S2MPS14X: data |= S2MPS_RTC_RUDR_MASK; break; default: return -EINVAL; } ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data); if (ret < 0) { dev_err(info->dev, "%s: fail to write update reg(%d)\n", __func__, ret); return ret; } ret = s5m8767_wait_for_udr_update(info); return ret; } static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm) { tm->tm_sec = bcd2bin(data[RTC_SEC]); tm->tm_min = bcd2bin(data[RTC_MIN]); if (data[RTC_HOUR] & HOUR_12) { tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f); if (data[RTC_HOUR] & HOUR_PM) tm->tm_hour += 12; } else { tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f); } tm->tm_wday = data[RTC_WEEKDAY] & 0x07; tm->tm_mday = bcd2bin(data[RTC_DATE]); tm->tm_mon = bcd2bin(data[RTC_MONTH]); tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100; tm->tm_year -= 1900; } static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = bin2bcd(tm->tm_sec); data[RTC_MIN] = bin2bcd(tm->tm_min); data[RTC_HOUR] = bin2bcd(tm->tm_hour); data[RTC_WEEKDAY] = tm->tm_wday; data[RTC_DATE] = bin2bcd(tm->tm_mday); data[RTC_MONTH] = bin2bcd(tm->tm_mon); data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100); data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100); } static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret; if (info->device_type == S2MPS14X) { ret = regmap_update_bits(info->regmap, info->regs->rtc_udr_update, S2MPS_RTC_RUDR_MASK, S2MPS_RTC_RUDR_MASK); if (ret) { dev_err(dev, "Failed to prepare registers for time reading: %d\n", ret); return ret; } } ret = regmap_bulk_read(info->regmap, info->regs->time, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, tm); break; case S5M8767X: case S2MPS14X: s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode); break; default: return -EINVAL; } dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); return rtc_valid_tm(tm); } static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret = 0; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(tm, data); break; case S5M8767X: case S2MPS14X: ret = s5m8767_tm_to_data(tm, data); break; default: return -EINVAL; } if (ret < 0) return ret; dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday); ret = regmap_raw_write(info->regmap, info->regs->time, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_time_reg(info); return ret; } static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; unsigned int val; int ret, i; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; switch (info->device_type) { case S5M8763X: s5m8763_data_to_tm(data, &alrm->time); ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val); if (ret < 0) return ret; alrm->enabled = !!val; break; case S5M8767X: case S2MPS14X: s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); alrm->enabled = 0; for (i = 0; i < info->regs->regs_count; i++) { if (data[i] & ALARM_ENABLE_MASK) { alrm->enabled = 1; break; } } break; default: return -EINVAL; } dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min, alrm->time.tm_sec, alrm->time.tm_wday); ret = s5m_check_peding_alarm_interrupt(info, alrm); return 0; } static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info) { u8 data[info->regs->regs_count]; int ret, i; struct rtc_time tm; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); switch (info->device_type) { case S5M8763X: ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0); break; case S5M8767X: case S2MPS14X: for (i = 0; i < info->regs->regs_count; i++) data[i] &= ~ALARM_ENABLE_MASK; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } return ret; } static int s5m_rtc_start_alarm(struct s5m_rtc_info *info) { int ret; u8 data[info->regs->regs_count]; u8 alarm0_conf; struct rtc_time tm; ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode); dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday); switch (info->device_type) { case S5M8763X: alarm0_conf = 0x77; ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf); break; case S5M8767X: case S2MPS14X: data[RTC_SEC] |= ALARM_ENABLE_MASK; data[RTC_MIN] |= ALARM_ENABLE_MASK; data[RTC_HOUR] |= ALARM_ENABLE_MASK; data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK; if (data[RTC_DATE] & 0x1f) data[RTC_DATE] |= ALARM_ENABLE_MASK; if (data[RTC_MONTH] & 0xf) data[RTC_MONTH] |= ALARM_ENABLE_MASK; if (data[RTC_YEAR1] & 0x7f) data[RTC_YEAR1] |= ALARM_ENABLE_MASK; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); break; default: return -EINVAL; } return ret; } static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct s5m_rtc_info *info = dev_get_drvdata(dev); u8 data[info->regs->regs_count]; int ret; switch (info->device_type) { case S5M8763X: s5m8763_tm_to_data(&alrm->time, data); break; case S5M8767X: case S2MPS14X: s5m8767_tm_to_data(&alrm->time, data); break; default: return -EINVAL; } dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__, 1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon, alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min, alrm->time.tm_sec, alrm->time.tm_wday); ret = s5m_rtc_stop_alarm(info); if (ret < 0) return ret; ret = regmap_raw_write(info->regmap, info->regs->alarm0, data, info->regs->regs_count); if (ret < 0) return ret; ret = s5m8767_rtc_set_alarm_reg(info); if (ret < 0) return ret; if (alrm->enabled) ret = s5m_rtc_start_alarm(info); return ret; } static int s5m_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct s5m_rtc_info *info = dev_get_drvdata(dev); if (enabled) return s5m_rtc_start_alarm(info); else return s5m_rtc_stop_alarm(info); } static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data) { struct s5m_rtc_info *info = data; rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static const struct rtc_class_ops s5m_rtc_ops = { .read_time = s5m_rtc_read_time, .set_time = s5m_rtc_set_time, .read_alarm = s5m_rtc_read_alarm, .set_alarm = s5m_rtc_set_alarm, .alarm_irq_enable = s5m_rtc_alarm_irq_enable, }; static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable) { int ret; ret = regmap_update_bits(info->regmap, info->regs->smpl_wtsr, WTSR_ENABLE_MASK, enable ? WTSR_ENABLE_MASK : 0); if (ret < 0) dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n", __func__, ret); } static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable) { int ret; ret = regmap_update_bits(info->regmap, info->regs->smpl_wtsr, SMPL_ENABLE_MASK, enable ? SMPL_ENABLE_MASK : 0); if (ret < 0) dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n", __func__, ret); } static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info) { u8 data[2]; int ret; switch (info->device_type) { case S5M8763X: case S5M8767X: /* UDR update time. Default of 7.32 ms is too long. */ ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON, S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US); if (ret < 0) dev_err(info->dev, "%s: fail to change UDR time: %d\n", __func__, ret); /* Set RTC control register : Binary mode, 24hour mode */ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2); break; case S2MPS14X: data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); ret = regmap_write(info->regmap, info->regs->ctrl, data[0]); break; default: return -EINVAL; } info->rtc_24hr_mode = 1; if (ret < 0) { dev_err(info->dev, "%s: fail to write controlm reg(%d)\n", __func__, ret); return ret; } return ret; } static int s5m_rtc_probe(struct platform_device *pdev) { struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent); struct sec_platform_data *pdata = s5m87xx->pdata; struct s5m_rtc_info *info; const struct regmap_config *regmap_cfg; int ret, alarm_irq; if (!pdata) { dev_err(pdev->dev.parent, "Platform data not supplied\n"); return -ENODEV; } info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; switch (pdata->device_type) { case S2MPS14X: regmap_cfg = &s2mps14_rtc_regmap_config; info->regs = &s2mps_rtc_regs; alarm_irq = S2MPS14_IRQ_RTCA0; break; case S5M8763X: regmap_cfg = &s5m_rtc_regmap_config; info->regs = &s5m_rtc_regs; alarm_irq = S5M8763_IRQ_ALARM0; break; case S5M8767X: regmap_cfg = &s5m_rtc_regmap_config; info->regs = &s5m_rtc_regs; alarm_irq = S5M8767_IRQ_RTCA1; break; default: dev_err(&pdev->dev, "Device type is not supported by RTC driver\n"); return -ENODEV; } info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR); if (!info->i2c) { dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n"); return -ENODEV; } info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg); if (IS_ERR(info->regmap)) { ret = PTR_ERR(info->regmap); dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n", ret); goto err; } info->dev = &pdev->dev; info->s5m87xx = s5m87xx; info->device_type = s5m87xx->device_type; info->wtsr_smpl = s5m87xx->wtsr_smpl; if (s5m87xx->irq_data) { info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq); if (info->irq <= 0) { ret = -EINVAL; dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n", alarm_irq); goto err; } } platform_set_drvdata(pdev, info); ret = s5m8767_rtc_init_reg(info); if (info->wtsr_smpl) { s5m_rtc_enable_wtsr(info, true); s5m_rtc_enable_smpl(info, true); } device_init_wakeup(&pdev->dev, 1); info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc", &s5m_rtc_ops, THIS_MODULE); if (IS_ERR(info->rtc_dev)) { ret = PTR_ERR(info->rtc_dev); goto err; } if (!info->irq) { dev_info(&pdev->dev, "Alarm IRQ not available\n"); return 0; } ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL, s5m_rtc_alarm_irq, 0, "rtc-alarm0", info); if (ret < 0) { dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", info->irq, ret); goto err; } return 0; err: i2c_unregister_device(info->i2c); return ret; } static void s5m_rtc_shutdown(struct platform_device *pdev) { struct s5m_rtc_info *info = platform_get_drvdata(pdev); int i; unsigned int val = 0; if (info->wtsr_smpl) { for (i = 0; i < 3; i++) { s5m_rtc_enable_wtsr(info, false); regmap_read(info->regmap, info->regs->smpl_wtsr, &val); pr_debug("%s: WTSR_SMPL reg(0x%02x)\n", __func__, val); if (val & WTSR_ENABLE_MASK) pr_emerg("%s: fail to disable WTSR\n", __func__); else { pr_info("%s: success to disable WTSR\n", __func__); break; } } } /* Disable SMPL when power off */ s5m_rtc_enable_smpl(info, false); } static int s5m_rtc_remove(struct platform_device *pdev) { struct s5m_rtc_info *info = platform_get_drvdata(pdev); /* Perform also all shutdown steps when removing */ s5m_rtc_shutdown(pdev); i2c_unregister_device(info->i2c); return 0; } #ifdef CONFIG_PM_SLEEP static int s5m_rtc_resume(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (info->irq && device_may_wakeup(dev)) ret = disable_irq_wake(info->irq); return ret; } static int s5m_rtc_suspend(struct device *dev) { struct s5m_rtc_info *info = dev_get_drvdata(dev); int ret = 0; if (info->irq && device_may_wakeup(dev)) ret = enable_irq_wake(info->irq); return ret; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume); static const struct platform_device_id s5m_rtc_id[] = { { "s5m-rtc", S5M8767X }, { "s2mps14-rtc", S2MPS14X }, { }, }; static struct platform_driver s5m_rtc_driver = { .driver = { .name = "s5m-rtc", .pm = &s5m_rtc_pm_ops, }, .probe = s5m_rtc_probe, .remove = s5m_rtc_remove, .shutdown = s5m_rtc_shutdown, .id_table = s5m_rtc_id, }; module_platform_driver(s5m_rtc_driver); /* Module information */ MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>"); MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:s5m-rtc");