// SPDX-License-Identifier: GPL-2.0 /* * NVMe over Fabrics TCP host. * Copyright (c) 2018 Lightbits Labs. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" struct nvme_tcp_queue; /* Define the socket priority to use for connections were it is desirable * that the NIC consider performing optimized packet processing or filtering. * A non-zero value being sufficient to indicate general consideration of any * possible optimization. Making it a module param allows for alternative * values that may be unique for some NIC implementations. */ static int so_priority; module_param(so_priority, int, 0644); MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); enum nvme_tcp_send_state { NVME_TCP_SEND_CMD_PDU = 0, NVME_TCP_SEND_H2C_PDU, NVME_TCP_SEND_DATA, NVME_TCP_SEND_DDGST, }; struct nvme_tcp_request { struct nvme_request req; void *pdu; struct nvme_tcp_queue *queue; u32 data_len; u32 pdu_len; u32 pdu_sent; u16 ttag; __le16 status; struct list_head entry; struct llist_node lentry; __le32 ddgst; struct bio *curr_bio; struct iov_iter iter; /* send state */ size_t offset; size_t data_sent; enum nvme_tcp_send_state state; }; enum nvme_tcp_queue_flags { NVME_TCP_Q_ALLOCATED = 0, NVME_TCP_Q_LIVE = 1, NVME_TCP_Q_POLLING = 2, }; enum nvme_tcp_recv_state { NVME_TCP_RECV_PDU = 0, NVME_TCP_RECV_DATA, NVME_TCP_RECV_DDGST, }; struct nvme_tcp_ctrl; struct nvme_tcp_queue { struct socket *sock; struct work_struct io_work; int io_cpu; struct mutex queue_lock; struct mutex send_mutex; struct llist_head req_list; struct list_head send_list; bool more_requests; /* recv state */ void *pdu; int pdu_remaining; int pdu_offset; size_t data_remaining; size_t ddgst_remaining; unsigned int nr_cqe; /* send state */ struct nvme_tcp_request *request; int queue_size; size_t cmnd_capsule_len; struct nvme_tcp_ctrl *ctrl; unsigned long flags; bool rd_enabled; bool hdr_digest; bool data_digest; struct ahash_request *rcv_hash; struct ahash_request *snd_hash; __le32 exp_ddgst; __le32 recv_ddgst; struct page_frag_cache pf_cache; void (*state_change)(struct sock *); void (*data_ready)(struct sock *); void (*write_space)(struct sock *); }; struct nvme_tcp_ctrl { /* read only in the hot path */ struct nvme_tcp_queue *queues; struct blk_mq_tag_set tag_set; /* other member variables */ struct list_head list; struct blk_mq_tag_set admin_tag_set; struct sockaddr_storage addr; struct sockaddr_storage src_addr; struct nvme_ctrl ctrl; struct work_struct err_work; struct delayed_work connect_work; struct nvme_tcp_request async_req; u32 io_queues[HCTX_MAX_TYPES]; }; static LIST_HEAD(nvme_tcp_ctrl_list); static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); static struct workqueue_struct *nvme_tcp_wq; static const struct blk_mq_ops nvme_tcp_mq_ops; static const struct blk_mq_ops nvme_tcp_admin_mq_ops; static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); } static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) { return queue - queue->ctrl->queues; } static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) { u32 queue_idx = nvme_tcp_queue_id(queue); if (queue_idx == 0) return queue->ctrl->admin_tag_set.tags[queue_idx]; return queue->ctrl->tag_set.tags[queue_idx - 1]; } static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) { return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; } static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) { return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; } static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) { return queue->cmnd_capsule_len - sizeof(struct nvme_command); } static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) { return req == &req->queue->ctrl->async_req; } static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) { struct request *rq; if (unlikely(nvme_tcp_async_req(req))) return false; /* async events don't have a request */ rq = blk_mq_rq_from_pdu(req); return rq_data_dir(rq) == WRITE && req->data_len && req->data_len <= nvme_tcp_inline_data_size(req->queue); } static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) { return req->iter.bvec->bv_page; } static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) { return req->iter.bvec->bv_offset + req->iter.iov_offset; } static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) { return min_t(size_t, iov_iter_single_seg_count(&req->iter), req->pdu_len - req->pdu_sent); } static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) { return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? req->pdu_len - req->pdu_sent : 0; } static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, int len) { return nvme_tcp_pdu_data_left(req) <= len; } static void nvme_tcp_init_iter(struct nvme_tcp_request *req, unsigned int dir) { struct request *rq = blk_mq_rq_from_pdu(req); struct bio_vec *vec; unsigned int size; int nr_bvec; size_t offset; if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { vec = &rq->special_vec; nr_bvec = 1; size = blk_rq_payload_bytes(rq); offset = 0; } else { struct bio *bio = req->curr_bio; struct bvec_iter bi; struct bio_vec bv; vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); nr_bvec = 0; bio_for_each_bvec(bv, bio, bi) { nr_bvec++; } size = bio->bi_iter.bi_size; offset = bio->bi_iter.bi_bvec_done; } iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); req->iter.iov_offset = offset; } static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, int len) { req->data_sent += len; req->pdu_sent += len; iov_iter_advance(&req->iter, len); if (!iov_iter_count(&req->iter) && req->data_sent < req->data_len) { req->curr_bio = req->curr_bio->bi_next; nvme_tcp_init_iter(req, WRITE); } } static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) { int ret; /* drain the send queue as much as we can... */ do { ret = nvme_tcp_try_send(queue); } while (ret > 0); } static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) { return !list_empty(&queue->send_list) || !llist_empty(&queue->req_list) || queue->more_requests; } static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, bool sync, bool last) { struct nvme_tcp_queue *queue = req->queue; bool empty; empty = llist_add(&req->lentry, &queue->req_list) && list_empty(&queue->send_list) && !queue->request; /* * if we're the first on the send_list and we can try to send * directly, otherwise queue io_work. Also, only do that if we * are on the same cpu, so we don't introduce contention. */ if (queue->io_cpu == raw_smp_processor_id() && sync && empty && mutex_trylock(&queue->send_mutex)) { queue->more_requests = !last; nvme_tcp_send_all(queue); queue->more_requests = false; mutex_unlock(&queue->send_mutex); } if (last && nvme_tcp_queue_more(queue)) queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); } static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) { struct nvme_tcp_request *req; struct llist_node *node; for (node = llist_del_all(&queue->req_list); node; node = node->next) { req = llist_entry(node, struct nvme_tcp_request, lentry); list_add(&req->entry, &queue->send_list); } } static inline struct nvme_tcp_request * nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) { struct nvme_tcp_request *req; req = list_first_entry_or_null(&queue->send_list, struct nvme_tcp_request, entry); if (!req) { nvme_tcp_process_req_list(queue); req = list_first_entry_or_null(&queue->send_list, struct nvme_tcp_request, entry); if (unlikely(!req)) return NULL; } list_del(&req->entry); return req; } static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, __le32 *dgst) { ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); crypto_ahash_final(hash); } static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, struct page *page, off_t off, size_t len) { struct scatterlist sg; sg_init_marker(&sg, 1); sg_set_page(&sg, page, len, off); ahash_request_set_crypt(hash, &sg, NULL, len); crypto_ahash_update(hash); } static inline void nvme_tcp_hdgst(struct ahash_request *hash, void *pdu, size_t len) { struct scatterlist sg; sg_init_one(&sg, pdu, len); ahash_request_set_crypt(hash, &sg, pdu + len, len); crypto_ahash_digest(hash); } static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, void *pdu, size_t pdu_len) { struct nvme_tcp_hdr *hdr = pdu; __le32 recv_digest; __le32 exp_digest; if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { dev_err(queue->ctrl->ctrl.device, "queue %d: header digest flag is cleared\n", nvme_tcp_queue_id(queue)); return -EPROTO; } recv_digest = *(__le32 *)(pdu + hdr->hlen); nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); exp_digest = *(__le32 *)(pdu + hdr->hlen); if (recv_digest != exp_digest) { dev_err(queue->ctrl->ctrl.device, "header digest error: recv %#x expected %#x\n", le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); return -EIO; } return 0; } static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) { struct nvme_tcp_hdr *hdr = pdu; u8 digest_len = nvme_tcp_hdgst_len(queue); u32 len; len = le32_to_cpu(hdr->plen) - hdr->hlen - ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { dev_err(queue->ctrl->ctrl.device, "queue %d: data digest flag is cleared\n", nvme_tcp_queue_id(queue)); return -EPROTO; } crypto_ahash_init(queue->rcv_hash); return 0; } static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx) { struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); page_frag_free(req->pdu); } static int nvme_tcp_init_request(struct blk_mq_tag_set *set, struct request *rq, unsigned int hctx_idx, unsigned int numa_node) { struct nvme_tcp_ctrl *ctrl = set->driver_data; struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); struct nvme_tcp_cmd_pdu *pdu; int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; u8 hdgst = nvme_tcp_hdgst_len(queue); req->pdu = page_frag_alloc(&queue->pf_cache, sizeof(struct nvme_tcp_cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!req->pdu) return -ENOMEM; pdu = req->pdu; req->queue = queue; nvme_req(rq)->ctrl = &ctrl->ctrl; nvme_req(rq)->cmd = &pdu->cmd; return 0; } static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_tcp_ctrl *ctrl = data; struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; hctx->driver_data = queue; return 0; } static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_tcp_ctrl *ctrl = data; struct nvme_tcp_queue *queue = &ctrl->queues[0]; hctx->driver_data = queue; return 0; } static enum nvme_tcp_recv_state nvme_tcp_recv_state(struct nvme_tcp_queue *queue) { return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : NVME_TCP_RECV_DATA; } static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) { queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + nvme_tcp_hdgst_len(queue); queue->pdu_offset = 0; queue->data_remaining = -1; queue->ddgst_remaining = 0; } static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) { if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) return; dev_warn(ctrl->device, "starting error recovery\n"); queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); } static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, struct nvme_completion *cqe) { struct nvme_tcp_request *req; struct request *rq; rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); if (!rq) { dev_err(queue->ctrl->ctrl.device, "got bad cqe.command_id %#x on queue %d\n", cqe->command_id, nvme_tcp_queue_id(queue)); nvme_tcp_error_recovery(&queue->ctrl->ctrl); return -EINVAL; } req = blk_mq_rq_to_pdu(rq); if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) req->status = cqe->status; if (!nvme_try_complete_req(rq, req->status, cqe->result)) nvme_complete_rq(rq); queue->nr_cqe++; return 0; } static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, struct nvme_tcp_data_pdu *pdu) { struct request *rq; rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); if (!rq) { dev_err(queue->ctrl->ctrl.device, "got bad c2hdata.command_id %#x on queue %d\n", pdu->command_id, nvme_tcp_queue_id(queue)); return -ENOENT; } if (!blk_rq_payload_bytes(rq)) { dev_err(queue->ctrl->ctrl.device, "queue %d tag %#x unexpected data\n", nvme_tcp_queue_id(queue), rq->tag); return -EIO; } queue->data_remaining = le32_to_cpu(pdu->data_length); if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { dev_err(queue->ctrl->ctrl.device, "queue %d tag %#x SUCCESS set but not last PDU\n", nvme_tcp_queue_id(queue), rq->tag); nvme_tcp_error_recovery(&queue->ctrl->ctrl); return -EPROTO; } return 0; } static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, struct nvme_tcp_rsp_pdu *pdu) { struct nvme_completion *cqe = &pdu->cqe; int ret = 0; /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), cqe->command_id))) nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, &cqe->result); else ret = nvme_tcp_process_nvme_cqe(queue, cqe); return ret; } static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, struct nvme_tcp_r2t_pdu *pdu) { struct nvme_tcp_data_pdu *data = req->pdu; struct nvme_tcp_queue *queue = req->queue; struct request *rq = blk_mq_rq_from_pdu(req); u8 hdgst = nvme_tcp_hdgst_len(queue); u8 ddgst = nvme_tcp_ddgst_len(queue); req->state = NVME_TCP_SEND_H2C_PDU; req->offset = 0; req->pdu_len = le32_to_cpu(pdu->r2t_length); req->pdu_sent = 0; memset(data, 0, sizeof(*data)); data->hdr.type = nvme_tcp_h2c_data; data->hdr.flags = NVME_TCP_F_DATA_LAST; if (queue->hdr_digest) data->hdr.flags |= NVME_TCP_F_HDGST; if (queue->data_digest) data->hdr.flags |= NVME_TCP_F_DDGST; data->hdr.hlen = sizeof(*data); data->hdr.pdo = data->hdr.hlen + hdgst; data->hdr.plen = cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); data->ttag = pdu->ttag; data->command_id = nvme_cid(rq); data->data_offset = pdu->r2t_offset; data->data_length = cpu_to_le32(req->pdu_len); } static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, struct nvme_tcp_r2t_pdu *pdu) { struct nvme_tcp_request *req; struct request *rq; u32 r2t_length = le32_to_cpu(pdu->r2t_length); rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); if (!rq) { dev_err(queue->ctrl->ctrl.device, "got bad r2t.command_id %#x on queue %d\n", pdu->command_id, nvme_tcp_queue_id(queue)); return -ENOENT; } req = blk_mq_rq_to_pdu(rq); if (unlikely(!r2t_length)) { dev_err(queue->ctrl->ctrl.device, "req %d r2t len is %u, probably a bug...\n", rq->tag, r2t_length); return -EPROTO; } if (unlikely(req->data_sent + r2t_length > req->data_len)) { dev_err(queue->ctrl->ctrl.device, "req %d r2t len %u exceeded data len %u (%zu sent)\n", rq->tag, r2t_length, req->data_len, req->data_sent); return -EPROTO; } if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { dev_err(queue->ctrl->ctrl.device, "req %d unexpected r2t offset %u (expected %zu)\n", rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent); return -EPROTO; } nvme_tcp_setup_h2c_data_pdu(req, pdu); nvme_tcp_queue_request(req, false, true); return 0; } static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, unsigned int *offset, size_t *len) { struct nvme_tcp_hdr *hdr; char *pdu = queue->pdu; size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); int ret; ret = skb_copy_bits(skb, *offset, &pdu[queue->pdu_offset], rcv_len); if (unlikely(ret)) return ret; queue->pdu_remaining -= rcv_len; queue->pdu_offset += rcv_len; *offset += rcv_len; *len -= rcv_len; if (queue->pdu_remaining) return 0; hdr = queue->pdu; if (queue->hdr_digest) { ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); if (unlikely(ret)) return ret; } if (queue->data_digest) { ret = nvme_tcp_check_ddgst(queue, queue->pdu); if (unlikely(ret)) return ret; } switch (hdr->type) { case nvme_tcp_c2h_data: return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); case nvme_tcp_rsp: nvme_tcp_init_recv_ctx(queue); return nvme_tcp_handle_comp(queue, (void *)queue->pdu); case nvme_tcp_r2t: nvme_tcp_init_recv_ctx(queue); return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); default: dev_err(queue->ctrl->ctrl.device, "unsupported pdu type (%d)\n", hdr->type); return -EINVAL; } } static inline void nvme_tcp_end_request(struct request *rq, u16 status) { union nvme_result res = {}; if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) nvme_complete_rq(rq); } static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, unsigned int *offset, size_t *len) { struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); while (true) { int recv_len, ret; recv_len = min_t(size_t, *len, queue->data_remaining); if (!recv_len) break; if (!iov_iter_count(&req->iter)) { req->curr_bio = req->curr_bio->bi_next; /* * If we don`t have any bios it means that controller * sent more data than we requested, hence error */ if (!req->curr_bio) { dev_err(queue->ctrl->ctrl.device, "queue %d no space in request %#x", nvme_tcp_queue_id(queue), rq->tag); nvme_tcp_init_recv_ctx(queue); return -EIO; } nvme_tcp_init_iter(req, READ); } /* we can read only from what is left in this bio */ recv_len = min_t(size_t, recv_len, iov_iter_count(&req->iter)); if (queue->data_digest) ret = skb_copy_and_hash_datagram_iter(skb, *offset, &req->iter, recv_len, queue->rcv_hash); else ret = skb_copy_datagram_iter(skb, *offset, &req->iter, recv_len); if (ret) { dev_err(queue->ctrl->ctrl.device, "queue %d failed to copy request %#x data", nvme_tcp_queue_id(queue), rq->tag); return ret; } *len -= recv_len; *offset += recv_len; queue->data_remaining -= recv_len; } if (!queue->data_remaining) { if (queue->data_digest) { nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; } else { if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { nvme_tcp_end_request(rq, le16_to_cpu(req->status)); queue->nr_cqe++; } nvme_tcp_init_recv_ctx(queue); } } return 0; } static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, struct sk_buff *skb, unsigned int *offset, size_t *len) { struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; char *ddgst = (char *)&queue->recv_ddgst; size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; int ret; ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); if (unlikely(ret)) return ret; queue->ddgst_remaining -= recv_len; *offset += recv_len; *len -= recv_len; if (queue->ddgst_remaining) return 0; if (queue->recv_ddgst != queue->exp_ddgst) { struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); dev_err(queue->ctrl->ctrl.device, "data digest error: recv %#x expected %#x\n", le32_to_cpu(queue->recv_ddgst), le32_to_cpu(queue->exp_ddgst)); } if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); nvme_tcp_end_request(rq, le16_to_cpu(req->status)); queue->nr_cqe++; } nvme_tcp_init_recv_ctx(queue); return 0; } static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct nvme_tcp_queue *queue = desc->arg.data; size_t consumed = len; int result; while (len) { switch (nvme_tcp_recv_state(queue)) { case NVME_TCP_RECV_PDU: result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); break; case NVME_TCP_RECV_DATA: result = nvme_tcp_recv_data(queue, skb, &offset, &len); break; case NVME_TCP_RECV_DDGST: result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); break; default: result = -EFAULT; } if (result) { dev_err(queue->ctrl->ctrl.device, "receive failed: %d\n", result); queue->rd_enabled = false; nvme_tcp_error_recovery(&queue->ctrl->ctrl); return result; } } return consumed; } static void nvme_tcp_data_ready(struct sock *sk) { struct nvme_tcp_queue *queue; read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (likely(queue && queue->rd_enabled) && !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); read_unlock_bh(&sk->sk_callback_lock); } static void nvme_tcp_write_space(struct sock *sk) { struct nvme_tcp_queue *queue; read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (likely(queue && sk_stream_is_writeable(sk))) { clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); } read_unlock_bh(&sk->sk_callback_lock); } static void nvme_tcp_state_change(struct sock *sk) { struct nvme_tcp_queue *queue; read_lock_bh(&sk->sk_callback_lock); queue = sk->sk_user_data; if (!queue) goto done; switch (sk->sk_state) { case TCP_CLOSE: case TCP_CLOSE_WAIT: case TCP_LAST_ACK: case TCP_FIN_WAIT1: case TCP_FIN_WAIT2: nvme_tcp_error_recovery(&queue->ctrl->ctrl); break; default: dev_info(queue->ctrl->ctrl.device, "queue %d socket state %d\n", nvme_tcp_queue_id(queue), sk->sk_state); } queue->state_change(sk); done: read_unlock_bh(&sk->sk_callback_lock); } static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) { queue->request = NULL; } static void nvme_tcp_fail_request(struct nvme_tcp_request *req) { if (nvme_tcp_async_req(req)) { union nvme_result res = {}; nvme_complete_async_event(&req->queue->ctrl->ctrl, cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); } else { nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); } } static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) { struct nvme_tcp_queue *queue = req->queue; int req_data_len = req->data_len; while (true) { struct page *page = nvme_tcp_req_cur_page(req); size_t offset = nvme_tcp_req_cur_offset(req); size_t len = nvme_tcp_req_cur_length(req); bool last = nvme_tcp_pdu_last_send(req, len); int req_data_sent = req->data_sent; int ret, flags = MSG_DONTWAIT; if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) flags |= MSG_EOR; else flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; if (sendpage_ok(page)) { ret = kernel_sendpage(queue->sock, page, offset, len, flags); } else { ret = sock_no_sendpage(queue->sock, page, offset, len, flags); } if (ret <= 0) return ret; if (queue->data_digest) nvme_tcp_ddgst_update(queue->snd_hash, page, offset, ret); /* * update the request iterator except for the last payload send * in the request where we don't want to modify it as we may * compete with the RX path completing the request. */ if (req_data_sent + ret < req_data_len) nvme_tcp_advance_req(req, ret); /* fully successful last send in current PDU */ if (last && ret == len) { if (queue->data_digest) { nvme_tcp_ddgst_final(queue->snd_hash, &req->ddgst); req->state = NVME_TCP_SEND_DDGST; req->offset = 0; } else { nvme_tcp_done_send_req(queue); } return 1; } } return -EAGAIN; } static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) { struct nvme_tcp_queue *queue = req->queue; struct nvme_tcp_cmd_pdu *pdu = req->pdu; bool inline_data = nvme_tcp_has_inline_data(req); u8 hdgst = nvme_tcp_hdgst_len(queue); int len = sizeof(*pdu) + hdgst - req->offset; int flags = MSG_DONTWAIT; int ret; if (inline_data || nvme_tcp_queue_more(queue)) flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; else flags |= MSG_EOR; if (queue->hdr_digest && !req->offset) nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); ret = kernel_sendpage(queue->sock, virt_to_page(pdu), offset_in_page(pdu) + req->offset, len, flags); if (unlikely(ret <= 0)) return ret; len -= ret; if (!len) { if (inline_data) { req->state = NVME_TCP_SEND_DATA; if (queue->data_digest) crypto_ahash_init(queue->snd_hash); } else { nvme_tcp_done_send_req(queue); } return 1; } req->offset += ret; return -EAGAIN; } static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) { struct nvme_tcp_queue *queue = req->queue; struct nvme_tcp_data_pdu *pdu = req->pdu; u8 hdgst = nvme_tcp_hdgst_len(queue); int len = sizeof(*pdu) - req->offset + hdgst; int ret; if (queue->hdr_digest && !req->offset) nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); ret = kernel_sendpage(queue->sock, virt_to_page(pdu), offset_in_page(pdu) + req->offset, len, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); if (unlikely(ret <= 0)) return ret; len -= ret; if (!len) { req->state = NVME_TCP_SEND_DATA; if (queue->data_digest) crypto_ahash_init(queue->snd_hash); return 1; } req->offset += ret; return -EAGAIN; } static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) { struct nvme_tcp_queue *queue = req->queue; size_t offset = req->offset; int ret; struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; struct kvec iov = { .iov_base = (u8 *)&req->ddgst + req->offset, .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset }; if (nvme_tcp_queue_more(queue)) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); if (unlikely(ret <= 0)) return ret; if (offset + ret == NVME_TCP_DIGEST_LENGTH) { nvme_tcp_done_send_req(queue); return 1; } req->offset += ret; return -EAGAIN; } static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) { struct nvme_tcp_request *req; int ret = 1; if (!queue->request) { queue->request = nvme_tcp_fetch_request(queue); if (!queue->request) return 0; } req = queue->request; if (req->state == NVME_TCP_SEND_CMD_PDU) { ret = nvme_tcp_try_send_cmd_pdu(req); if (ret <= 0) goto done; if (!nvme_tcp_has_inline_data(req)) return ret; } if (req->state == NVME_TCP_SEND_H2C_PDU) { ret = nvme_tcp_try_send_data_pdu(req); if (ret <= 0) goto done; } if (req->state == NVME_TCP_SEND_DATA) { ret = nvme_tcp_try_send_data(req); if (ret <= 0) goto done; } if (req->state == NVME_TCP_SEND_DDGST) ret = nvme_tcp_try_send_ddgst(req); done: if (ret == -EAGAIN) { ret = 0; } else if (ret < 0) { dev_err(queue->ctrl->ctrl.device, "failed to send request %d\n", ret); if (ret != -EPIPE && ret != -ECONNRESET) nvme_tcp_fail_request(queue->request); nvme_tcp_done_send_req(queue); } return ret; } static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) { struct socket *sock = queue->sock; struct sock *sk = sock->sk; read_descriptor_t rd_desc; int consumed; rd_desc.arg.data = queue; rd_desc.count = 1; lock_sock(sk); queue->nr_cqe = 0; consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); release_sock(sk); return consumed; } static void nvme_tcp_io_work(struct work_struct *w) { struct nvme_tcp_queue *queue = container_of(w, struct nvme_tcp_queue, io_work); unsigned long deadline = jiffies + msecs_to_jiffies(1); do { bool pending = false; int result; if (mutex_trylock(&queue->send_mutex)) { result = nvme_tcp_try_send(queue); mutex_unlock(&queue->send_mutex); if (result > 0) pending = true; else if (unlikely(result < 0)) break; } result = nvme_tcp_try_recv(queue); if (result > 0) pending = true; else if (unlikely(result < 0)) return; if (!pending) return; } while (!time_after(jiffies, deadline)); /* quota is exhausted */ queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); } static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); ahash_request_free(queue->rcv_hash); ahash_request_free(queue->snd_hash); crypto_free_ahash(tfm); } static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) { struct crypto_ahash *tfm; tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return PTR_ERR(tfm); queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); if (!queue->snd_hash) goto free_tfm; ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); if (!queue->rcv_hash) goto free_snd_hash; ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); return 0; free_snd_hash: ahash_request_free(queue->snd_hash); free_tfm: crypto_free_ahash(tfm); return -ENOMEM; } static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) { struct nvme_tcp_request *async = &ctrl->async_req; page_frag_free(async->pdu); } static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) { struct nvme_tcp_queue *queue = &ctrl->queues[0]; struct nvme_tcp_request *async = &ctrl->async_req; u8 hdgst = nvme_tcp_hdgst_len(queue); async->pdu = page_frag_alloc(&queue->pf_cache, sizeof(struct nvme_tcp_cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO); if (!async->pdu) return -ENOMEM; async->queue = &ctrl->queues[0]; return 0; } static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) { struct page *page; struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); struct nvme_tcp_queue *queue = &ctrl->queues[qid]; if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) return; if (queue->hdr_digest || queue->data_digest) nvme_tcp_free_crypto(queue); if (queue->pf_cache.va) { page = virt_to_head_page(queue->pf_cache.va); __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); queue->pf_cache.va = NULL; } sock_release(queue->sock); kfree(queue->pdu); mutex_destroy(&queue->send_mutex); mutex_destroy(&queue->queue_lock); } static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) { struct nvme_tcp_icreq_pdu *icreq; struct nvme_tcp_icresp_pdu *icresp; struct msghdr msg = {}; struct kvec iov; bool ctrl_hdgst, ctrl_ddgst; int ret; icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); if (!icreq) return -ENOMEM; icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); if (!icresp) { ret = -ENOMEM; goto free_icreq; } icreq->hdr.type = nvme_tcp_icreq; icreq->hdr.hlen = sizeof(*icreq); icreq->hdr.pdo = 0; icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); icreq->maxr2t = 0; /* single inflight r2t supported */ icreq->hpda = 0; /* no alignment constraint */ if (queue->hdr_digest) icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; if (queue->data_digest) icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; iov.iov_base = icreq; iov.iov_len = sizeof(*icreq); ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); if (ret < 0) goto free_icresp; memset(&msg, 0, sizeof(msg)); iov.iov_base = icresp; iov.iov_len = sizeof(*icresp); ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, iov.iov_len, msg.msg_flags); if (ret < 0) goto free_icresp; ret = -EINVAL; if (icresp->hdr.type != nvme_tcp_icresp) { pr_err("queue %d: bad type returned %d\n", nvme_tcp_queue_id(queue), icresp->hdr.type); goto free_icresp; } if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { pr_err("queue %d: bad pdu length returned %d\n", nvme_tcp_queue_id(queue), icresp->hdr.plen); goto free_icresp; } if (icresp->pfv != NVME_TCP_PFV_1_0) { pr_err("queue %d: bad pfv returned %d\n", nvme_tcp_queue_id(queue), icresp->pfv); goto free_icresp; } ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); if ((queue->data_digest && !ctrl_ddgst) || (!queue->data_digest && ctrl_ddgst)) { pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", nvme_tcp_queue_id(queue), queue->data_digest ? "enabled" : "disabled", ctrl_ddgst ? "enabled" : "disabled"); goto free_icresp; } ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); if ((queue->hdr_digest && !ctrl_hdgst) || (!queue->hdr_digest && ctrl_hdgst)) { pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", nvme_tcp_queue_id(queue), queue->hdr_digest ? "enabled" : "disabled", ctrl_hdgst ? "enabled" : "disabled"); goto free_icresp; } if (icresp->cpda != 0) { pr_err("queue %d: unsupported cpda returned %d\n", nvme_tcp_queue_id(queue), icresp->cpda); goto free_icresp; } ret = 0; free_icresp: kfree(icresp); free_icreq: kfree(icreq); return ret; } static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) { return nvme_tcp_queue_id(queue) == 0; } static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) { struct nvme_tcp_ctrl *ctrl = queue->ctrl; int qid = nvme_tcp_queue_id(queue); return !nvme_tcp_admin_queue(queue) && qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; } static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) { struct nvme_tcp_ctrl *ctrl = queue->ctrl; int qid = nvme_tcp_queue_id(queue); return !nvme_tcp_admin_queue(queue) && !nvme_tcp_default_queue(queue) && qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + ctrl->io_queues[HCTX_TYPE_READ]; } static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) { struct nvme_tcp_ctrl *ctrl = queue->ctrl; int qid = nvme_tcp_queue_id(queue); return !nvme_tcp_admin_queue(queue) && !nvme_tcp_default_queue(queue) && !nvme_tcp_read_queue(queue) && qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + ctrl->io_queues[HCTX_TYPE_READ] + ctrl->io_queues[HCTX_TYPE_POLL]; } static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) { struct nvme_tcp_ctrl *ctrl = queue->ctrl; int qid = nvme_tcp_queue_id(queue); int n = 0; if (nvme_tcp_default_queue(queue)) n = qid - 1; else if (nvme_tcp_read_queue(queue)) n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; else if (nvme_tcp_poll_queue(queue)) n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - ctrl->io_queues[HCTX_TYPE_READ] - 1; queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); } static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, size_t queue_size) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); struct nvme_tcp_queue *queue = &ctrl->queues[qid]; int ret, rcv_pdu_size; mutex_init(&queue->queue_lock); queue->ctrl = ctrl; init_llist_head(&queue->req_list); INIT_LIST_HEAD(&queue->send_list); mutex_init(&queue->send_mutex); INIT_WORK(&queue->io_work, nvme_tcp_io_work); queue->queue_size = queue_size; if (qid > 0) queue->cmnd_capsule_len = nctrl->ioccsz * 16; else queue->cmnd_capsule_len = sizeof(struct nvme_command) + NVME_TCP_ADMIN_CCSZ; ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, IPPROTO_TCP, &queue->sock); if (ret) { dev_err(nctrl->device, "failed to create socket: %d\n", ret); goto err_destroy_mutex; } /* Single syn retry */ tcp_sock_set_syncnt(queue->sock->sk, 1); /* Set TCP no delay */ tcp_sock_set_nodelay(queue->sock->sk); /* * Cleanup whatever is sitting in the TCP transmit queue on socket * close. This is done to prevent stale data from being sent should * the network connection be restored before TCP times out. */ sock_no_linger(queue->sock->sk); if (so_priority > 0) sock_set_priority(queue->sock->sk, so_priority); /* Set socket type of service */ if (nctrl->opts->tos >= 0) ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); /* Set 10 seconds timeout for icresp recvmsg */ queue->sock->sk->sk_rcvtimeo = 10 * HZ; queue->sock->sk->sk_allocation = GFP_ATOMIC; nvme_tcp_set_queue_io_cpu(queue); queue->request = NULL; queue->data_remaining = 0; queue->ddgst_remaining = 0; queue->pdu_remaining = 0; queue->pdu_offset = 0; sk_set_memalloc(queue->sock->sk); if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, sizeof(ctrl->src_addr)); if (ret) { dev_err(nctrl->device, "failed to bind queue %d socket %d\n", qid, ret); goto err_sock; } } if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { char *iface = nctrl->opts->host_iface; sockptr_t optval = KERNEL_SOCKPTR(iface); ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, optval, strlen(iface)); if (ret) { dev_err(nctrl->device, "failed to bind to interface %s queue %d err %d\n", iface, qid, ret); goto err_sock; } } queue->hdr_digest = nctrl->opts->hdr_digest; queue->data_digest = nctrl->opts->data_digest; if (queue->hdr_digest || queue->data_digest) { ret = nvme_tcp_alloc_crypto(queue); if (ret) { dev_err(nctrl->device, "failed to allocate queue %d crypto\n", qid); goto err_sock; } } rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + nvme_tcp_hdgst_len(queue); queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); if (!queue->pdu) { ret = -ENOMEM; goto err_crypto; } dev_dbg(nctrl->device, "connecting queue %d\n", nvme_tcp_queue_id(queue)); ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, sizeof(ctrl->addr), 0); if (ret) { dev_err(nctrl->device, "failed to connect socket: %d\n", ret); goto err_rcv_pdu; } ret = nvme_tcp_init_connection(queue); if (ret) goto err_init_connect; queue->rd_enabled = true; set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); nvme_tcp_init_recv_ctx(queue); write_lock_bh(&queue->sock->sk->sk_callback_lock); queue->sock->sk->sk_user_data = queue; queue->state_change = queue->sock->sk->sk_state_change; queue->data_ready = queue->sock->sk->sk_data_ready; queue->write_space = queue->sock->sk->sk_write_space; queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; queue->sock->sk->sk_state_change = nvme_tcp_state_change; queue->sock->sk->sk_write_space = nvme_tcp_write_space; #ifdef CONFIG_NET_RX_BUSY_POLL queue->sock->sk->sk_ll_usec = 1; #endif write_unlock_bh(&queue->sock->sk->sk_callback_lock); return 0; err_init_connect: kernel_sock_shutdown(queue->sock, SHUT_RDWR); err_rcv_pdu: kfree(queue->pdu); err_crypto: if (queue->hdr_digest || queue->data_digest) nvme_tcp_free_crypto(queue); err_sock: sock_release(queue->sock); queue->sock = NULL; err_destroy_mutex: mutex_destroy(&queue->send_mutex); mutex_destroy(&queue->queue_lock); return ret; } static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) { struct socket *sock = queue->sock; write_lock_bh(&sock->sk->sk_callback_lock); sock->sk->sk_user_data = NULL; sock->sk->sk_data_ready = queue->data_ready; sock->sk->sk_state_change = queue->state_change; sock->sk->sk_write_space = queue->write_space; write_unlock_bh(&sock->sk->sk_callback_lock); } static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) { kernel_sock_shutdown(queue->sock, SHUT_RDWR); nvme_tcp_restore_sock_calls(queue); cancel_work_sync(&queue->io_work); } static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); struct nvme_tcp_queue *queue = &ctrl->queues[qid]; mutex_lock(&queue->queue_lock); if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) __nvme_tcp_stop_queue(queue); mutex_unlock(&queue->queue_lock); } static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); int ret; if (idx) ret = nvmf_connect_io_queue(nctrl, idx); else ret = nvmf_connect_admin_queue(nctrl); if (!ret) { set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); } else { if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) __nvme_tcp_stop_queue(&ctrl->queues[idx]); dev_err(nctrl->device, "failed to connect queue: %d ret=%d\n", idx, ret); } return ret; } static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, bool admin) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); struct blk_mq_tag_set *set; int ret; if (admin) { set = &ctrl->admin_tag_set; memset(set, 0, sizeof(*set)); set->ops = &nvme_tcp_admin_mq_ops; set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; set->reserved_tags = NVMF_RESERVED_TAGS; set->numa_node = nctrl->numa_node; set->flags = BLK_MQ_F_BLOCKING; set->cmd_size = sizeof(struct nvme_tcp_request); set->driver_data = ctrl; set->nr_hw_queues = 1; set->timeout = NVME_ADMIN_TIMEOUT; } else { set = &ctrl->tag_set; memset(set, 0, sizeof(*set)); set->ops = &nvme_tcp_mq_ops; set->queue_depth = nctrl->sqsize + 1; set->reserved_tags = NVMF_RESERVED_TAGS; set->numa_node = nctrl->numa_node; set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; set->cmd_size = sizeof(struct nvme_tcp_request); set->driver_data = ctrl; set->nr_hw_queues = nctrl->queue_count - 1; set->timeout = NVME_IO_TIMEOUT; set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; } ret = blk_mq_alloc_tag_set(set); if (ret) return ERR_PTR(ret); return set; } static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) { if (to_tcp_ctrl(ctrl)->async_req.pdu) { cancel_work_sync(&ctrl->async_event_work); nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); to_tcp_ctrl(ctrl)->async_req.pdu = NULL; } nvme_tcp_free_queue(ctrl, 0); } static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) { int i; for (i = 1; i < ctrl->queue_count; i++) nvme_tcp_free_queue(ctrl, i); } static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) { int i; for (i = 1; i < ctrl->queue_count; i++) nvme_tcp_stop_queue(ctrl, i); } static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) { int i, ret = 0; for (i = 1; i < ctrl->queue_count; i++) { ret = nvme_tcp_start_queue(ctrl, i); if (ret) goto out_stop_queues; } return 0; out_stop_queues: for (i--; i >= 1; i--) nvme_tcp_stop_queue(ctrl, i); return ret; } static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) { int ret; ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); if (ret) return ret; ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); if (ret) goto out_free_queue; return 0; out_free_queue: nvme_tcp_free_queue(ctrl, 0); return ret; } static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) { int i, ret; for (i = 1; i < ctrl->queue_count; i++) { ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1); if (ret) goto out_free_queues; } return 0; out_free_queues: for (i--; i >= 1; i--) nvme_tcp_free_queue(ctrl, i); return ret; } static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) { unsigned int nr_io_queues; nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); return nr_io_queues; } static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, unsigned int nr_io_queues) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); struct nvmf_ctrl_options *opts = nctrl->opts; if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { /* * separate read/write queues * hand out dedicated default queues only after we have * sufficient read queues. */ ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; ctrl->io_queues[HCTX_TYPE_DEFAULT] = min(opts->nr_write_queues, nr_io_queues); nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; } else { /* * shared read/write queues * either no write queues were requested, or we don't have * sufficient queue count to have dedicated default queues. */ ctrl->io_queues[HCTX_TYPE_DEFAULT] = min(opts->nr_io_queues, nr_io_queues); nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; } if (opts->nr_poll_queues && nr_io_queues) { /* map dedicated poll queues only if we have queues left */ ctrl->io_queues[HCTX_TYPE_POLL] = min(opts->nr_poll_queues, nr_io_queues); } } static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) { unsigned int nr_io_queues; int ret; nr_io_queues = nvme_tcp_nr_io_queues(ctrl); ret = nvme_set_queue_count(ctrl, &nr_io_queues); if (ret) return ret; if (nr_io_queues == 0) { dev_err(ctrl->device, "unable to set any I/O queues\n"); return -ENOMEM; } ctrl->queue_count = nr_io_queues + 1; dev_info(ctrl->device, "creating %d I/O queues.\n", nr_io_queues); nvme_tcp_set_io_queues(ctrl, nr_io_queues); return __nvme_tcp_alloc_io_queues(ctrl); } static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) { nvme_tcp_stop_io_queues(ctrl); if (remove) { blk_cleanup_queue(ctrl->connect_q); blk_mq_free_tag_set(ctrl->tagset); } nvme_tcp_free_io_queues(ctrl); } static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) { int ret; ret = nvme_tcp_alloc_io_queues(ctrl); if (ret) return ret; if (new) { ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); if (IS_ERR(ctrl->tagset)) { ret = PTR_ERR(ctrl->tagset); goto out_free_io_queues; } ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); if (IS_ERR(ctrl->connect_q)) { ret = PTR_ERR(ctrl->connect_q); goto out_free_tag_set; } } ret = nvme_tcp_start_io_queues(ctrl); if (ret) goto out_cleanup_connect_q; if (!new) { nvme_start_queues(ctrl); if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { /* * If we timed out waiting for freeze we are likely to * be stuck. Fail the controller initialization just * to be safe. */ ret = -ENODEV; goto out_wait_freeze_timed_out; } blk_mq_update_nr_hw_queues(ctrl->tagset, ctrl->queue_count - 1); nvme_unfreeze(ctrl); } return 0; out_wait_freeze_timed_out: nvme_stop_queues(ctrl); nvme_sync_io_queues(ctrl); nvme_tcp_stop_io_queues(ctrl); out_cleanup_connect_q: nvme_cancel_tagset(ctrl); if (new) blk_cleanup_queue(ctrl->connect_q); out_free_tag_set: if (new) blk_mq_free_tag_set(ctrl->tagset); out_free_io_queues: nvme_tcp_free_io_queues(ctrl); return ret; } static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) { nvme_tcp_stop_queue(ctrl, 0); if (remove) { blk_cleanup_queue(ctrl->admin_q); blk_cleanup_queue(ctrl->fabrics_q); blk_mq_free_tag_set(ctrl->admin_tagset); } nvme_tcp_free_admin_queue(ctrl); } static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) { int error; error = nvme_tcp_alloc_admin_queue(ctrl); if (error) return error; if (new) { ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); if (IS_ERR(ctrl->admin_tagset)) { error = PTR_ERR(ctrl->admin_tagset); goto out_free_queue; } ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); if (IS_ERR(ctrl->fabrics_q)) { error = PTR_ERR(ctrl->fabrics_q); goto out_free_tagset; } ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); if (IS_ERR(ctrl->admin_q)) { error = PTR_ERR(ctrl->admin_q); goto out_cleanup_fabrics_q; } } error = nvme_tcp_start_queue(ctrl, 0); if (error) goto out_cleanup_queue; error = nvme_enable_ctrl(ctrl); if (error) goto out_stop_queue; nvme_start_admin_queue(ctrl); error = nvme_init_ctrl_finish(ctrl); if (error) goto out_quiesce_queue; return 0; out_quiesce_queue: nvme_stop_admin_queue(ctrl); blk_sync_queue(ctrl->admin_q); out_stop_queue: nvme_tcp_stop_queue(ctrl, 0); nvme_cancel_admin_tagset(ctrl); out_cleanup_queue: if (new) blk_cleanup_queue(ctrl->admin_q); out_cleanup_fabrics_q: if (new) blk_cleanup_queue(ctrl->fabrics_q); out_free_tagset: if (new) blk_mq_free_tag_set(ctrl->admin_tagset); out_free_queue: nvme_tcp_free_admin_queue(ctrl); return error; } static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, bool remove) { nvme_stop_admin_queue(ctrl); blk_sync_queue(ctrl->admin_q); nvme_tcp_stop_queue(ctrl, 0); nvme_cancel_admin_tagset(ctrl); if (remove) nvme_start_admin_queue(ctrl); nvme_tcp_destroy_admin_queue(ctrl, remove); } static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, bool remove) { if (ctrl->queue_count <= 1) return; nvme_stop_admin_queue(ctrl); nvme_start_freeze(ctrl); nvme_stop_queues(ctrl); nvme_sync_io_queues(ctrl); nvme_tcp_stop_io_queues(ctrl); nvme_cancel_tagset(ctrl); if (remove) nvme_start_queues(ctrl); nvme_tcp_destroy_io_queues(ctrl, remove); } static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) { /* If we are resetting/deleting then do nothing */ if (ctrl->state != NVME_CTRL_CONNECTING) { WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || ctrl->state == NVME_CTRL_LIVE); return; } if (nvmf_should_reconnect(ctrl)) { dev_info(ctrl->device, "Reconnecting in %d seconds...\n", ctrl->opts->reconnect_delay); queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, ctrl->opts->reconnect_delay * HZ); } else { dev_info(ctrl->device, "Removing controller...\n"); nvme_delete_ctrl(ctrl); } } static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) { struct nvmf_ctrl_options *opts = ctrl->opts; int ret; ret = nvme_tcp_configure_admin_queue(ctrl, new); if (ret) return ret; if (ctrl->icdoff) { ret = -EOPNOTSUPP; dev_err(ctrl->device, "icdoff is not supported!\n"); goto destroy_admin; } if (!nvme_ctrl_sgl_supported(ctrl)) { ret = -EOPNOTSUPP; dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); goto destroy_admin; } if (opts->queue_size > ctrl->sqsize + 1) dev_warn(ctrl->device, "queue_size %zu > ctrl sqsize %u, clamping down\n", opts->queue_size, ctrl->sqsize + 1); if (ctrl->sqsize + 1 > ctrl->maxcmd) { dev_warn(ctrl->device, "sqsize %u > ctrl maxcmd %u, clamping down\n", ctrl->sqsize + 1, ctrl->maxcmd); ctrl->sqsize = ctrl->maxcmd - 1; } if (ctrl->queue_count > 1) { ret = nvme_tcp_configure_io_queues(ctrl, new); if (ret) goto destroy_admin; } if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { /* * state change failure is ok if we started ctrl delete, * unless we're during creation of a new controller to * avoid races with teardown flow. */ WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && ctrl->state != NVME_CTRL_DELETING_NOIO); WARN_ON_ONCE(new); ret = -EINVAL; goto destroy_io; } nvme_start_ctrl(ctrl); return 0; destroy_io: if (ctrl->queue_count > 1) { nvme_stop_queues(ctrl); nvme_sync_io_queues(ctrl); nvme_tcp_stop_io_queues(ctrl); nvme_cancel_tagset(ctrl); nvme_tcp_destroy_io_queues(ctrl, new); } destroy_admin: nvme_stop_admin_queue(ctrl); blk_sync_queue(ctrl->admin_q); nvme_tcp_stop_queue(ctrl, 0); nvme_cancel_admin_tagset(ctrl); nvme_tcp_destroy_admin_queue(ctrl, new); return ret; } static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) { struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), struct nvme_tcp_ctrl, connect_work); struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; ++ctrl->nr_reconnects; if (nvme_tcp_setup_ctrl(ctrl, false)) goto requeue; dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", ctrl->nr_reconnects); ctrl->nr_reconnects = 0; return; requeue: dev_info(ctrl->device, "Failed reconnect attempt %d\n", ctrl->nr_reconnects); nvme_tcp_reconnect_or_remove(ctrl); } static void nvme_tcp_error_recovery_work(struct work_struct *work) { struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, struct nvme_tcp_ctrl, err_work); struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; nvme_stop_keep_alive(ctrl); flush_work(&ctrl->async_event_work); nvme_tcp_teardown_io_queues(ctrl, false); /* unquiesce to fail fast pending requests */ nvme_start_queues(ctrl); nvme_tcp_teardown_admin_queue(ctrl, false); nvme_start_admin_queue(ctrl); if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { /* state change failure is ok if we started ctrl delete */ WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && ctrl->state != NVME_CTRL_DELETING_NOIO); return; } nvme_tcp_reconnect_or_remove(ctrl); } static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) { cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); nvme_tcp_teardown_io_queues(ctrl, shutdown); nvme_stop_admin_queue(ctrl); if (shutdown) nvme_shutdown_ctrl(ctrl); else nvme_disable_ctrl(ctrl); nvme_tcp_teardown_admin_queue(ctrl, shutdown); } static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) { nvme_tcp_teardown_ctrl(ctrl, true); } static void nvme_reset_ctrl_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, reset_work); nvme_stop_ctrl(ctrl); nvme_tcp_teardown_ctrl(ctrl, false); if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { /* state change failure is ok if we started ctrl delete */ WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && ctrl->state != NVME_CTRL_DELETING_NOIO); return; } if (nvme_tcp_setup_ctrl(ctrl, false)) goto out_fail; return; out_fail: ++ctrl->nr_reconnects; nvme_tcp_reconnect_or_remove(ctrl); } static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); if (list_empty(&ctrl->list)) goto free_ctrl; mutex_lock(&nvme_tcp_ctrl_mutex); list_del(&ctrl->list); mutex_unlock(&nvme_tcp_ctrl_mutex); nvmf_free_options(nctrl->opts); free_ctrl: kfree(ctrl->queues); kfree(ctrl); } static void nvme_tcp_set_sg_null(struct nvme_command *c) { struct nvme_sgl_desc *sg = &c->common.dptr.sgl; sg->addr = 0; sg->length = 0; sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | NVME_SGL_FMT_TRANSPORT_A; } static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, struct nvme_command *c, u32 data_len) { struct nvme_sgl_desc *sg = &c->common.dptr.sgl; sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); sg->length = cpu_to_le32(data_len); sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; } static void nvme_tcp_set_sg_host_data(struct nvme_command *c, u32 data_len) { struct nvme_sgl_desc *sg = &c->common.dptr.sgl; sg->addr = 0; sg->length = cpu_to_le32(data_len); sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | NVME_SGL_FMT_TRANSPORT_A; } static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) { struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); struct nvme_tcp_queue *queue = &ctrl->queues[0]; struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; struct nvme_command *cmd = &pdu->cmd; u8 hdgst = nvme_tcp_hdgst_len(queue); memset(pdu, 0, sizeof(*pdu)); pdu->hdr.type = nvme_tcp_cmd; if (queue->hdr_digest) pdu->hdr.flags |= NVME_TCP_F_HDGST; pdu->hdr.hlen = sizeof(*pdu); pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); cmd->common.opcode = nvme_admin_async_event; cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; cmd->common.flags |= NVME_CMD_SGL_METABUF; nvme_tcp_set_sg_null(cmd); ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; ctrl->async_req.offset = 0; ctrl->async_req.curr_bio = NULL; ctrl->async_req.data_len = 0; nvme_tcp_queue_request(&ctrl->async_req, true, true); } static void nvme_tcp_complete_timed_out(struct request *rq) { struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; blk_mq_complete_request(rq); } } static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq, bool reserved) { struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; struct nvme_tcp_cmd_pdu *pdu = req->pdu; dev_warn(ctrl->device, "queue %d: timeout request %#x type %d\n", nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); if (ctrl->state != NVME_CTRL_LIVE) { /* * If we are resetting, connecting or deleting we should * complete immediately because we may block controller * teardown or setup sequence * - ctrl disable/shutdown fabrics requests * - connect requests * - initialization admin requests * - I/O requests that entered after unquiescing and * the controller stopped responding * * All other requests should be cancelled by the error * recovery work, so it's fine that we fail it here. */ nvme_tcp_complete_timed_out(rq); return BLK_EH_DONE; } /* * LIVE state should trigger the normal error recovery which will * handle completing this request. */ nvme_tcp_error_recovery(ctrl); return BLK_EH_RESET_TIMER; } static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, struct request *rq) { struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); struct nvme_tcp_cmd_pdu *pdu = req->pdu; struct nvme_command *c = &pdu->cmd; c->common.flags |= NVME_CMD_SGL_METABUF; if (!blk_rq_nr_phys_segments(rq)) nvme_tcp_set_sg_null(c); else if (rq_data_dir(rq) == WRITE && req->data_len <= nvme_tcp_inline_data_size(queue)) nvme_tcp_set_sg_inline(queue, c, req->data_len); else nvme_tcp_set_sg_host_data(c, req->data_len); return 0; } static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, struct request *rq) { struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); struct nvme_tcp_cmd_pdu *pdu = req->pdu; struct nvme_tcp_queue *queue = req->queue; u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; blk_status_t ret; ret = nvme_setup_cmd(ns, rq); if (ret) return ret; req->state = NVME_TCP_SEND_CMD_PDU; req->status = cpu_to_le16(NVME_SC_SUCCESS); req->offset = 0; req->data_sent = 0; req->pdu_len = 0; req->pdu_sent = 0; req->data_len = blk_rq_nr_phys_segments(rq) ? blk_rq_payload_bytes(rq) : 0; req->curr_bio = rq->bio; if (req->curr_bio && req->data_len) nvme_tcp_init_iter(req, rq_data_dir(rq)); if (rq_data_dir(rq) == WRITE && req->data_len <= nvme_tcp_inline_data_size(queue)) req->pdu_len = req->data_len; pdu->hdr.type = nvme_tcp_cmd; pdu->hdr.flags = 0; if (queue->hdr_digest) pdu->hdr.flags |= NVME_TCP_F_HDGST; if (queue->data_digest && req->pdu_len) { pdu->hdr.flags |= NVME_TCP_F_DDGST; ddgst = nvme_tcp_ddgst_len(queue); } pdu->hdr.hlen = sizeof(*pdu); pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); ret = nvme_tcp_map_data(queue, rq); if (unlikely(ret)) { nvme_cleanup_cmd(rq); dev_err(queue->ctrl->ctrl.device, "Failed to map data (%d)\n", ret); return ret; } return 0; } static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) { struct nvme_tcp_queue *queue = hctx->driver_data; if (!llist_empty(&queue->req_list)) queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); } static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_tcp_queue *queue = hctx->driver_data; struct request *rq = bd->rq; struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); blk_status_t ret; if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); ret = nvme_tcp_setup_cmd_pdu(ns, rq); if (unlikely(ret)) return ret; blk_mq_start_request(rq); nvme_tcp_queue_request(req, true, bd->last); return BLK_STS_OK; } static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) { struct nvme_tcp_ctrl *ctrl = set->driver_data; struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { /* separate read/write queues */ set->map[HCTX_TYPE_DEFAULT].nr_queues = ctrl->io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ]; set->map[HCTX_TYPE_READ].queue_offset = ctrl->io_queues[HCTX_TYPE_DEFAULT]; } else { /* shared read/write queues */ set->map[HCTX_TYPE_DEFAULT].nr_queues = ctrl->io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_READ].queue_offset = 0; } blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { /* map dedicated poll queues only if we have queues left */ set->map[HCTX_TYPE_POLL].nr_queues = ctrl->io_queues[HCTX_TYPE_POLL]; set->map[HCTX_TYPE_POLL].queue_offset = ctrl->io_queues[HCTX_TYPE_DEFAULT] + ctrl->io_queues[HCTX_TYPE_READ]; blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); } dev_info(ctrl->ctrl.device, "mapped %d/%d/%d default/read/poll queues.\n", ctrl->io_queues[HCTX_TYPE_DEFAULT], ctrl->io_queues[HCTX_TYPE_READ], ctrl->io_queues[HCTX_TYPE_POLL]); return 0; } static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) { struct nvme_tcp_queue *queue = hctx->driver_data; struct sock *sk = queue->sock->sk; if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) return 0; set_bit(NVME_TCP_Q_POLLING, &queue->flags); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) sk_busy_loop(sk, true); nvme_tcp_try_recv(queue); clear_bit(NVME_TCP_Q_POLLING, &queue->flags); return queue->nr_cqe; } static const struct blk_mq_ops nvme_tcp_mq_ops = { .queue_rq = nvme_tcp_queue_rq, .commit_rqs = nvme_tcp_commit_rqs, .complete = nvme_complete_rq, .init_request = nvme_tcp_init_request, .exit_request = nvme_tcp_exit_request, .init_hctx = nvme_tcp_init_hctx, .timeout = nvme_tcp_timeout, .map_queues = nvme_tcp_map_queues, .poll = nvme_tcp_poll, }; static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { .queue_rq = nvme_tcp_queue_rq, .complete = nvme_complete_rq, .init_request = nvme_tcp_init_request, .exit_request = nvme_tcp_exit_request, .init_hctx = nvme_tcp_init_admin_hctx, .timeout = nvme_tcp_timeout, }; static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { .name = "tcp", .module = THIS_MODULE, .flags = NVME_F_FABRICS, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .free_ctrl = nvme_tcp_free_ctrl, .submit_async_event = nvme_tcp_submit_async_event, .delete_ctrl = nvme_tcp_delete_ctrl, .get_address = nvmf_get_address, }; static bool nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) { struct nvme_tcp_ctrl *ctrl; bool found = false; mutex_lock(&nvme_tcp_ctrl_mutex); list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { found = nvmf_ip_options_match(&ctrl->ctrl, opts); if (found) break; } mutex_unlock(&nvme_tcp_ctrl_mutex); return found; } static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_tcp_ctrl *ctrl; int ret; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&ctrl->list); ctrl->ctrl.opts = opts; ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + opts->nr_poll_queues + 1; ctrl->ctrl.sqsize = opts->queue_size - 1; ctrl->ctrl.kato = opts->kato; INIT_DELAYED_WORK(&ctrl->connect_work, nvme_tcp_reconnect_ctrl_work); INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); if (!(opts->mask & NVMF_OPT_TRSVCID)) { opts->trsvcid = kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); if (!opts->trsvcid) { ret = -ENOMEM; goto out_free_ctrl; } opts->mask |= NVMF_OPT_TRSVCID; } ret = inet_pton_with_scope(&init_net, AF_UNSPEC, opts->traddr, opts->trsvcid, &ctrl->addr); if (ret) { pr_err("malformed address passed: %s:%s\n", opts->traddr, opts->trsvcid); goto out_free_ctrl; } if (opts->mask & NVMF_OPT_HOST_TRADDR) { ret = inet_pton_with_scope(&init_net, AF_UNSPEC, opts->host_traddr, NULL, &ctrl->src_addr); if (ret) { pr_err("malformed src address passed: %s\n", opts->host_traddr); goto out_free_ctrl; } } if (opts->mask & NVMF_OPT_HOST_IFACE) { if (!__dev_get_by_name(&init_net, opts->host_iface)) { pr_err("invalid interface passed: %s\n", opts->host_iface); ret = -ENODEV; goto out_free_ctrl; } } if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { ret = -EALREADY; goto out_free_ctrl; } ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), GFP_KERNEL); if (!ctrl->queues) { ret = -ENOMEM; goto out_free_ctrl; } ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); if (ret) goto out_kfree_queues; if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { WARN_ON_ONCE(1); ret = -EINTR; goto out_uninit_ctrl; } ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); if (ret) goto out_uninit_ctrl; dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); mutex_lock(&nvme_tcp_ctrl_mutex); list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); mutex_unlock(&nvme_tcp_ctrl_mutex); return &ctrl->ctrl; out_uninit_ctrl: nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); if (ret > 0) ret = -EIO; return ERR_PTR(ret); out_kfree_queues: kfree(ctrl->queues); out_free_ctrl: kfree(ctrl); return ERR_PTR(ret); } static struct nvmf_transport_ops nvme_tcp_transport = { .name = "tcp", .module = THIS_MODULE, .required_opts = NVMF_OPT_TRADDR, .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, .create_ctrl = nvme_tcp_create_ctrl, }; static int __init nvme_tcp_init_module(void) { nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); if (!nvme_tcp_wq) return -ENOMEM; nvmf_register_transport(&nvme_tcp_transport); return 0; } static void __exit nvme_tcp_cleanup_module(void) { struct nvme_tcp_ctrl *ctrl; nvmf_unregister_transport(&nvme_tcp_transport); mutex_lock(&nvme_tcp_ctrl_mutex); list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) nvme_delete_ctrl(&ctrl->ctrl); mutex_unlock(&nvme_tcp_ctrl_mutex); flush_workqueue(nvme_delete_wq); destroy_workqueue(nvme_tcp_wq); } module_init(nvme_tcp_init_module); module_exit(nvme_tcp_cleanup_module); MODULE_LICENSE("GPL v2");